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#1 Transport properties of secondary Dirac fermions 

Near the main and secondary NPs, our devices exhibited surprisingly similar carrier mobilities µ (see the 

main text). They were within a range of 20–100103 cm2V-1s-1 depending on sample. No short-range 

resistivity term that often yields a sublinear dependence (n) was noticeable in our devices.  

As usual for graphene on hBN [S1-S2], near the main NP we find  to be practically independent of T within 

our entire T range, which was limited to 150 K to avoid breakdown of the gate dielectric. Near the electron-

side secondary NP (eSNP),  also shows only a weak T dependence. In stark contrast, there is a strong T 

dependence near the hSNP (Fig. 1a of the main text) such that  falls below 10,000 cm2V-1s-1 at 150K. The 

behavior did not change significantly below 10 K. 

 
FIG. S1. T dependences of minimum conductivity at the main and secondary NPs. For the electron-side NP, 
NP is scaled by a factor of 20.  

Another notable difference between the three NPs is that they exhibit different T dependences of their 

minimum conductivities NP (Fig. S1). For the hSNP, NP increases by a factor of 10 between liquid-helium T 

and 150K. For the eSNP and main NP, changes in NP are small (<50%), similar to the standard behavior for 

graphene with similar µ [S1-S3]. Despite the strong T dependence at the hSNP, it does not follow the 

activation behavior but evolves linearly with T and then saturates below 20K (Fig. S1). We believe that this 

dependence is unlikely to be caused by a gap opening or localization effects because we have found NP 

insensitive to small magnetic fields B <0.1T [S4]. Similar NP(T) were reported for high- suspended devices 

and attributed to a combined effect of thermally excited carriers and T-dependent scattering [S5-S6]. The 

observed T dependences cast doubt that an hBN substrate can induce large energy gaps envisaged 

theoretically [S7-S8].  

In general, the observed transport properties and, especially, different T behavior for hole- and electron-

side Dirac fermions are puzzling and remain to be understood. 
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#2 Thermal broadening of secondary Dirac points 

Another important difference between the main and secondary NPs is their different thermal broadening. 

At low T, the main DP is broadened by charge inhomogeneity n, which is 1011cm-2 in our aligned devices. 

As expected for such n [S5-S6], we observe little additional broadening at the main NP with increasing T 

(Fig. 1a). In contrast, the hSNP becomes strongly and visibly broader with T despite high n (Figs. 1a and 

S2). This broadening can be analyzed in terms of the number nT of thermally excited charge carriers [S5-

S6]. If n is relatively small (n leads to residual broadening at low T), thermal carriers provide a dominant 

contribution to (n) at the NPs. Accordingly, the peak in xx becomes lower and broader with increasing T 

and its top gets rounder. The speed of this broadening as a function of T depends on the density of states 

(DoS) available for thermal excitations. It was shown theoretically and observed experimentally that nT 

varies as T2 and T for the linear and parabolic spectra in graphene and its bilayer, respectively [S5-S6].  

We have employed the same procedure as described in detail in ref. S6 to probe the DoS at the secondary 

DPs in our graphene superlattices. An example of this analysis is shown in Fig. S2 that plots the total 

number of carriers, nT+n, at the main and hole-side NPs for device A of the main text. The hSNP 

broadens >10 times faster than the main NP but both evolve as T2. Because the peak at the hSNP is large 

and broadens rapidly, our experimental accuracy is high and the observed square T dependence 

unequivocally proves that the spectrum near the hSNP is linear, that is, Dirac-like. The eSNP also exhibits 

rapid thermal broadening but, for the small xx, quantitative analysis is difficult in this case. 

 
Fig. S2. Number of thermal charge carriers at the main and secondary NPs. The ratio between slopes of the 
red and blue lines is 13. The T2 dependence proves that the spectrum at the new NPs is linear.  

For a Dirac spectrum with degeneracy N, nT is proportional to N/vF
2 [S6]. The average Fermi velocity vF

S for 

the secondary Dirac spectra in graphene on hBN was estimated as 0.5vF [S9], in agreement with theory 

[S10-S11]. Therefore, the observed nT ratio of 13±3 (Fig. S2) points at a triple degeneracy for the hole-side 

secondary DPs, consistent with the models that assume only a scalar potential modulation [S9-S13]. We 
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also note that the main NP (blue curve) exhibits exactly the same speed nT/T2 of thermal broadening as 

previously reported for the NP in suspended graphene with little n [S5], which shows good consistency of 

employing this approach for different graphene systems.  

