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nonsense, or splice-site mutations) in total 11739 genes having at least one mutation. This list is 
ordered by p-values to a maximum of 0.05, which were determined by Binomial test with a 
background null mutation rate.  Columns A to F contain gene names, p-values, false discovery rates 
(FDR), the number of null mutations, the number of non-null mutations, and the ratio of null mutation 
to total mutations.  

datafile.S2.2.1.BlcaNullAllGenes.xls 

S2.2.2	
  Data	
  File	
  	
  Enrichment	
  of	
  null	
  mutations	
  in	
  epigenetic	
  modifiers.	
  	
  
These are results of the enrichment analysis of null or truncating mutations in 115 chromatin 
remodeling genes having at least one mutation. Gene lists are ordered by p-values, which were 
determined by Binomial test with a background null mutation rate.  Columns A to F contain gene 
names, p-values, false discovery rates (FDR), the number of null mutations, the number of non-null 
mutations, and the ratio of null mutation to non-null mutations.  

datafile.S2.2.2.BlcaNullEpigenetic.xls 

S2.5.1	
  Data	
  File	
  Differentially	
  expressed	
  genes	
  in	
  NFE2L2	
  mutants.	
  
These are results of differentially expressed genes in NFE2L2 mutant samples. Genes are ordered by 
p-values to a maximum of 0.05, which were determined by Wilcoxon Ran-sum test for log2(RSEM). 
Columns A to I contain gene names, p-values, false discovery rates (FDR), means of log2(RSEM) in 
mutants, means of log2(RSEM) in non-mutant samples, the number of altered samples, the number 
non-altered samples, gene annotations, and fold changes.  

datafile.S2.5.1.Blca.NFE2L2.AllMutations.xls 

S2.5.2	
  Data	
  File	
  Differential	
  expressed	
  genes	
  in	
  NFE2L2	
  hotspot	
  mutants.	
  	
  
These are results of differentially expressed genes in samples having NFE2L2 mutations at DLG or 
ETGE motifs corresponding to KEAP binding domains. Genes are ordered by p-values to a maximum 
of 0.05, which were determined by Wilcoxon Ran-sum test. Columns A to H contain gene names, p-
values, false discovery rates (FDR), means of log2(RSEM) in mutants, means of log2(RSEM) in non-
mutant samples, the number of altered samples, the number non-altered samples, gene annotations, 
and fold changes.  

datafile.S2.5.2.Blca.NFE2L2.HotspotMutations.xls 
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S2.6.1	
  Data	
  File	
  Differentially	
  expressed	
  genes	
  in	
  RXRA	
  mutants.	
  	
  
Differentially expressed genes were identified in RXRA mutation status. Genes are ordered by p-
values to a maximum of 0.05 from Wilcoxon Ran-sum test. Columns A to I contain gene names, p-
values, false discovery rates (FDR), means of log2(RSEM) in mutants, means of log2(RSEM) in non-
mutant samples, the number of altered samples, the number non-altered samples, gene annotations, 
and fold changes.  

datafile.S2.6.1.Blca.RXRA.AllMutations.xls 

S2.6.2	
  Data	
  File	
  Differential	
  expressed	
  genes	
  in	
  RXRA	
  hotspot	
  mutants.	
  	
  
Differentially expressed genes were identified according to RXRA mutation at S427, in the ligand 
binding domain. Genes are ordered by p-values to a maximum of 0.05 from Wilcoxon Rank-sum test. 
Columns A to I contain gene names, p-values, false discovery rates (FDR), means of log2(RSEM) in 
mutants, means of log2(RSEM) in non-mutant samples, the number of altered samples, the number 
non-altered samples, gene annotations, and fold changes.  

datafile.S2.6.1.Blca.RXRA.HotspotMutations.xls 

S2.6.3	
  Data	
  File	
  DAVID	
  pathway	
  annotation	
  for	
  differentially	
  expressed	
  genes	
  in	
  
RXRA	
  hotspot	
  mutants	
  	
  
(Huang W, Sherman BT, Lempicki RA, Systematic and integrative analysis of large gene lists using 
DAVID bioinformatics resources. Nature Protocols. 2009; 4(1):44-57). 

datafile.S2.6.3.Blca.RXRA.DAVID.xls 

S2.8.1	
  Date	
  File	
  Mutual	
  exclusivity	
  correlations	
  for	
  all	
  genetic	
  events	
  in	
  Figure	
  1.	
  	
  
This is the result of Fisher’s exact tests for mutual exclusivity among significantly mutated genes or 
genes having focal SCNAs. Columns C and D report p-values and false discovery rates (FDR) for a 
pair of genes in columns A and B, respectively. 

datafile.S2.8-1.BlcaMutualExclusivity.xls 

S2.8.2	
  Date	
  File	
  Co-­‐occurrence	
  correlations	
  for	
  all	
  genetic	
  events	
  in	
  Figure	
  1.	
  	
  
This is the result of Fisher’s exact test for co-occurrence among significantly mutated genes or genes 
having focal SCNAs. Columns C and D report p-values and false discovery rates (FDR) for a pair of 
genes in columns A and B, respectively. S2.8-2.BlcaCoOccurrence.xls 

S6.1.1:	
  Data	
  File	
  GISTIC	
  arm-­‐level	
  SCNAs	
  annotations	
  in	
  SNP6.0	
  Array.	
  
datafile.S6.1.1.Blca.SNP.ArmLevelGisticPeaks.xls 

S6.1.2:	
  Data	
  File	
  GISTIC	
  arm-­‐level	
  SCNAs	
  annotations	
  Low	
  Pass	
  Whole	
  Genome.	
  	
  
datafile.S6.1.2.Blca.LowpassWG.ArmLevelGisticPeaks.xls 
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S6.2.1: Data File GISTIC amplification peak annotations in SNP6.0 Array. 
datafile.S6.2.1.Blca.SNP.FocalAmpGisticPeaks.xls 

S6.2.2: Data File GISTIC amplification peak annotations in Low Pass Whole Genome.  
datafile.S6.2.2.Blca.SNP.FocalAmpGisticPeaks.xls 

S6.3.1: Data File GISTIC deletion peak annotations in SNP6.0 Array.  
datafile.S6.3.1.Blca.SNP.FocalDelGisticPeaks.xls 

S6.3.2: Data File GISTIC deletion peak annotations in Low Pass Whole Genome.  
datafile.S6.3.2.Blca.LowpassWG.FocalDelGisticPeaks.xls 

S8.2.	
  	
  Data	
  File	
  Cytoscape	
  session	
  of	
  the	
  TieDIE	
  solution	
  for	
  the	
  significantly	
  
mutated	
  gene	
  

S8.2.1	
  .	
  Data	
  File	
  Cytoscape	
  version	
  3.01	
  CYS	
  session	
  of	
  the	
  TieDIE	
  	
  

S9.1	
  	
  Data	
  File	
  Coverage	
  Table	
  	
  
	
  

Data	
  File	
  S12.1	
  APOBEC.	
  BLCA samples data underlying the graphical representation in Figures 
S12.1 and S12.2.  Spreadsheet contains the number of identified mutation clusters and tabulated 
metrics used in calculating the representation of TCW mutagenesis in each tumor sample.  The 
mRNA expression of APOBEC1, APOBEC3A, APOBEC3B, APOBEC3C, APOBEC3DE, 
APOBEC3F, APOBEC3G, and APOBEC3H relative to TBP as determined by RNA-seq counts is 
provided for comparison. A detailed description of the values in each column is provided in an 
accompanying Readme for data files S12.1 and S12.2 file 

 
 
Data	
  File	
  S12.2	
  APOBEC. Matched normal samples data underlying the graphical representation 
in Figure S12.1.  Spreadsheet contains the mRNA expression data for APOBEC1, APOBEC3A, 
APOBEC3B, APOBEC3C, APOBEC3DE, APOBEC3F, APOBEC3G, and APOBEC3H relative to 
TBP within 16 analyzed matched normal samples. A detailed description of the values in each column 
is provided in an accompanying Readme for data files S12.1 and S12.2 file. 
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Leaders: Seth Lerner slerner@bcm.edu  and Hikmat Al-Ahmadie alahmadh@mskcc.org	
   	
   	
   Team 
Members: Jay Bowen, Bogden	
  Czerniak,	
  Donna	
  Hansel,	
  Tara Lichtenberg, Brina Robinson and Jonathan 
Rosenberg, 

S1	
  Biospecimen	
  collection	
  and	
  clinical	
  data:	
  	
  

Text	
  S1	
  Biospecimen	
  collection	
  and	
  clinical	
  data:	
  
Sample inclusion criteria 
Biospecimens were collected from patients diagnosed with muscle-invasive urothelial carcinoma 
undergoing surgical resection with either transurethral resection or radical cystectomy. No patient had 
received prior chemotherapy or radiotherapy for their disease. Prior intravesical Bacille Calmette 
Guerin (BCG) was allowed but no intravesical chemotherapy. Institutional review boards at each 
tissue source site reviewed protocols and consent documentation and approved submission of cases to 
TCGA. Cases were staged according to the American Joint Committee on Cancer (AJCC) staging 
system. Each frozen primary tumor specimen had a companion normal tissue specimen which could 
be blood/blood components (including DNA extracted at the tissue source site), adjacent normal 
tissue taken from greater than 2 cm from the tumor, or both. Specimens were shipped overnight from 
19 tissue source sites (TSS) using a cryoport that maintained an average temperature of less than -
180°C. Each tumor and adjacent normal tissue specimen (if available) were embedded in optimal 
cutting temperature (OCT) medium and a histologic section was obtained for review. Each H&E 
stained case was reviewed by a board-certified pathologist to confirm that the tumor specimen was 
histologically consistent with urothelial carcinoma and the adjacent normal specimen contained no 
tumor cells. The divergent histologic carcinoma component of the cancer was < 50%. The tumor 
sections were required to contain an average of 60% tumor cell nuclei with equal to or less than 20% 
necrosis for inclusion in the study per TCGA protocol requirements. 
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Table	
  S1.1	
  Tissue	
  Source	
  Sites	
  
	
  

Tissue Source Sites  
BL Christiana Healthcare 
BT University of Pittsburgh 
C4 Indivumed 
CF ILSBio 
CU UNC 
DK Memorial Sloan Kettering 
E5 Roswell Park 
E7 Asterand 
FD BLN - University Of Chicago 
FJ BLN - Baylor 
FT BLN - University of Miami 
G2 MD Anderson 
GC International Genomics Consortium 
GD ABS - IUPUI 
GU BLN - UT Southwestern Medical Center at Dallas 
GV BLN - Cleveland Clinic 
H4 Medical College of Georgia 
HQ Ontario Institute for Cancer Research (OICR) 
K4 ABS - Lahey Clinic 

 

Sample Processing 
RNA and DNA were extracted from tumor and adjacent normal tissue specimens using a modification 
of the DNA/RNA AllPrep kit (Qiagen). The flow-through from the Qiagen DNA column was 
processed using a mirVana miRNA Isolation Kit (Ambion). This latter step generated RNA 
preparations that included RNA <200 nt suitable for miRNA analysis. DNA was extracted from blood 
using the QiaAmp blood midi kit (Qiagen). 
Each specimen was quantified by measuring Abs260 with a UV spectrophotometer or by PicoGreen 
assay. DNA specimens were resolved by 1% agarose gel electrophoresis to confirm high molecular 
weight fragments. A custom Sequenom SNP panel or the AmpFISTR Identifiler (Applied 
Biosystems) was utilized to verify tumor DNA and germline DNA were derived from the same 
patient. Five hundred nanograms of each tumor and normal DNA were sent to Qiagen for REPLI-g 
whole genome amplification using a 100 µg reaction scale. Only specimens yielding a minimum of 
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6.9 µg of tumor DNA, 5.15 µg RNA, and 4.9 µg of germline DNA were included in this study. RNA 
was analyzed via the RNA6000 nano assay (Agilent) for determination of an RNA Integrity Number 
(RIN), and only the cases with RIN >7.0 were included in this study. At the time of the data freeze, 
345 bladder urothelial carcinoma cases were received by the BCR and 57% passed quality control. A 
total of 131 cases were included in the data freeze that had complete information from all of the data 
types.   