#3 Further examples of Landau fan diagrams  

Figure S3 shows another superlattice fan diagram observed in our experiments. The central panel plots the 

entire diagram whereas the left and right panels zoom-in on the secondary NPs. In the conduction band, 

the third generation of DPs is seen an oscillatory network emerging beyond the eSNP, similar to the case in 

Fig. 2b and 3a of the main text. Near the hSNP, individual peaks in xx due to third-generation DPs are not 

resolved as a function of n and merge into continuous bands, running parallel to the n-axis beyond the 

hSNP (see Figs. S3a and S4a). These bands can be referred to as Zak oscillations [S14] and are different from 

both Shubnikov-de Haas and Weiss oscillations.  

 

Fig. S3. Landau fan diagrams for device D. b – Complete diagrams xx(n,B) showing the main and secondary 
NPs. a, c – Zooming in near the hole- and electron-side DPs, respectively. The blue-to-red scale is from 0 to 
16, 8 and 1kOhm for plots a, b and c, respectively. The device exhibits somewhat higher charge 
inhomogeneity than device A of the main text and, accordingly, the hSNP is broader and its splitting occurs 
in higher B. The narrow minima in xx along S =±2 (such as in Fig. 2a of the main text) are not seen in this 
device, although the associated narrow extrema in xy survive the inhomogeneity (see below). The data are 
taken by sweeping gate voltage at every 0.25T. 

In xx measurements, maxima due to third-generation DPs can be difficult to resolve as they often merge 

into continuous bands for a given B (Fig. S4a). In this case, individual NPs are still seen clearly in Hall 

measurements. This is illustrated in Fig. S4a-b, which compares fan diagrams for xx and xy for the same 

range of n and B. The Zak oscillations seen in xx are split into separate spots in xy, similar to the case in Fig. 

3a-b of the main text. The white spots in Fig. S4b correspond to deep minima in xy and, near the hSNP, the 

Hall effect repeatedly changes its sign as a function of B. These minima are accompanied by maxima in xx. 

Zak oscillations as a function of B are well described by unit fractions of 0 per superlattice unit cell (Fig. 
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S4c-d). This behavior is in good agreement with that reported for devices B and C in Fig. 3 of the main text 

and, in fact, was found in all our devices. For different devices, the observed 1/B periodicities varied 

according to their S determined from the same fan diagrams as S = 4nS
-1 [S11].  

 

Fig. S4. Zak oscillations. a – xx and b – xy as a function of n and B beyond the hSNP. Device D as in Fig. S3. 
Grey scale in (a): 1.5 (white) to 2.8 kOhm (black). Color scale in (b): blue to white to red correspond to -0.2 
to 0 to 0.2 kOhm. c,d – Same data replotted as a function of 1/B. The left y-axis is in units of B; the right one 
in units 0/B×S. It is clear that the oscillations are periodic in 1/B and correspond to unit fractions of 0 per 
superlattice unit cells. 
 

 
Fig. S5. High-B behavior of xy with numerous third-generation NPs. Scale: blue to white to red corresponds 
to -2 to 0 to 2 kOhm in (a) for device B and -6 to 0 to 6kOhm in (b) for device C. The data are taken by 
sweeping gate voltage at every 0.25T in (a) and 1T in (b) (this discreteness leads to the small-scale structure 
clearly visible at the lower-B parts). The slight shift of the main NP in (b) is specific to this device and 
probably due to suppression of remnant doping by high B. Note that the oscillations near the eSNP do not 
lead to the sign change in the Hall effect but xy still reaches very close to zero. 
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For completeness, Figure S5 shows the full Landau fan diagrams xy(n,B) measured for devices B and C. The 

data partially appeared in Figs. 3b,e of the main text where the full diagrams were cropped and presented 

in a scale linear in 1/B. Fig. S5 again shows repetitive reversals of the Hall effect with increasing B, a 

phenomenon that has never been observed in other systems.  