 

 

Methods	
  S1.1a:	
  Pathology	
  review	
  
All cases were subjected to a detailed pathologic review by 4 genitourinary pathologists to confirm 
the selection criteria and to assess the samples for additional histopathologic features such as the 
presence of divergent differentiation and its extent, the pattern of invasion and the presence of 
associated inflammation. In all cases, the amount of divergent histology that was allowed was less 
than 50% of the tumor.  The most common divergent histology in this cohort was squamous 
differentiation, which was present in 19 of 131 cases (Figure S1.1a). The detailed review resulted in 
the exclusion of 7 cases due to the presence of divergent histology in >50% of the tumor (3 cases for 
small cell/neuroendocrine differentiation and 4 cases for squamous differentiation).    

WWW.NATURE.COM/NATURE | 12

SUPPLEMENTARY INFORMATIONRESEARCHdoi:10.1038/nature12965



Figure	
  S1.1a	
  Pathology	
  –	
  mixed	
  histology	
  
 

	
  
	
  

A. Urothelial	
  carcinoma,	
  invasive	
  in	
  the	
  muscularis	
  propria	
  (*)	
  

B. Urothelial	
  carcinoma	
  with	
  squamous	
  differentiation	
  (arrows)	
  

C. Urothelial	
  carcinoma	
  with	
  associated	
  inflammation	
  (block	
  arrows)	
  

D. Urothelial	
  carcinoma	
  with	
  focal	
  tumor	
  necrosis	
  (N)	
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Team Leader: Jaegil Kim jaegil@broadinstitute.org Team Members: David Kwiatkowski, Jonathan 
Rosenberg, and Andrew Cherniack 

S2.1:	
  DNA	
  sequencing:	
  	
  

Text	
  S2.1:	
  DNA	
  sequencing	
  
1. DNA sequencing and data processing 

Exome capture was performed using Agilent SureSelect Human All Exon 50 Mb according to the 
manufacturers’ instructions.  Briefly, 0.5–3 micrograms of DNA from each sample were used to 
prepare the sequencing library through shearing of the DNA followed by ligation of sequencing 
adaptors.  All whole exome (WES) and whole genome (WGS) sequencing was performed on the 
Illumina HiSeq platform. Paired-end sequencing (2 x 101 bp for WGS and 2 x 76 bp for WE) was 
carried out using HiSeq sequencing instruments; the resulting data was analyzed with the current 
Illumina pipeline.  Basic alignment and sequence QC was done on the Picard and Firehose pipelines 
at the Broad Institute [1]  

Sequencing data were processed using two consecutive pipelines [1-4]: 

 

(1) Sequencing data processing pipeline – “Picard” - uses the reads and qualities 

produced by the Illumina software for all lanes and libraries generated for a single sample (either 
tumor or normal) and produces a single BAM file (http://samtools.sourceforge.net/SAM1.pdf) 
representing the sample. The final BAM file stores all reads and calibrated qualities along with their 
alignments to the genome.  

 

(2) Cancer genome analysis pipeline – “Firehose” – takes the BAM files for the tumor and 
patient matched normal samples and performs analyses including quality control, local 
realignment, mutation calling, small insertion and deletion identification, rearrangement detection, 
coverage calculations and others as described briefly below and more extensively in Stransky et al[1]. 
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The Cancer Genome Analysis Pipeline (“Firehose”) 

The pipeline represents a set of tools for analyzing massively parallel sequencing data for both tumor 
DNA samples and their patient_matched normal DNA samples. Firehose uses GenePattern16 as its 
execution engine for pipelines and modules based on input files specified by Firehose. The pipeline 
contains the following steps [1-4]. 

-­‐  
1. Quality control – confirms identity of individual tumor and normal to avoid mix-ups between 
tumor and normal data for the same individual. 

2. Local realignment of reads – realigns sites potentially harboring small insertions or deletions in 
either the tumor or the matched normal to decrease the number of false positive single nucleotide 
variations caused by misaligned reads. 

3. Identification of somatic single nucleotide variations (SSNVs) – Mutect algorithm[4] – 
candidate SSNVs were detected using a statistical analysis of the bases and qualities in the tumor and 
normal BAMs. 

4. Identification of somatic small insertions and deletions – Indelocator algorithm – putative 
somatic events were first identified within the tumor BAM file and then filtered out using the 
corresponding normal data. 

-­‐  
2. Mutation significance analysis 

The statistical significance of mutation frequency in each gene was determined using the algorithm 
MutSig v1.5 [5] (Lawrence et al., in press). The MutSig algorithm works with an aggregated list of 
mutations across the entire patient set, and estimates the background mutation rate. The p and q values 
for a certain gene are determined for the mutation rate observed in that gene in relation to the 
background model. MutSig uses various factors to accurately estimate the background mutation rate, 
taking into account the background mutation rates of different mutation categories (i.e. transitions or 
transversions in different sequence contexts), the non-synonymous to synonymous mutation ratio for 
each gene, as well as the fact that different samples have different background mutation rates. It then 
uses convolutions of binomial distributions to calculate the p-value for each gene, which represents 
the probability that we observe a certain configuration of mutations in a gene by chance, given the 
background model. Finally, it corrects for multiple hypotheses by calculating a q-value (False 
Discovery Rate) for each gene.  

-­‐  
To improve our statistical power of identifying potential “drivers” genes we considered only 
mutations that had an allele fraction (AF) >= 0.05 to remove potential subclonal mutations. We also 
performed two independent significance analyses to augment our power to identify genes with 
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potentially significant roles in cancer. The first, as described above, applied a novel method to 
identify significantly mutated genes among all coding genes based on a model of non-uniform 
background mutation rate across the genome (Supplementary Table S2.1.2). In a second analysis, we 
considered only mutations in genes annotated in the COSMIC database to enrich our power to detect 
significantly mutated genes among genes known to be mutated in cancer (Supplementary Table 
S2.1.3).  

-­‐  
3. Differential gene expression depending on mutation status  

To identify differentially expressed genes (DEGs) depending on the mutation status of an individual 
gene we compared log2(RSEM) (RSEM: RNA-Seq by Expectation Maximization) values of 20,502 
genes between mutant samples and non-mutant samples. Wilcoxon rank sum test was applied to 
compute p-values and multiple hypotheses were corrected by calculating q-values (False Discovery 
Rate) for each gene. To remove the effects of genes expressed at low levels we only considered only 
genes having RSEM values in at least 90% mutant and non-mutant samples. We also also restricted 
this comparison of expression effects by gene mutation to specific hotspot or recurrent mutations in 
NFE2L2 and RXRA. The gene annotation of differentially expressed genes was done from DAVID 
analysis [6]. 
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4. Exome mutation validation  

To validate mutations identified by exome sequencing, we used three approaches in parallel. First we 
performed targeted PCR followed by deep-coverage sequencing using Fluidigm and Illumina 
technology, for 753 non-silent mutations in 53 genes: all genes identified as being significantly 
mutated (TP53, MLL2, ARID1A, KDM6A, PIK3CA, EP300, CDKN1A, RB1, ERCC2, FGFR3, 
STAG2, ERBB3, FBXW7, RXRA, ELF3, NFE2L2, TSC1, KLF5, TXNIP, CDKN2A, FOXQ1, RHOB, 
FOXA1, PAIP1, BTG2, HRAS, ZFP36L1, RHOA, CCND3);  multiple additional known cancer genes 
(NF1, PTEN, PIK3R1, ERBB2, ATM, CTNNB1, APC); and multiple additional chromatin modifying 
genes (MLL, MLL3, MLL4, CREBBP, NCOR1, NCOR2, SRCAP, SETD2, CHD7, NSD1, DOT1L, 
SMARCC1, SMARCC2, SMARCA4, SMARCA2, ARID2, ARID1B). Second and third, we compared 
mutations identified by Mutect analysis of whole exome sequencing with results obtained from RNA-
Seq data for 123 samples, and whole genome (WGS) on 18 samples.  

For all three of these approaches to validation, we removed from consideration those sites where the 
sequence read depth in the validation data set was not sufficient to enable verification of the variant 
called in the exome data. Powered mutation sites in the validation data were defined as sites where 
there was > 90% probability to observe at least two variant reads if the mutation call is true, given the 
allelic fraction of that variant observed in the exome data and the number of reads at that site in the 
validation data set. We considered two reads with the variant allele in the validation data as sufficient 
evidence to confirm the call, but also considered a higher threshold of read number for validation 
which had relatively minor effects on validation rate (see further below).  Note that the identification 
of powered sites was performed independently for each validation approach, targeted resequencing, 
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RNA-Seq, and WGS.  Note as well that even if all the original mutation calls are true, in the case in 
which the sequence read depth combined with the variant allele frequency gives a power of 90%, one 
would expect that the validation rate would be only 90%.  In practice in most instances the power is 
much greater than 90%, so that the expected validation rate would be much higher. 

A. Targeted re-sequencing using Fluidigm 

We performed targeted PCR using a microfluidic PCR platform (Fluidigm Access Array, Hollants S. 
et al, Clinical Chemistry (2012) doi:10.1373/clinchem.2011.173963) followed by next-gen 
sequencing using Illumina yielding mean 465x coverage, for 753 non-silent mutations in 53 genes on 
129 samples (one sample failed QC).  

Considering only the powered sites as above, 612 single nucleotide variant (SNV) mutations out of 
618  (99%) were validated (Supplemental Figure S2.11.1). The validation rate in the significantly 
mutated genes was 368 out of 371 (99.2%) SNVs (Supplemental Figure S2.11.2). All 101 (100%) 
powered indel mutations were validated (Supplemental Figure S2.11.3). Combining these two, the 
overall validation rate by targeted re-sequencing was 713 of 719, or 99.2%. 

We also examined the validation rate as a function of the number of variant reads (N) required for 
validation (Supplemental Table S.2.11.1-2). This required re-calculation of the number of variants for 
which there was > 90% power of detection for each N.  The validation rate remained > 97% for 
increasing N up to 50, indicating the robustness of the validation.  Note that one expects that the 
validation rate will fall as N increases due to an increasing number of variant sites having power 
closer to the 90% required. 

B. Exome mutation validation using RNA-Seq and WGS data 

We again considered only those variants for which there was sufficient power (> 90%) for detection 
in these alternative data sets, based on allele frequency of the somatic variant allele and read depth at 
that site.  We again considered observation of at least two reads containing the variant nucleotide as 
sufficient for confirmation.   

The validation rate for all SNVs in RNA-Seq data for 123 samples was 9857 of 10629 (92.7%) 
(Supplemental Figure S2.11.4 bottom) and 275 of 279 (98.6%) for variants in significantly mutated 
genes (Supplemental Figure S2.11.4 top).  Note that we expect that some SNVs, especially nonsense 
alleles, may be underrepresented in RNA-Seq data due to nonsense-mediated decay.  

The validation rate for all non-silent SNVs in WGS data for 18 samples was 3221 of 3259 (99.2%) 
(Supplemental Figure S2.11.5 bottom), and 51 of 52 (98%) (Supplemental Figure S2.11.5 top).   
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C. Combined assessment of exome validation 

Considering validation by any one of these three approaches as sufficient for validation, the overall 
validation rate was 741 of 745 (99.5%) (Supplemental Figure S2.11.6).  248 mutations were validated 
on one platform, 334 mutations were validated on two platforms, and 55 mutations were validated on 
all three platforms. 

5. ERCC2 mutations status and mutation rate 

While ERCC2 is one of the significantly mutated genes in this cohort, the correlation between ERCC2 
mutation status and overall mutation rate was only marginally significant (Supplemental Figure 
S2.12(a), P = 0.0278). We also considered the possibility that the effect of ERCC2 mutation on 
mutation rate might be masked by the strong mutagenic effect of APOBEC cytidine deaminase 
signature (Supplemental Figure S.2.12(b), P= 0.00275). Hence, we analyzed samples with low 
APOBEC signature separately (n = 16), to examine the potential effect of ERCC2 mutation 
(Supplemental Figure S.2.12(c)). In that small set of samples there was a trend toward association 
between ERCC2 mutation and mutation rate (P=0.087), but the small number of samples with ERCC2 
mutations (3 of 16) severely compromised our power. 

 

Table	
  S2.1.1	
  Categories	
  of	
  mutation	
  types.	
  
	
  

category n N rate rate_per_mb relative_rate 

Tp*C->(T/G) 14993 503254008 2.98E-05 29.79 3.88 
Tp*C->A 1109 503254008 2.20E-06 2.20 0.29 
(A/C/G)p*C-
>mut 6057 1431662021 4.23E-06 4.23 0.55 
A->mut 3029 1858868904 1.63E-06 1.63 0.21 
indel+null 3902 3793784933 1.03E-06 1.03 0.13 

double_null 49 3793784933 1.29E-08 0.01 0.00 
Total 29139 3793784933 7.68E-06 7.68 1.00 
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Table	
  S2.1.2	
  	
  	
  Significantly	
  Mutated	
  Genes	
  (SMGs)	
  identified	
  by	
  MutSig	
  v1.5.	
  
This is the list of significantly mutated genes (SMGs) list from MutSig v1.5, performed across 130 
BLCA tumor-normal pairs. Gene lists are ordered by q value to a maximum of 0.1. Columns A to G 
contain ranks, gene names, the number of non-silent mutations (n), the number of altered samples 
(npat), the number of unique sites having nonsilent mutations, the number of silent mutations, the 
number of null + Indel mutations (null + indel). The “null” includes nonsense, frame-shift, and splice 
site mutations. The remaining columns report p-values, and false discovery rates (FDR) or q-values 
for each gene tested in MutSig v1.5. 

 
rank gene n npat nsite nsil null+indel p q 

1 ARID1A 39 33 37 2 27 3.00E-15 1.81E-11 
2 CDKN1A 18 18 17 0 13 3.11E-15 1.81E-11 
3 TP53 75 64 50 1 18 3.33E-15 1.81E-11 
4 RB1 19 17 17 0 12 4.33E-15 1.81E-11 
5 KDM6A 32 31 26 2 27 5.00E-15 1.81E-11 
6 PIK3CA 26 26 11 1 0 7.66E-15 2.31E-11 
7 ELF3 15 11 14 0 8 2.91E-11 7.53E-08 
8 ERCC2 16 16 13 2 0 7.36E-10 1.66E-06 
9 MLL2 39 35 39 5 17 2.46E-09 4.95E-06 

10 FBXW7 16 13 12 0 6 5.79E-09 1.05E-05 
11 FOXQ1 7 7 4 1 4 1.54E-08 2.54E-05 
12 NFE2L2 12 11 9 0 0 2.49E-08 3.75E-05 
13 FGFR3 21 16 11 3 1 7.98E-07 0.00111 
14 TXNIP 10 9 10 1 5 1.79E-06 0.00231 
15 STAG2 14 14 13 3 12 2.04E-06 0.00246 
16 CDKN2A 8 7 8 0 4 2.26E-06 0.00256 
17 RHOB 7 7 6 1 0 3.33E-06 0.00337 
18 BTG2 6 6 6 0 1 3.35E-06 0.00337 
19 FOXA1 7 7 7 1 5 3.77E-06 0.00359 
20 RXRA 12 12 6 2 0 4.86E-06 0.0044 
21 HORMAD1 8 8 8 1 4 6.56E-06 0.00565 
22 EP300 25 20 25 3 8 1.01E-05 0.0083 
23 KLF5 11 10 10 2 3 1.85E-05 0.0146 
24 GPC5 8 8 8 1 2 2.12E-05 0.016 
25 HRAS 6 6 5 0 0 2.80E-05 0.0203 
26 ERBB3 14 14 10 2 0 4.20E-05 0.0284 
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27 ZFP36L1 6 6 6 0 3 4.24E-05 0.0284 
28 RHOA 5 5 5 1 0 6.87E-05 0.0444 
29 PAIP1 7 7 7 0 1 7.88E-05 0.0492 
30 ZFR2 6 6 6 0 0 0.000118 0.0712 
31 TSC1 11 11 11 0 8 0.000132 0.0771 
32 CCND3 5 5 5 0 1 0.00014 0.0791 

 

Table	
  S2.1.3	
  Significantly	
  Mutated	
  Genes	
  in	
  COSMIC	
  territory.	
  	
  
This is the list of SMGs in the COSMIC territory from MutSig v1.5. Gene lists are ordered by q value 
to a maximum of 0.1. Columns A to E contain ranks, gene names, the number of nonsilent mutations, 
p-values, and FDR qvalues.  

rank gene n p q 
1 FGFR3 21 2.57E-13 1.16E-09 
2 FBXW7 16 6.25E-13 1.41E-09 
3 PIK3CA 26 9.57E-13 1.44E-09 
4 TP53 75 1.42E-12 1.51E-09 
5 RB1 19 1.67E-12 1.51E-09 
6 ERBB2 11 9.25E-10 6.97E-07 
7 CDKN2A 8 1.80E-09 1.16E-06 
8 HRAS 6 5.30E-09 3.00E-06 
9 ATM 19 8.40E-09 4.22E-06 

10 ERBB3 14 3.55E-08 1.61E-05 
11 CTNNB1 3 1.58E-04 6.52E-02 

 

Table	
  S2.1.4	
  Enrichments	
  of	
  mutations	
  to	
  CNMF	
  clusters.	
  	
  
The enrichment of mutations in SMGs to the CNMF clusters in Fig.1 was examined using Chi-square 
test. Columns A to D contain rgene names, p-values, FDR or q-values, and the number of events. 
With the criterion of FDR < 0.1 the red cluster in Fig1 had an enrichment of MLL2 mutations, the 
blue cluster had a significant enrichment of FGFR3, NFE2L2, STAG2, and TSC1 mutations, and the 
green cluster had an enrichment of TP53, RB1, and KDM6A mutations.  

 
gene p q n.mutation 
TP53 7.45E-11 2.16E-09 63 
FGFR3 2.25E-05 0.000217344 16 
NFE2L2 2.21E-05 0.000217344 11 
RB1 0.000220832 0.001601034 17 
MLL2 0.000521902 0.003027031 33 
STAG2 0.002013929 0.00973399 14 
KDM6A 0.004321778 0.017904509 31 
TSC1 0.018795631 0.068134161 11 
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FOXQ1 0.046621768 0.150225696 7 
RXRA 0.097777836 0.260778022 12 
TXNIP 0.098915802 0.260778022 8 
CDKN2A 0.115749745 0.27972855 7 
EP300 0.200911287 0.40027548 20 
ERCC2 0.245752765 0.40027548 16 
ERBB3 0.235257117 0.40027548 14 
FOXA1 0.24844685 0.40027548 7 
PAIP1 0.195286241 0.40027548 7 
ZFP36L1 0.24802928 0.40027548 6 
CDKN1A 0.340800656 0.520169422 18 
RHOB 0.373170207 0.536843328 7 
CCND3 0.388748617 0.536843328 5 
PIK3CA 0.413245536 0.544732752 26 
ARID1A 0.444189236 0.555685353 33 
KLF5 0.459877533 0.555685353 10 
RHOA 0.6084785 0.70583506 5 
FBXW7 0.651638654 0.726827729 12 
BTG2 0.83189671 0.861607306 6 
HRAS 0.83189671 0.861607306 6 
ELF3 0.972906998 0.972906998 11 

 

Table	
  S2.1.5	
  Enrichments	
  of	
  focal	
  SCNAs	
  to	
  CNMF	
  clusters.	
  	