 

#4 Superlattice QHE states  

With reference to Fig. 2 of the main text, Figure S6 shows the QHE states running along S =±2 at various T 

in B =5T, just before the central peak at the hSNP splits into two. The minima in xx become deeper with 

decreasing T (Fig. S6a) but do not reach the zero resistance state even at 1K, being blurred by charge 

inhomogeneity that suppresses the perfect edge state transport in our relatively narrow devices.  

 

Fig. S6. Quantum Hall effect for secondary Dirac fermions. a – T dependence near the hSNP in constant B. b 
– Corresponding energy gaps and their field dependence. The gaps were evaluated by analyzing T 
dependences such as in (a) by using the Lifshitz-Kosevich formula (see, e.g., ref. [S3]). We did not 
investigate in detail the T dependence after the central peak split in higher B but, qualitatively, the gaps’ 
size does not change up to 14T (see the T dependence shown in Fig. 2d of the main text). 
 

 

Fig. S7. Detailed evolution of the QHE states emerging near S =±2 as a function of B as they cross the  =-
10 state originating from the main DP (Device A; T=20K). The curves are shifted vertically for clarity. The 
vertical line is to indicate little shift for the right (S =+2) state. The arrow marks a fractal slope  =-5/3.  
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By analyzing T dependences such as in Fig S6a, we have obtained the corresponding gaps in different B (Fig. 

S6b). Within our experimental accuracy, the gaps for S =-2 and +2 are equal and do not depend much on B 

(except for B where unit fractions of 0 pierce the superlattice unit cell), consistent with the fact that the 

width of the narrow white stripes in Fig. 2a of the main text does not change. 

Finally, we want to point out an intriguing behavior of the secondary QHE states running along S =±2 when 

they ‘hybridize’ with the QHE states coming from the main NP. This is seen as the step-like waving of the 

white lines in Fig. 2a of the main text, which change their slopes each time the S =±2 states cross the QHE 

states originating from the main DP. To examine this behavior further, Fig. S7 shows xx in the interval 

where the S =±2 states are intersected by the  =-10 state. One can see that the position of the right 

minimum changes little with B. The changes (if any) are consistent with a small negative slope n/B rather 

than running parallel to any positive S. The better developed minimum at n -3.51012cm-2 moves 

leftwards, as expected for this state that shows the general tendency to run along S =-2 (Fig. 2a). However, 

the speed at which the minimum’s position moves with B is lower than S =-2 necessitates. Furthermore, 

Fig. 2d of the main text shows that, as xx tends to zero, xy develops symmetrically with respect to the Hall 

plateaus originating from the main NP. We speculate that, if this particular development continues, new 

QHE plateaus may appear at h/e2(1/ +1/S) where h/e2 is the resistance quantum. For the case  =-10 in 

Fig. 2d, this would infer xy =-(3/5) and +(2/5)h/e2 and correspond to fractional fillings -5/3 and +5/2. To 

this end, we note that the best developed QHE state (deepest minimum in xx) runs parallel to =-5/3 in the 

corresponding B interval as shown by the arrow in Fig. S7. The overall behavior may indicate that our fractal 

quantum Hall system supports a single-particle fractional QHE by mixing different integer QHE states.  

#5 Spectral characteristics of graphene superlattices 

As shown in Refs. S7-S12, there exist 3 principal scenarios for the superlattice spectrum of graphene placed 

on a hexagonal substrate. All these scenarios lead to secondary DPs at the edges of the lowest-energy 

moiré minibands in zero B [S11]. However, detailed spectra depend on size and relative strength of the 

phenomenologically introduced moiré pattern parameters,        in the Dirac Hamiltonian for electrons in 

each of the two graphene valleys (    ), 

      ́     ⃗   ⃗                  ( ⃗     )   ⃗                (1) 

where        are the Pauli matrices acting on the sublattice components of the electronic wavefunction 

[(A,B) in the valley K and (B,-A) in K’],      for K and K’ valleys;    ∑    ⃗⃗   ⃗        and     

∑         ⃗⃗   ⃗      , where six vectors  ⃗⃗  (with   ⃗⃗    ) are obtained by consecutive 60° rotations; 

 ⃗⃗   ̂     ⃗ of the reciprocal lattice vector  ⃗         ̂      ⃗⃗  of the moiré pattern, and  ⃗⃗  and 

      ⃗⃗   are the principal reciprocal lattice vectors of aligned graphene and BN lattices, rotated by a 

small misalignment angle .  
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Three characteristic miniband spectra can be found [S11] for Dirac electrons described by the model in Eq. 