  	
  
The enrichment of focal SNCAs to the CNMF clusters in Fig.1 was examined using Chi-square test. 
Columns A to D contain gene names, p-values, FDR or q-values, and the number of events. With the 
criterion of FDR < 0.1 the red cluster in Fig1 had a significant enrichment of focal SCNAs in 
YWHAZ, PPARG, YAP1, MYC, and PVRL4, the blue cluster had an enrichment of focal SCNAs in 
CDKN2A and MDM2, the green cluster had an enrichment of focal SCNAs in E2F3 and CCNE1.  

 
gene p q n.copy 
CDKN2A 4.29E-15 8.15E-14 60 
YWHAZ 2.55E-11 2.42E-10 28 
PPARG 6.26E-07 3.97E-06 22 
MYC 1.53E-05 7.27E-05 17 
PVRL4 4.44E-05 0.000168741 24 
E2F3 0.00484999 0.015358303 24 
YAP1 0.012500399 0.033929654 5 
MDM2 0.035185534 0.083565644 12 
CCNE1 0.039640173 0.083684809 15 
EGFR 0.122975957 0.233654318 14 
ERBB2 0.168532935 0.271608132 9 
MYCL1 0.173251523 0.271608132 8 
FGFR3 0.185837143 0.271608132 4 
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NCOR1 0.234028086 0.317609545 32 
PTEN 0.432407628 0.547716328 16 
RB1 0.541147534 0.642612696 18 
CREBBP 0.755768315 0.844682235 17 
CCND1 0.851824745 0.899148342 13 
BCL2L1 0.932558695 0.932558695 14 

 

Figure	
  S2.1.1	
  mRNA	
  expressions	
  levels	
  of	
  significantly	
  mutates	
  genes	
  (SMGs).	
  	
  
	
  

 

 

Boxplots of log2 (RSEM) distributions (left top) and rank (percentile) distributions (left bottom) of 
SMGs from MutSig v1.5. The rank of each gene is defined as a percentile of the corresponding 
RSEM in descending order in each sample. Three genes, HORMAD1, GPC5, and ZFR2 (highlighted 
by red) were clustered together with a significantly lower mRNA level by PAM clustering for the 
rank matrix, in which each element represents a rank of RSEM in total 20502 genes in each sample. 
HORMAD1 (37 samples have no transcripts) harbors two nonsense, two splice site, and four missense 
mutations. GPC5 (73 samples have no transcripts) harbors two nonsense and six missense mutations.  
ZFR2 (39 samples have no) harbors six missense mutations. The right figure is a graph of the mean 
percentile of gene expression (x axis) versus mean log2(RSEM) for every gene on the initial SMG 
list. Gray dots represent all genes, and blue and red circles correspond to the high expressed and low-
expressed SMGs, respectively. 
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Figure	
  S2.1.2	
  CNMF	
  clustering	
  of	
  samples	
  based	
  on	
  mutation	
  and	
  copy	
  number	
  
events	
  in Figure 1.  
	
  

 

 

 

The consensus non-negative matrix factorization (CNMF) method (Jean-Philippe et al, PNAS 101, 
4164 (2004)) was applied to the binary event matrix comprised of mutations in SMGs and focal 
SCNAs with varying the number of clusters from K = 2 to 5. We only considered only 125 samples 
by excluding three samples with no copy number data and two samples with no mutations in the 
SMGs. Based on the visual inspection of a hierarchical clustering of the consensus matrix, defining 
the average connectivity over 100 clustering runs with different initial conditions, the case of K = 3 
was used to arrange samples in Figure 1, giving rise to three clusters highlighted by red, green, and 
blue colors. The five samples that were not in CNMF clustering were highlighted by gray color. 

 

 

WWW.NATURE.COM/NATURE | 24

SUPPLEMENTARY INFORMATIONRESEARCHdoi:10.1038/nature12965



Figure	
  S2.2	
  Enrichment	
  of	
  null	
  or	
  truncating	
  mutation.	
  	
  

 

Enrichment analysis of null or truncating mutations in a specific gene or gene set was done by first 
computing a background rate of null mutations across all genes having at least one nonsilent mutation, 
yielding the rate, 0.13 = 361/27535 (361 null mutations out of 27535 nonsilent mutations). The 
Binomial test using the null mutation rate of 0.13 was used to determine p-values. Among 11739 
genes, 11 genes (KDM6A, ARID1A, MLL2, RB1, CDKN1A, STAG2, FAT1, ELF3, TSC1, MLL, and 
SPTAN1 highlighted by red filled circles) met statistical significance with FDR q < 0.1. Eight of these 
11 genes had been identified as SMGs using MutSig as above, indicating that null mutations are 
enriched in SMGs.  Note that the most significant three genes (KDM6A, ARID1A, MLL2) are all 
epigenetic modifiers. Null or truncating mutations were highly enriched in epigenetic modifier genes 
(P = 9.6 x 10-30, Fisher’s exact test).     
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Figure	
  S2.3.1	
  C>G	
  and	
  C>T	
  mutation	
  spectrums	
  depending	
  on	
  mutations	
  status.	
  	
  

 

The fraction of the six different base substitutions (C>T, C>A, C>G, A>T, A>C, A>G) was computed 
for all single nucleotide variants (SNVs) detected in each sample. Samples were then segregated 
according to the presence or absence of mutation in each of the 456 genes in which mutations were 
seen in at least 5% samples, and the differences in substitution type fractions were calculated for each 
group, those with mutations vs. those without. The differences in C>G and C>T fractions according to 
gene are plotted on the x axis along with the -log10 (p value) according to the Student’s t-test on the y 
axis.  Cancers with ERCC2 mutations had a significant reduction in C>G transversion fraction (FDR 
< 0.1), whereas cancers with CHD4 mutations had a significant increase in C>G fraction (FDR < 0.1). 
The genes with FDR < 0.1 are highlighted by blue color. In contrast there were no genes with FDR < 
0.1 for which mutation appeared to influence the fraction of C>T mutations (graph at bottom, note 
that scale is different). 
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Figure	
  S2.3.2	
  Mutation	
  spectrum	
  according	
  to	
  ERCC2	
  mutation	
  and	
  smoking	
  status	
  

 

Boxplots of the fraction of each of six base substitutions (C>T, C>A, C>G, A>T, A>C, A>G) in 
ERCC2 mutants, current-smokers, past-smokers, all smokers (current or past), and non-smokers. The 
statistical significances of differences in C>G substitutions among groups were tested by Student t-
test. (Top) The legend contains groups, the number of samples in groups, p-value to the non-smoker 
group. (Bottom) The legend contains group, the number of samples in groups, p-value to the non-
ERCC2-nonsmker group.  
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Figure S2.3.3 Hierarchical clustering of six base substitutions. 

 

Hierarchical clustering of the fraction of each of six base substitutions (C>T, C>A, C>G, A>T, A>C, 
A>G) across 130 samples. Cluster I (highlighted by red) is characterized by a high prevalence of both 
C>T and C>G mutations, while cluster II (highlighted by green) had a predominance of C>T 
mutations with a modest increase in A>G mutations in comparison to the cluster I. Interestingly, all 
ERCC2 mutants belonged to cluster II with a significant lower C>G mutation fraction (16 out of 90 
and P = 0.0027 by Fisher exact test), while many non-smokers (cyan color in “SMOKING” section) 
were enriched in the cluster I with higher C>G mutation fraction (16 in 40 samples and P = 0.0087 by 
Fisher exact test), which is concordant with the observations in Figures S2.3.1 and S2.3.2. 
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Figure	
  S2.4	
  Stick	
  figures	
  of	
  mutations	
  in	
  selected	
  SMGs.	
  	
  
Silent mutations are highlighted by gray, frame-shifts mutations were highlighted by red, and 
missense or nonsense mutations were highlighted by green with corresponding amino acid changes. 
The amino acid change in nonsense mutations was denoted by *.  
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PIK3CA	
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TSC1	
  

	
  

	
  

NFE2L2	
  

	
  

	
  

TXNIP	
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MLL2	
  

	
  

	
  

KDM6A	
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ARID1A	
  

	
  

	
  

EP300	
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Figure	
  S2.5.1	
  Differentially	
  expressed	
  genes	
  in	
  NFE2L2	
  mutants	
  and	
  hotspot	
  
mutants	
  

	
  

(Top) Differentially expressed genes (DEGs) in NFE2L2 mutant samples were identified by 
comparison of the log2(RSEM) values of NFE2L2 mutant and non-mutant sample sets. Each gene for 
which the p-value according to Wilcoxon Rank-sum test was < 0.05 is indicated in the graph by a 
circle, positioned according to the difference in the mean log2(RSEM) (x axis) and the –log10(p-
value) (y axis). (Bottom) DEGs are shown as in a, but considering only NFE2L2 mutations affecting 
the DLG or ETGE motifs. Genes with FDR q < 0.1 are highlighted by red circles and blue names. The 
number of significantly DEGs was much higher in samples with hotspot mutations and degree of 
change in expression was dramatic for many genes.   
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Figure	
  S2.5.2	
  Hierarchical	
  clustering	
  of	
  bladder	
  cancer	
  samples	
  using	
  NFE2L2	
  
marker	
  genes.	
  	
  
 

	
  

By selecting NFE2L2 marker genes with p-value < 0.01 and fold change > 2 we performed a 
hierarchical clustering of samples according to NFE2L2 marker gene expressions. Seven NFE2L2 
hotspot mutants and one KEAP1 mutant were co-clustered together (red cluster at left), showing a 
significant elevation of mRNA expressions in these NFE2L2 marker genes. One additional sample 
with no mutations in NFE2L2 or KEAP1 was also in this cluster. 
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Figure	
  S2.5.3	
  Sample-­‐specific	
  NFE2L2	
  marker	
  gene	
  expressions	
  vs	
  Amino	
  acid	
  
substitutions	
  in	
  NFE2L2	
  and	
  KEAP1.	
  	
  	
  

	
  

NFE2L2 marker gene expression values were compared to the average for each sample and plotted to 
indicate NFE2L2 and KEAP1 mutation status for each sample. The x-axis is the mean difference of 
log2(RSEM) and the y axis is –log10 (P-value) by Wilcoxon rank sum test. Note that all NFE2L2 
hotspot mutants at KEAP1 binding domain (DLG or ETGE motif) and a KEAP1 mutant with an 
amino acid change of R116P showed a dramatic differential expression in NFE2L2 marker genes. In 
addition, one sample (A20O) with no mutations in NFE2L2 or KEAP1 also showed a high level 
mRNA expression of these marker genes.   
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Figure	
  S2.6	
  Differentially	
  expressed	
  genes	
  in	
  RXRA	
  mutants.	
  	
  

	
  

(Top) Differentially expressed genes (DEGs) in RXRA mutant samples were identified by comparing 
log2(RSEM) values between RXRA mutants and non-mutant samples. The p-values were determined 
by Wilcoxon Rank-sum test. Genes ordered by p-values to a maximum 0.05 were named. (Bottom) 
Differentially expressed genes in samples RXRA recurrent mutations at S427 were identified by the 
same method above. Gene names by p-value to a maximum 0.05 were shown. The number of DEGs 
were much higher in samples harboring recurrent mutations at S427.  Up-regulated genes in hotspot 
mutants were enriched for those involved in the PPARG pathway (P = 0.0016) and lipid metabolic 
processes or adipocyte differentiation process (P = 0.006). 
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Figure	
  S2.7	
  Correlations	
  between	
  mRNA	
  levels	
  and	
  mutation	
  for	
  selected	
  
significantly	
  mutated	
  genes.	
  	