(1): (a) for small values of parameters       , strongly overlapping minibands without clearly separated band 

edges; (b) for particular relations between these parameters (for example,       ), a triplet of isolated 

secondary DPs with anisotropic Dirac velocities at the edge of the hexagonal mini Brillouin zone of moiré 

superlattice; and (c) more generically, one isolated secondary DP at a corner of the mini Brillouin zone (in 

each graphene valley) in either valence or conduction band, with a second-generation Dirac velocity of 

0.5vF. Except for special choice of moiré superlattice parameters, spectra of the Hamiltonian in Eq. (1) do 

not have electron-hole symmetry. Examples of the calculated characteristic miniband spectra for each of 

the three cases can be found in Ref. [S11].  

Figures S8-S10 show examples of the magneto-electronic spectra expected for our graphene superlattices. 

In Fig. S8, we limit the plotted values to fluxes 0.10 <  <0.60, which for our devices corresponds 

approximately to B between 3 and 20T, that is, our typical experimental range. The calculated data are 

similar to those presented in Fig. 3c,d of the main text and obtained by using the procedure described in 

Ref. [S11]. We use 3 exemplary sets of moiré parameters, which are chosen to illustrate possible scenarios 

for graphene-on-hBN superlattices, taking into account the electron-hole asymmetry with a stronger 

secondary DP in graphene’s valence band. Black dots in Fig. S8 present energies of states at the center of 

Zak’s magnetic minibands found for arbitrary fractional flux values  = BS = (2p/q)0 [S14-S18]. In Figure 

S8a, we also show so-called spectral support [S16], that is, the entire miniband for several even and odd 

values of q (blue intervals; p =1).  

In the lower-B part of the plots, one can see remnants of the original Dirac spectrum with its Landau levels 

(LL) progressively broadened by the superlattice potential. To illustrate this fact, the red curves in Fig. S8a 

show several original LLs, in the absence of a superlattice potential. The superlattice spectra also contain 

reminiscence of Dirac-like quantized levels originating from secondary DPs. This is illustrated in Fig. S8a by 

another set of red curves beginning from -0.5vFb. These LLs evolve as -0.51vFb ±0.5vF√      with N =0,1 

, …. The green dots in Fig. S8a (also, Fig. 3c of the main text) show positions of the Fermi energy for n = -nS 

-4/S, that is, for the complete filling of the first moiré miniband in the valance band. These calculations 

are done by counting the number of filled magnetic bands (whose capacity and degeneracy depend on p 

and q [S14-S15]). The reason for us to focus on this particular density is that it corresponds to the half-filled 

zero LL originating from the secondary DP at the edge of the first moiré miniband in zero B. Therefore, this 

is the state that exhibits the initial (zero-B) change in the sign of Hall conductivity. Moreover, at  where 

this LL (zero N for the secondary DP) splits into pairs of magnetic minibands, the Fermi level lies in a gap 

between them, which happens at  = 0/(q +1/2) (for example,  =2/3, 2/5 or 2/70). In this case, we also 

expect both xx to become zero and Hall conductivity to change sign. By counting filled states in magnetic 

minibands calculated for the flux  =0/q, we find that in the latter case the Fermi level lies in the middle of 

Zak’s magnetic bands and, although we have not find a way to determine the sign of xy in this case, we can 
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certainly state that Hall conductivity should once again change its sign and, therefore, take zero value 

somewhere in between two consecutive values of  = 0/(q +1/2).  

 
Fig. S8. Moiré butterflies spectra for characteristic superlattice potentials [S11]. a – u0 = -0.031, u1 = -0.015, 
u3 = 0.054; b – u0 = -0.072, u1 = u3 = 0.014 and c – u0 = -0.1, u1= u3 = 0 where   are in units of vFb. The energy 
scale is such that the secondary DPs appear at 1/2. The right inset in (a) shows the energy dispersion 
(Zak’s minibands [S14]) found in the energy range around the secondary DP for 0/ =2; the left inset 
demonstrates that Zak’s minibands are associated with a gapped Dirac-like spectrum and exhibit LLs 
characteristic of Dirac fermions (also, see ref. S11). 
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Furthermore, Fig. S8 shows that the zero-N LL is robust and the superlattice potential broadens it relatively 

weakly over the entire range of  for this figure. This level is isolated from the rest of the Hofstadter 

spectrum by the large cyclotron gap E1. For our superlattice modulation of 50meV [S9], the N =1 LLs are 

also reasonably well isolated. In contrast, LLs with higher N strongly overlap, especially at concentrations 

near and above the secondary DPs. Therefore, graphene superlattices in quantizing B of several tesla are 

typically in the regime of strong coupling [S19-S20]. Only for  >0, the superlattices are expected to enter 

again in the regime of weak coupling where individual LLs are well isolated from each other, and the 

superlattice potential results in an internal structure within each Landau band [S19-S21]. It would require B 

>30T to access this regime experimentally. For completeness, the corresponding spectra expected in such B 

are shown in Fig. S9.  

 

Fig. S9. Moiré butterfly for graphene superlattice in ultra-high B. Only the first LLs with |N| 3 are shown. 
Superlattice potential V =60meV, that corresponds to u0 = -0.1; u1 = u3 = 0. The original LLs (zero V) are 
shown in red. Black dots mark the superlattice states as in Fig. S8. The fractal structure with individual LLs 
(Hofstadter’s butterfly) was previously studied for semiconductor superlattices in refs. [S19-S20]. An intra-
LL structure is also noticeable in our Fig. 3a-b. However, the spectrum becomes particularly rich in the 
regime of strong coupling where the bands originating from different LLs overlap (Fig. S8). In our case, this 
condition is met for  <0, that is, in B <30T.  

The most striking feature of our moiré butterflies is self-similar sets of LLs that resemble those for Dirac 

fermions and repetitively appear over the entire superlattice spectrum (two circles in Fig. S8a point at 

characteristic regions). To understand the origin of these local quantized spectra, we have analyzed the 

miniband dispersion at fractional flux values 0/q and found that edges between pairs of consecutive 

minibands systematically display spectra N  (u2k2 + 2)1/2, that is, correspond to gapped Dirac fermions. 

One such dispersion is shown as an inset in Fig. S8a.  
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If we treat B = (    ) as an effective magnetic field acting on electrons in Zak’s magnetic minibands that 

appear at Bq = (1/q)0/S [S14], the gapped Dirac fermions give rise to a Landau-level fan with          

   √            and                . Using        N + cB which takes into account an 

overall average shift of the parent Landau level, we have computed the corresponding spectrum and 

plotted it in the second inset in Fig. S8a (also, see Fig. 3d of the main text).  

Finally, we replot one of our moiré butterflies (Fig. S8a) as a function of 0/ (that is, 1/B) and the energy 

renormalized to the energy    of the 1st LL in the main spectrum. This is shown in Fig. S10 and allows easier 

comparison with the corresponding experimental plots in Figs. 3b,3e,S4c-d. The internal structure of LLs 

also becomes clearer in this presentation. One can see that the fractal spectra are different from the 

Hofstadter butterfly described by Harper’s equation [S16] as well as from the moiré butterfly expected in 

twisted graphene bilayers [S17]. Moreover, there is no recurrence of the same fractal pattern within each 

Landau band. Such repetition of the Hofstadter butterfly is characteristic of semiconductor superlattices 

where a perfect periodicity within isolated Landau bands is expected for each unit between 0/ = q and q 

+1 [S19-S21]. In our case, we notice a different periodicity: q-th unit of N-th Landau level closely resembles 

(q+1)-th unit for (N+1)-th LL (see Fig. S10). Further work is required to understand fractality and properties 

of the intra-LL structure in graphene superlattices even in the limit of weak coupling. 

 

Fig. S10. Hidden periodicity of moiré butterflies. The superlattice spectrum in Fig. 3c of the main text is 
replotted as a function of 0/ with the energy scale renormalized to E1. It is the presentation standard for 
research on semiconductor superlattices [S19-21]. There are obvious Zak’s oscillations with the energy gaps 
tending to close at integer 0/. There is no obvious periodicity within each Landau band that occurs in 
semiconductor superlattices [S19-S21]. Nevertheless, notice that the first pattern (0/ between 1 and 2) 
within, for example, the 1st LL is similar to the second pattern for the 2nd LL, and so on. This periodicity 
involving both 0/ and N also survives in part for the hole side of the spectrum where the mixing between 
different LLs is much stronger.  
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