  
	
  

	
  

The title above each figure indicates the cytoband, gene name, p-value for comparison of 
log2(RSEM) between mutant and non-mutant samples, and p-value for comparison between altered 
(mutations or SCNAs) and non-altered samples. Dark blue circles denote “Homozygous deletion” (< 
1 copy) , light-blue circles represent “Heterozygous loss” (between 1 copy and 1.5 copy), gray circles 
are CN normal (“Diploid”), red circles represent copy number gain (> 3 copy). Samples with 
missense mutations are indicated by green fill; those with null or truncating mutations by orange-fill. 
Normal (black circles) are normal samples. All p-values were computed by Wilcoxon rank-sum test. 
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Table	
  S2.8.1	
  Mutual	
  exclusivity	
  correlations.	
  	
  
These are the results of mutual exclusivity analyses to a maximum p-value of 0.05 by Fisher’s exact 
test for significantly mutated genes (no suffix) or genes having focal SCNAs (suffix: .copy). Columns 
C and D report p-values and false discovery rates (FDR) for a pair of genes in columns A and B. 

 

gene1 gene2 pval qval 
RB1 CDKN2A.copy 6.32E-06 0.00904392 
TP53 MDM2.copy 0.000153 0.1094715 
MLL2 KDM6A 0.00244 1 
TP53 CDKN2A.copy 0.00477 1 
CDKN2A.copy PPARG.copy 0.00965 1 
ARID1A STAG2 0.0113 1 
CDKN2A.copy E2F3.copy 0.0129 1 
ARID1A RB1.copy 0.0241 1 
ARID1A PTEN.copy 0.0432 1 
TXNIP CDKN2A.copy 0.0438 1 
KDM6A MYC.copy 0.0443 1 
ARID1A PIK3CA 0.0456 1 
KLF5 NCOR1.copy 0.0483 1 
ERCC2 CDKN2A.copy 0.0488 1 

 

	
  

Table	
  S2.8.2	
  Co-­‐occurrence	
  correlations.	
  	
  
These are results of co-occurrence tests to a maximum q-value of 0.1 by Fisher’s exact tests for 
significantly mutated genes or genes having focal SCNAs. Columns C and D report p-values and false 
discovery rates (FDR) for a pair of genes in columns A and B, respectively. 

 

gene1 gene2 pval qval 
YWHAZ.copy MYC.copy 2.76E-07 0.000394956 
PPARG.copy YWHAZ.copy 3.01E-06 0.002153655 
YAP1.copy MYC.copy 2.43E-05 0.0115911 
CREBBP.copy PTEN.copy 0.000132 0.0440748 
NFE2L2 CDKN2A.copy 0.000154 0.0440748 
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Figure	
  S2.8	
  Mutual	
  exclusivity	
  and	
  co-­‐occurrence	
  correlations	
  

	
  

The upper right triangle (red) represents mutual exclusivity relationships and the lower left triangle 
(blue) represents co-occurrence relationships between SMGs and genes having focal SCNAs. All 
statistical tests were done by Fisher’s exact test and the values in heatmap refer to –log10(P-value).  
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Table	
  S2.9.1	
  Clinical	
  associations	
  of	
  mutations	
  in	
  significantly	
  mutated	
  genes	
  
P-values of Fisher’s exact tests for the association of mutations in SMGs to the clinical data, including 
death events (alive vs deceased), gender, subtype (papillary vs non-papillary), smoking status (smoker 
vs non-smoker), and stage (stage I or II vs III or IV).  

 
 gene event gender subtype smoking stage n.mutation 
ARID1A 0.831 0.815 0.182 0.489 0.272 33 
CDKN1A 0.576 0.238 0.271 0.78 0.775 18 
TP53 0.345 0.84 0.000513 0.106 0.846 64 
RB1 0.0485 0.562 0.265 1 1 17 
KDM6A 1 0.633 0.272 1 0.495 31 
PIK3CA 0.492 0.801 0.354 0.612 0.475 26 
ELF3 1 0.463 0.739 0.721 0.0317 11 
ERCC2 1 0.76 0.261 1 0.775 16 
MLL2 0.00247 0.502 0.666 0.357 0.665 35 
FBXW7 0.00636 0.306 0.0622 1 0.341 13 
FOXQ1 0.0943 1 0.677 0.675 0.667 7 
NFE2L2 1 0.137 0.501 1 0.171 11 
FGFR3 0.0867 0.355 0.0398 0.761 0.382 16 
TXNIP 0.48 1 0.0562 0.696 0.722 9 
STAG2 0.383 1 0.365 0.759 1 14 
CDKN2A 0.423 1 0.0976 1 0.0258 7 
RHOB 1 0.362 1 1 0.101 7 
BTG2 1 0.335 0.665 0.652 1 6 
FOXA1 0.0943 0.0617 1 1 0.177 7 
RXRA 0.532 1 0.752 0.73 1 12 
EP300 0.449 0.78 0.607 0.589 0.791 20 
KLF5 1 0.0657 1 1 1 10 
HRAS 0.663 0.159 0.376 1 1 6 
ERBB3 0.773 0.515 0.0112 1 0.753 14 
ZFP36L1 1 0.159 1 1 0.667 6 
RHOA 0.664 0.0954 1 0.112 0.637 5 
PAIP1 1 1 1 1 0.667 7 
TSC1 0.0982 1 0.00393 0.154 0.722 11 
CCND3 0.664 0.333 1 0.325 1 5 
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Table	
  S2.9.2	
  Clinical	
  associations	
  of	
  genes	
  harboring	
  focal	
  SCNAs.	
  	
  
P-values of Fisher’s exact tests for the association of copy number events in genes harboring focal 
SCNAs to the clinical data, including death events (alive vs deceased), gender, subtype (papillary vs 
non-papillary), smoking status (smoker vs non-smoker), and stage (stage I or II vs III or IV). 

 
 gene event gender subtype smoking stage n.copy 
MYCL1 1 0.403 0.71 0.204 0.673 8 
PVRL4 1 0.795 1 1 0.328 24 
PPARG 1 0.277 0.623 0.794 0.21 22 
FGFR3 1 1 0.0961 1 0.0809 4 
E2F3 1 1 0.23 0.794 0.619 24 
EGFR 0.142 0.515 0.767 0.354 0.353 14 
YWHAZ 0.25 0.62 0.491 0.146 1 28 
MYC 0.58 1 0.578 0.76 0.583 17 
YAP1 1 1 0.176 0.572 0.0283 5 
CCND1 0.521 1 0.222 0.511 0.208 13 
MDM2 0.101 0.164 1 0.296 0.732 12 
ERBB2 0.468 0.112 1 0.444 1 9 
CCNE1 0.545 1 0.141 1 1 15 
BCL2L1 0.545 0.327 0.0599 0.112 0.0599 14 
CDKN2A 0.848 0.54 0.18 1 0.325 60 
RB1 0.789 0.237 1 0.152 0.245 18 
CREBBP 0.263 1 0.578 0.233 1 17 
NCOR1 0.383 1 0.19 0.644 1 32 
PTEN 0.264 0.537 0.266 0.559 0.775 16 
WWOX 0.663 0.335 1 0.338 0.321 6 
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Table	
  S2.10	
  Enrichments	
  of	
  non-­‐silent	
  mutations	
  in	
  chromatin	
  remodeling	
  genes	
  
in	
  BLCA	
  
The enrichment of non-silent mutations in 146 chromatin remodeling genes in BLCA was compared 
to that in published TCGA tumor types, including breast (BRCA), colorectal (COAD), brain (GBM), 
lung (LUSC), blood (LAML), ovarian (OV), and endometrial (UCEC) cancers. The p-values were 
determined by Binomial test with a background non-silent mutation rate in 146 chromatin remodeling 
genes across tumors. Columns A to E contain tumor types, number of non-silent mutations (n_all), 
number of non-silent mutations in 146 chromatin remodeling genes (n_chromatin), p-values, and false 
discovery rate (FDR) q values. Except for LAML, BLCA had the most significant enrichment of non-
silent mutations in chromatin remodeling genes with FDR < 0.1.    

 
tumor n_all n_chromatin pval qval 
BLCA 29140 664 1.44E-23 5.77E-23 
BRCA 24584 351 0.872123958 0.999999316 
COAD 68359 954 0.995074106 0.999999316 
GBM 453 9 0.251546713 0.670791234 
LAML 1963 162 5.31E-66 4.25E-65 
LUSC 48746 612 0.999999316 0.999999316 
OV 15001 194 0.989136657 0.999999316 
UCEC 140677 2034 0.982873001 0.999999316 
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Table	
  S2.11.1	
  Validation	
  rate	
  of	
  exome-­‐called	
  SNVs	
  by	
  targeted	
  re-­‐sequencing	
  
while	
  varying	
  the	
  number	
  of	
  required	
  variant	
  alleles	
  for	
  validation.	
  
	
  

Variant allele 
cutoff 

# validated # powered sites (>90%) validation rate (%) 
2 612 618 99.03% 
5 599 616 97.24% 
10 579 593 97.64% 
20 541 553 97.83% 
40 488 503 97.02% 
50 455 468 97.22% 
100 325 346 93.93% 
150 207 227 91.19% 

	
  

Table	
  S2.11.2	
  Validation	
  rate	
  of	
  exome-­‐called	
  SNVs	
  in	
  significantly	
  mutated	
  genes	
  
by	
  targeted	
  re-­‐sequencing	
  while	
  varying	
  the	
  number	
  of	
  required	
  variant	
  alleles	
  
for	
  validation.	
  
	
  

Variant allele 
cutoff 

# validated # powered sites (> 90%)  validation rate(%) 
2 368 371 99.19% 
5 361 369 97.83% 
10 352 358 98.32% 
20 335 338 99.11% 
40 312 321 97.20% 
50 293 301 97.34% 
100 210 222 94.59% 
150 143 159 89.94% 
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Figure	
  S2.11.1	
  Validation	
  of	
  SNV	
  mutations	
  in	
  53	
  genes	
  by	
  targeted	
  re-­‐sequencing.	
  	
  
Validation of single nucleotide mutations by targeted re-sequencing across 53 genes including 
significantly mutated genes, and selected cancer genes and chromatin modifying genes.  Validation 
status is shown by gene (top) and sample (bottom). The numbers on the top of each bargraph (top) are 
the number of powered but not validated mutations over the number of validated mutations at 
powered sites.  
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Figure	
  S2.11.2	
  Validation	
  of	
  mutations	
  in	
  significantly	
  mutated	
  genes	
  by	
  targeted	
  
re-­‐sequencing.	
  	
  
Validation of single nucleotide mutations in significantly mutated genes by targeted re-sequencing 
across genes (top) and across samples (bottom). The numbers on the top of each bargraph represent 
the validated mutations at powered sites, and invalidated mutations at powered sites.  
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Figure	
  S2.11.3	
  Validation	
  of	
  indel	
  mutations	
  in	
  53	
  genes	
  by	
  targeted	
  re-­‐
sequencing.	
  	
  
Validation of indel mutations by targeted re-sequencing across 53 genes including significantly 
mutated genes, and selected cancer genes and chromatin modifying genes.  Validation status is shown 
by gene (top) and sample (bottom). The numbers on the top of each bargraph (top) are the number of 
powered but not validated mutations over the number of validated mutations at powered sites.  
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Figure	
  S2.11.4	
  Validation	
  of	
  SNV	
  mutations	
  identified	
  by	
  Mutect	
  analysis	
  of	
  whole	
  
exome	
  sequencing	
  using	
  RNA-­‐seq	
  data	
  for	
  123	
  samples.  
Validation status for SNV mutations in 123 RNA-Seq samples in 29 significantly mutated genes 
(top).  Validation status for all SNV mutations in 123 RNA-Seq samples shown by  sample (bottom).  
The numbers on the top of each bargraph (top) are the number of powered but not validated mutations 
over the number of validated mutations at powered sites.  
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Figure	
  S2.11.5	
  Validation	
  of	
  SNV	
  mutations	
  identified	
  by	
  Mutect	
  analysis	
  of	
  whole	
  
exome	
  sequencing	
  using	
  WGS	
  data	
  for	
  18	
  samples.	
  
Validation status for SNV mutations in 18 WGS samples in 29 significantly mutated genes (top).  
Validation status for all SNV mutations in 18 WGS samples shown by  sample (bottom).  The 
numbers on the top of each bargraph (top) are the number of powered but not validated mutations 
over the number of validated mutations at powered sites.  
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Figure	
  S2.11.6	
  Combined	
  validation	
  results	
  for	
  753	
  non-­‐silent	
  mutations	
  in	
  53	
  
genes	
  assessed	
  by	
  targeted	
  re-­‐sequencing,	
  RNA-­‐Seq,	
  and	
  WGS	
  data.	
  
Validation of 753 exonic non-silent mutations in 53 genes by any of targeted re-sequencing, RNA-
Seq data for 123 samples, or WGS data for 18 samples.  Validation status is shown by gene (top) and 
sample (bottom). The numbers on the top of each bargraph (top) are the number of powered but not 
validated mutations over the number of validated mutations at powered sites.   
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Figure	
  S2.12	
  ERCC2	
  mutation	
  status	
  and	
  APOBEC	
  mutagenesis	
  levels	
  vs	
  mutation	
  
rate.	
  	
  
Boxplots for mutation rate per MB for 130 samples are shown.  (a) The two groups are stratified by 
ERCC2 mutation status (P= 0.0278 by Mann-Whitney); (b) the two groups are stratified by 
enrichment with APOBEC mutation signature (low (<2) vs. high (>2);  taken from Data File S12.1 
and Figure S12.2b), (P=0.00275 by Mann-Whitney); (c) the four groups are stratified by both ERCC2 
mutation status and APOBEC mutation signature (P=0.0821 by Mann-Whitney for Low-ERCC2 vs. 
Low-nonERCC2).  (d) Scatterplot of mutation rate vs. APOBEC mutation signature enrichment in 
ERCC2 mutant samples (filled red circles) and wild-type samples (black circles). In (c), “High-
ERCC2” refers to ERCC2 mutant samples that show an APOBEC mutation signature enrichment > 2; 
“High-nonERCC2” refers to ERCC2-wildtype samples with APOBEC mutation signature enrichment 
> 2; “Low-ERCC2” refers to ERCC2 mutant samples with APOBEC mutation signature enrichment < 
2; and “Low-nonERCC2” refers to ERCC2-wild-type samples with APOBEC mutation signature 
enrichment < 2. 
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Team Leader Raju Kucherlapati Rkucherlapati@partners.org, Team Members Netty Santoso, and 
Semin Lee 

S3:	
  Low	
  Pass	
  Whole	
  Genome	
  Sequencing:	
  	
  Chromosomal	
  rearrangement	
  	
  

Text	
  S3.1	
  Supplementary	
  Methods	
  for	
  Genome	
  Sequencing:	
  
WGS (low-pass) Based Analysis of Structural Variations. From 700 to 500 ng of each sample 
gDNA were sheared using Covaris E220 to about 250 bp fragments, than converted to a pair-end 
Illumina library using KAPA Bio kits with Caliper (PerkinElmer) robotic NGS Suite according to 
manufacturer’s protocols. All libraries were sequenced by HiSeq 2000 using one sample – one lane, 
pair-end 2x51 bp setup. Tumor and its matching normal were usually loaded to the same flowcell. 
Average sequence coverage was found to be 6.07, read quality 38.6, 94% reads mapped. Raw data 
were converted to FASTQ format then were fed to BWA alignment software to generate .bam files.  
Identification of copy number variants. To characterize somatic copy number alterations in the 
tumor genome, we applied a new algorithm called BIC-seq to low-coverage whole genome 
sequencing data. First, we counted the uniquely-aligned reads in fixed-size, non-overlapping windows 
along the genome. Given these bins with read counts for tumor and matched normal genomes, BIC-
seq attempts to iteratively combine neighboring bins with similar copy numbers. Whether the two 
neighboring bins should be merged is based on Bayesian Information Criteria (BIC), a statistical 
criterion measuring both fitness and complexity of a statistical model. Segmentation stops when no 
merging of windows improves BIC, and the boundaries of the windows are reported as a final set of 
copy number breakpoints. Segments with copy ratio difference smaller than 0.1 (log2 scale) between 
tumor and normal genomes were merged in the post-processing step to avoid excessive refinement of 
altered regions with high read counts.  

Translocations discovery with BreakDancer and MEERKAT. Structural Variation detection is 
performed with the program BreakDancer on a .bam file constructed from HiSeq sequencing. The 
first step is to make a configuration file for each bam file for each tumor pair with the bam2cfg.pl perl 
module of BreakDancer. The next step is to run the perl module BreakDancerMax.pl on the 
configuration file in order to call for structural variants in the tumor and control files. Each tumor 
structural variant file is filtered with its matched normal to remove any false positives. Structural 
variations are also detected by MEERKAT which requires at least two discordant read pairs 
supporting one event and at least one read covering the breakpoint junction. Each variant detected 
from tumor genome is filtered with all normal genomes to remove germline events. The structural 
variants are filtered out if both breakpoints fall into simple repeats or satellite repeats.  

We detected 2529 candidate structural variant (inter, intra, del, inv) events (average=22.18 /tumor). 
Among 1973 translocation events that involved at least one gene, 820 had one of the breakpoints in an 
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intergenic region, whereas the remaining 1153 juxtaposed coding regions of two genes in putative 
fusion events. Some recurrent SVs and genes involved are listed (Table S3.1) 

Validations of translocations hits. To understand the translocations at the structural level, we PCR 
amplified the junction fragments using primers from regions of the two chromosomes close to the 
region of putative breakpoints and the DNA from this product was subjected to sequencing using the 
Sanger method on a capillary electrophoresis. By using this approach, we successfully validated 62 
out of 109 candidate translocations (57% validation rate). We also attempted to validate the 
translocations by detection of reads that span the translocation junction (split reads) through 
MEERKAT. We found 334 out of 1153 gene-gene SV events that have the split reads (detected by 
both MEERKAT and BreakDancer). Finally, we also confirmed our SVs events with RNA seq. Based 
on this approach, we found 33 gene-gene SV events that are detected by all MEERKAT, BreakDancer 
and RNAseq, while another 44 gene-gene SVs were detected by both BreakDancer and RNAseq.  
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Table	
  S3.1	
  Genes	
  involved	
  in	
  recurrent	
  translocations	
  (gene-­‐gene)	
  in	
  bladder	
  
cancer	
  from	
  114	
  T/N	
  pairs	
  
Genes	
   Type	
   T/N	
  pairs	
  

CDKAL1	
   CTX,INV,ITX	
   8	
  

FLJ22536	
   INV,CTX	
   7	
  

SHANK2	
   CTX,DEL,ITX,INV	
   7	
  

TTC28	
   CTX	
   7	
  

LOC285045	
   CTX	
   5	
  

PHACTR1	
   CTX,INV	
   5	
  

TACC3	
   ITX,INV	
   2	
  

	
  	
  	
  	
  	
  TACC3-­‐FGFR3	
   ITX	
   3	
  

FHIT	
   ITX,INV,CTX,DEL	
   4	
  

IKZF3	
   ITX,INV,CTX	
   4	
  

NOS1AP	
   ITX,CTX,INV	
   4	
  

PTPRD	
   INV,DEL,CTX,ITX	
   4	
  

COPA	
   INV,	
  CTX,DEL	
   3	
  

CPM	
   ITX,INV,CTX,DEL	
   3	
  

CPSF6	
   INV	
   3	
  

DLG2	
   CTX	
   1	
  

	
  	
  	
  	
  	
  	
  	
  CALN-­‐DLG2	
   CTX	
   2	
  

ERBB2	
   ITX,CTX	
   3	
  

FRS2	
   INV,CTX	
   3	
  

MTAP-­‐CDKN2BAS	
   DEL	
   3	
  

PPFIA1	
   CTX,ITX	
   3	
  

SLC26A3	
   CTX	
   3	
  

WWOX	
   ITX,CTX	
   3	
  

ZMAT4	
   CTX,ITX	
   3	
  

	
  

ITX: Intrachromosomal translocation 
CTX: Interchromosomal translocation 
DEL: Deletion 
INV: Inversion
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Team Lead: Katherine Hoadley hoadley@med.unc.edu Team Members: Wei Zhang, Yuexin Liu, 
Bradley Broom, and Rehan Akbani 

S4:	
  RNA	
  sequencing:	
  	
  

Text	
  S4.1	
  Expression	
  quantification	
  
RNA was extracted, prepared into mRNA libraries, and sequenced by Illumina HiSeq resulting 
in paired 50nt reads, and subjected to quality control as previously described1. RNA reads were 
aligned to the hg19 genome assembly using Mapsplice.2  RNA fusion events were automatically 
detected by MapSplice as previously described1 Gene expression was quantified for the 
transcript models corresponding to the TCGA GAF2.13, using RSEM4 and normalized within-
sample to a fixed upper quartile.  For further details on this processing, refer to Description file 
at the DCC data portal under the V2_MapSpliceRSEM workflow.5  Data for genes were median 
centered across samples for down stream analysis. 
 

Text	
  S4.2	
  Unsupervised	
  clustering	
  	
  	
  
We performed unsupervised clustering on the gene expression data using a bootstrapped 
ensemble clustering algorithm that merges the output of hierarchical and k-means clustering. The 
method clustered the samples by taking 2000 bootstrap resamples of the genes and counted how 
frequently two samples occurred in the same cluster using both hierarchical clustering and k-
means clustering. The sample co-occurrence matrix was then clustered using hierarchical 
clustering. In both hierarchical clustering steps, the distance metric was Pearson correlation 
squared and Ward was used as the linkage algorithm. The resampling analysis identified four 
robust sample clusters. The four clusters and their protein expression patterns are shown in 
(Supplemental Figure S4.1)	
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Figure	
  S4.1:	
  RNA	
  expression	
  

 

RNA expression - Illumina HiSeq for 2708 variable genes in 129 TCGA BLCA samples. 
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Text	
  S4.3	
  Expression	
  Correlation	
  of	
  Bladder	
  tumors	
  to	
  other	
  Tumor	
  types	
  	
  	
  
Using all genes, the 1-Pearson correlation was calculated for all pairwise correlations.  Bladder 
subtype III is highly correlated with Head and Neck Squamous cancer, Lung Squamous cancer 
and Basal-like breast cancer (Supplemental Figure S4.2). 

 

Figure	
  S4.2:	
  RNA	
  Bladder	
  subtypes	
  and	
  correlation	
  to	
  other	
  TCGA	
  tumor	
  types.	
  

 

Text	
  S4.4	
  Validation	
  of	
  Unsupervised	
  Clusters	
  
93 muscle invasive tumors from Sjodahl et al (6) were hierarchically clustered using the gene list 
derived for Supplemental Figure S4.1.  Clustering revealed 4 distinct subgroups.  Pairwise 
correlations were made between the 4 Sjodahl and 4 TCGA subtypes using the median gene 
expression of the genes used for clustering the TCGA dataset (Supplemental Figure S4.3).  
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Figure	
  S4.3:	
  RNA	
  expression	
  clusters	
  in	
  a	
  validation	
  data	
  set	
  

 

(A) Muscle invasive tumors (n=93) from Sjodahl et al (6) hierarchically clustered using the gene 
list derived for Supplemental Figure S4.1.  The expression of genes that defined the subgroups 
seen in the TCGA data (Supplemental Figure S4.1) also seemed to have subgroup specific 
expression patterns including examples such as FGFR3, UPK1A, UPK2, GATA3, KRT5, 
KRT6B, and immune related genes (ie. HLA members, CD48, CD8A, CCL2, CCL5) are 
highlighted.  Subgroups were selected from the nodes (highlighted in green, red, cyan, and blue 
for Sjodahl subgroup 1, 2, 3, and 4 respectively). (B) Pairwise correlations were made between 
the 4 Sjodahl and 4 TCGA subtypes using the median gene expression of the genes used for 
clustering the TCGA dataset (Supplemental Figure S4.1).  This correlation was then visualized 
by plotting the 1-pearson correlation for all pairwise comparisons (yellow = correlation, 
blue=anti-correlation).    
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Text	
  S4.5	
  Correlation	
  of	
  expression	
  subtypes	
  with	
  clinical	
  outcome.	
  
Cox proportional hazards analysis was performed in R (7) to estimate the hazard ratio associated 
with cluster expression and known clinical variables (Supplemental Table S4.1).  

Table	
  S4.1.	
  Cox	
  Proportional	
  Hazards	
  Analysis	
  
	
   Univariate	
  Analysis	
   	
   Multivariate	
  Analysis	
  

Variable HR Lower 
95% CI 

Upper 
95% CI p-value  HR Lower 

95% CI 
Upper 

95% CI p-value 

Diagnosis Subtype 
    Non-Pap vs Pap 1.91 0.851 4.262 0.12  - - - - 

Regional nodes 
    N+ vs N0 1.45 0.796 2.637 0.22  - - - - 

Stage 
    pT3/4 vs pT2 1.58 0.753 3.313 0.23  - - - - 

Age at Diagnosis 
    Continuous 1.04 1.007 1.07 0.015  1.03 1.001 1.065 0.040 

Expression subtypes          
    II vs I 1.34 0.598 3.023 0.47  1.29 0.573 2.897 0.541 
    III vs I 2.34 1.009 5.411 0.048  1.90 0.803 4.516 0.144 
    IV vs 1 1.68 0.644 4.382 0.29  1.68 0.644 4.388 0.288 
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Team Leaders: Andrew Mungall  amungall@bcgsc.ca and Gordon Robertson 
grobertson@bcgsc.ca 

S5.1	
  MicroRNA	
  Sequencing	
  

Text	
  S5.1	
  miRNA	
  library	
  construction	
  and	
  sequencing	
  
MicroRNA library construction and sequencing  Library construction, sequencing, and 

analysis of sequence data were as described in (Cancer Genome Atlas Network 2012).   

Unsupervised consensus clustering  For miRNA-seq data, read count data for 131 tumor 

samples were extracted from Level 3 data archives on the TCGA Data Portal website 

(tcga.cancer.gov/dataportal). The set of isoform.quantification.txt files, which give read counts at 

base pair resolution, was processed to report total read counts for 5p and 3p strands 

(corresponding to miRBase v16 MIMAT identifiers, Fig. S5.1a), and read counts for each 

sample were normalized to RPM, i.e. to reads per million reads aligned to miRBase strands. 

Strands corresponding to miRNAs that had been removed from v18 miRBase (miRNA.dead) 

were eliminated from the data matrix. Mature and star strands were ranked by RPM variance 

across the samples, and the most variant 25% (214 MIMATs) were input into NMF v0.5.02 or 

v0.5.06 (Gaujoux and Seoighe 2010) in R v2.12.0 for unsupervised consensus clustering. The 

default Brunet algorithm was applied, using 50 iterations for the rank survey and 200 iterations 

for the clustering runs. A preferred cluster result was selected by considering profiles of 

cophenetic score and average silhouette width (Rousseeuw 1987) of the consensus membership 

matrix, for clustering solutions having between 3 and 15 clusters (Fig. S5.1b). Silhouette results 

were generated from the NMF consensus membership matrix using the R ‘cluster’ package 

v1.14.1. Silhouette width profiles were generated by reordering samples to match the sample 

order in the NMF heatmap, and typical vs. atypical members were identified for each 

unsupervised group using a silhouette width threshold set to a fraction (e.g. 0.90) of the 

maximum width in that group (Fig. S5.1c).  

To generate abundance heatmaps for an NMF result, tumor samples in the RPM abundance 

matrix were ordered to correspond to the NMF output order, and abundance data for the 15 

matching normal samples was added. Records were retained for the subset of 32 unique miRNA 

5p or 3p strands to which NMF had assigned the top 5% of scores in each metagene in its W 

matrix. Using Cluster 3 (http://bonsai.hgc.jp/~mdehoon/software/cluster/), the 32 miRNA 
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abundance profiles across tumor and normal samples were log-transformed and median-centred, 

then were hierarchically clustered using an absolute centred correlation and average linkage. The 

result was visualized with then Java Treeview (http://jtreeview.sourceforge.net/). 

Purity and ploidy results were reported by Absolute (Carter et al. 2012). Association p-values for 

covariate contingency tables were calculated using R v3.0.1’s Fisher exact test. Spearman miR-

to-gene correlations were calculated with R 3.0.1’s corr.test.  

 

Differentially abundant miRNAs (Fig. S5.2) miRNA 5p and 3p strands that were differentially 

abundant for samples in each unsupervised tumor group, relative to samples in all other groups, 

were identified with SAMseq v2.0 (Li and Tibshirani 2011) in R v3.0.0, using an RPM 

abundance matrix as input and an FDR threshold of 0.05.  

 

Relationships between miRNA-seq and mRNA-seq unsupervised groups (Fig. S5.4) were 

visualized using Bezier curves (Mathematica v9, Wolfram Research, Champaign IL).  
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  Table	
  S5.1	
  	
  Annotation	
  priorities	
  that	
  are	
  used	
  to	
  resolve	
  multiple	
  database	
  
matches	
  for	
  a	
  single	
  alignment	
  location	
  and	
  for	
  multiple	
  alignment	
  locations	
  
for	
  small	
  RNA	
  sequencing	
  reads.	
  	
  
Priority Annotation type Database 

1 
2 
3 
4 
 
5 
 

mature strand 
star strand 
precursor miRNA 
stemloop, from 1 to 6 bases outside the mature strand, 
between the mature and star strands 
"unannotated", any region other than the mature strand 
in miRNAs where no star strand is annotated 

miRBase v16 

6 
7 
8 
9 
10 
11 
12 

snoRNA 
tRNA 
rRNA 
snRNA 
scRNA 
srpRNA 
Other RNA repeats  

UCSC small 
RNAs, 
RepeatMasker 

13 
14 
15 

16,17 

coding exons with zero annotated CDS region length 
3' UTR 
5' UTR 
coding exon, intron 

UCSC genes 
 

18 
19 
20 
21 
22 
23 
24 
25 
26 

LINE  
SINE 
LTR 
Satellite 
RepeatMasker DNA 
RepeatMasker Low complexity 
RepeatMasker Simple Repeat 
RepeatMasker Other 
RepeatMasker Unknown 

UCSC 
RepeatMasker  
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Figure	
  S5.1	
  Unsupervised	
  clustering	
  of	
  miRNA-­‐seq	
  data.	
  	
  	
  

	
  

Unsupervised clustering of miRNA-seq data.  a) Schematic of an miRNA primary transcript 
(pri), the trimmed pre-miRNA (pre), reference miRBase 5p and 3p strands, and 5’ and 3’ isomiR 
variation. The gray triangle indicates the 5p/3p-strand data representation used. b) From the 
NMF rank survey (Gaujoux and Seoighe 2010), both cophenetic correlation coefficient and 
average silhouette width suggests a five-group solution. The consensus membership heatmap 
indicates that most samples were unambiguously clustered. c) NMF consensus clustering. Top to 
bottom: normalized abundance heatmap for 32 discriminatory miRNAs; silhouette width profile; 
‘atypical’ group members, which are samples with a width below 0.9 of the maximum in a 
group; a profile of sample purity (see f); and covariate tracks showing tissue source site and BCR 
batch number, with Fisher exact association P-values. d) Summary table of group number (c), 
number of samples (n) and average silhouette width (w). e) Top: The number of sequencing 
reads aligned to miRBase annotations and the number of miRBase annotations with at least 1 
(blue) or 10 (green) reads aligned.  Lower left: Distributions of the number of sequencing reads 
aligned to miRBase annotations in each unsupervised group.  Lower right: Distributions of the 
number of miRBase annotations with at least 10 reads aligned in each group.  Tables give 
median values. f) Sample purity and g) ploidy. Upper: distribution function. Lower: distributions 
in each group. 
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Figure	
  S5.2	
  Molecular	
  and	
  clinical	
  covariates,	
  and	
  differentially	
  abundant	
  
miRNAs	
  

	
  

Molecular and clinical covariates, and differentially abundant miRNAs. a) NMF normalized 
abundance heatmap with covariate tracks showing (top to bottom) mRNA groups, DNA 
methylation groups, diagnosis subtype (P=papillary vs. NP=non-papillary), pathlogic spread 
primary tumor (pT1 or 2 vs. pT3 or 4), pathologic spread regional nodes (pN0 vs. pN1, 2 or 3), 
and tobacco smoking history (0=never smoked vs. 1=all other categories). P-values are from 
Fisher exact tests. b) Fold changes for miRNA 5p or 3p strands that are differentially abundant 
(FDR<0.05) for each mRNA sample group (i.e. cluster) relative to all other tumor samples. Up to 
15 of the largest (red) and smallest (green) fold changes (FC) are shown. c) Fold changes for 
miRNA 5p or 3p strands that are differentially abundant (FDR<0.05) for each miRNA sample 
group relative to all other tumor samples. Up to 15 of the largest (gold) and smallest (blue) fold 
changes (FC) are shown.  
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Figure	
  S5.3	
  Distributions	
  of	
  normalized	
  abundances	
  of	
  selected	
  miRNAs	
  and	
  
genes	
  in	
  the	
  four	
  mRNA	
  groups	
  and	
  five	
  miRNA	
  groups	
  

	
  

Distributions of normalized abundances of selected miRNAs and genes in the four mRNA 
groups and five miRNA groups. a,b) EMT-related miRNAs and genes. a) For the four mRNA-
based groups, miR-141 and -200a from the miR-200 family, and CDH1, SNAI2, VIM and 
ZEB1. b) as (a), but for the five miRNA-based groups. c,d) miR-99/100-family miRNAs and 
FGFR3. c) for the four mRNA-based groups, d) for the five miRNA-based groups. e) 
Scatterplots of miR vs gene abundance, with Spearman correlation results for miR-99a and -100. 
Spearman results are indicated for miR-99b. 
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Figure	
  S5.4	
  Relationship	
  between	
  miRNA-­‐seq	
  and	
  mRNA-­‐seq	
  unsupervised	
  
groups.	
  	
  	
  

	
  

Relationship between miRNA-seq and mRNA-seq unsupervised groups.  Above: normalized 
abundance heatmaps for five miRNA-seq clusters and four mRNA-seq clusters. Below: Bezier 
curves show how the samples in each miRNA-seq cluster (left) are distributed across the 
heatmap-ordered mRNA-seq samples (right). The curves should be read left-to-right, and are 
drawn with the silhouette width profile for miRNA clusters on the left. A separate Bezier 
diagram is shown for each miRNA cluster. In each diagram, curves for the samples in an miRNA 
cluster are assigned the color that cluster has in the silhouette width profile. 
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Team Leader: Jaegil Kim jaegil@broadinstitute.org Team Member: Andrew Cherniack, David 
Kwiatkowski, and Jonathan Rosenberg 

S6.1:	
  Copy	
  Number	
  	
  
 
1. SNP6.0 array processing 
DNA from each tumor or germline-derived sample was hybridized to the Affymetrix SNP 6.0 
arrays using protocols at the Genome Analysis Platform of the Broad Institute [1]. From raw 
.CEL files, Birdseed was used to infer a preliminary copy-number at each probe locus [2]. For 
each tumor, genome-wide copy number estimates were refined using tangent normalization, in 
which tumor signal intensities are divided by signal intensities from the linear combination of all 
normal samples that are most similar to the tumor [3].  This linear combination of normal 
samples tends to match the noise profile of the tumor better than any set of individual normal 
samples, thereby reducing the contribution of noise to the final copy-number profile.  Individual 
copy-number estimates then undergo segmentation using Circular Binary Segmentation [4]. As 
part of this process of copy-number assessment and segmentation, regions corresponding to 
germline copy-number alterations were removed by applying filters generated from either the 
TCGA germline samples from the ovarian cancer analysis or from samples from this collection. 
 
2. GISTIC analysis 
Segmented copy number profiles for tumor and matched control DNAs were analyzed using 
Ziggurat Deconstruction, an algorithm that parsimoniously assigns a length and amplitude to the 
set of inferred copy number changes underlying each segmented copy number profile [4]. 
Analysis of broad copy number alterations was then conducted as previously described [2] (Data 
File S6.1). Significant focal copy number alterations were identified from segmented data using 
GISTIC 2.0 [5] (Figure S6.1; Data Files S6.1 and S6.2). 
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Figure	
  S6.1	
  Merged	
  GISTIC	
  peaks	
  for	
  focal	
  SCNAs	
  in	
  SNP6.0	
  Array	
  and	
  Low	
  Pass	
  
WholeGenome	
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Graphical representation of significant amplification and deletion events in 128 bladder cancers 
(SNP6.0 array) and 114 bladder caners (Low Pass Whole Genome).  GISTIC2.0 was used to 
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identify statistically significant focally amplified (red) and deleted (blue) regions, which are 
plotted on a genome scale with chromosome 1 at top and 22 at bottom.  The scale in red and blue 
is the false discovery rate (FDR) q-value in log format.  Known or putative genes, which are the 
targets of amplification or deletion, are shown next to each peak.  The number of candidate genes 
within the peak is shown following each gene name, e.g. (MYCL1; 17) means that there are 17 
candidate genes within the focal peak.  
 

Figure	
  S6.2.	
  Correlations	
  between	
  focal	
  SCNAs	
  vs	
  mRNA	
  expression	
  	
  
 

 

Log2(RSEM) values of twenty genes harboring focal SCNAs in Figure 1 were grouped together 
according to the copy number status stratified with Amp > 5 copy, 3 copy < Gain < 5 copy, 1 
copy < Loss < 1.5 copy, and Del < 1 copy. Wilcoxon rank sum tests were performed to compare 
mRNA expression level of each group (Del, Loss, Gain, Amp, Del + Loss, and Gain + Amp) to 
that of the copy retention group. Each circle in the figure represents a log2 (RSEM) of focally 
amplified or deleted genes in a specific sample and the number in each legend denotes a p-value 
for comparison.  
Section References 
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Team Leader: Peter Laird plaird@usc.edu Team Member: Toshinori Hinoue  

 

S7.1:	
  DNA	
  Methylation:	
  	
  

Text	
  S7.1:	
  	
  Methylation	
  
Array-based DNA methylation assay  

We used the Illumina Infinium HumanMethylation450 (HM450) platform (Illumina, San Diego, 

CA) to obtain DNA methylation profiles of 131 TCGA invasive urothelial carcinoma samples 

and 18 adjacent histologically normal-appearing bladder tissue samples. Twelve control cell line 

technical replicates were also included in the assay to monitor technical variations. The Infinium 

HM450 assay analyzes the DNA methylation status of up to 482,421 CpG sites and 3,091 non-

CpG sites throughout the genome. It covers 99% of RefSeq genes with multiple probes per gene, 

96% of CpG islands from the UCSC database and their flanking regions. The DNA methylation 

score for each locus is presented as a beta (β) value (β = (M/(M+U)) in which M and U indicate 

the mean methylated and unmethylated signal intensities for each locus, respectively. β -values 

range from zero to one, with scores of zero indicating no DNA methylation and scores of one 

indicating complete DNA methylation. A detection P value also accompanies each data point 

and compares the signal intensity difference between the analytical probes and a set of negative 

control probes on the array. Any data point with a corresponding P value greater than 0.01 is 

deemed not to be statistically significantly different from background and is thus masked as 

“NA” in TCGA level 3 data packages, as detailed below. Further details on the Illumina Infinium 

HM450 DNA methylation assay technology has been described previously1. The assay probe 

sequences and information on each interrogated CpG/CpH site on the Infinium HM450 

BeadChip are available from Illumina (www.illumina.com). 

Sample and data processing 

We performed bisulfite conversion on 1 µg of genomic DNA from each sample using the EZ-96 

DNA Methylation Kit (Zymo Research, Irvine, CA) according to the manufacturer’s instructions. 

We assessed the amount of bisulfite converted DNA and completeness of bisulfite conversion 

using a panel of MethyLight-based quality control (QC) reactions as previously described2. All 

the TCGA samples passed our QC tests and entered the Infinium DNA methylation assay 
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pipeline. Bisulfite-converted DNAs were whole genome amplified (WGA) and enzymatically-

fragmented prior to hybridization to BeadChip arrays. BeadArrays were scanned using the 

Illumina iScan technology to produce IDAT files. TCGA DNA methylation data packages were 

generated using the EGC.tools R package (version 1.3.0) after processing raw IDAT files for 

each sample with the methylumi R package (version 2.3.22). 

TCGA Data Packages 

The data levels and the files contained in each data level package are described below and are 

present on the TCGA Data Portal website (http://tcga-data.nci.nih.gov/tcga/). Please note that as 

continuing updates of genomic databases and data archive revisions frequently become available, 

the data packages on TCGA Data Portal are updated accordingly.  

Level 1: Level 1 data contain raw IDAT files (two per sample) as produced by the iScan system. 

Level 2: Level 2 data contain background-corrected methylated (M) and unmethylated (U) 

summary intensities as extracted by the methylumi R package. Non-detection probabilities (P 

values) were computed as the minimum of the two values (one per allele) for the empirical 

cumulative density function of the negative control probes in the appropriate color channel. 

Background correction is performed via normal-exponential deconvolution (currently not 

stratified by probe sequence). Multiple-batch archives have the intensities in each of the two 

channels multiplicatively scaled to match a reference sample (sample with R/G ratio closest to 

1.0). Level 3: Level 3 data contain β-value calculations with HGNC gene symbol, chromosome 

(UCSC hg19, Feb 2009), and genomic coordinate (UCSC hg19, Feb 2009) for each targeted 

CpG/CpH site on the array. Probes having a common SNP (MAF > 0.01, per dbSNP build 135 

via the UCSC snp135common track) within 10bp of the interrogated CpG site or having 15bp 

from the interrogated CpG site overlap with a repetitive element (as defined by RepeatMasker 

and Tandem Repeat Finder Masks based on UCSC hg19, Feb 2009) are masked as “NA” across 

all samples, and probes with a non-detection probability (P value) greater than 0.01 in a given 

sample are masked as “NA” on that chip. Probes that are mapped to multiple sites on hg19 are 

annotated as “NA” for chromosome and 0 for CpG/CpH coordinate. 

The following data archives were used for the analyses described in this manuscript. 

 
jhu-usc.edu_BLCA.HumanMethylation450.Level_3.1.8.0  

jhu-usc.edu_BLCA.HumanMethylation450.Level_3.2.8.0 
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jhu-usc.edu_BLCA.HumanMethylation450.Level_3.3.8.0  

jhu-usc.edu_BLCA.HumanMethylation450.Level_3.4.8.0 

jhu-usc.edu_BLCA.HumanMethylation450.Level_3.5.8.0  

jhu-usc.edu_BLCA.HumanMethylation450.Level_3.6.8.0  

jhu-usc.edu_BLCA.HumanMethylation450.Level_3.7.8.0  

jhu-usc.edu_BLCA.HumanMethylation450.Level_3.8.8.0  

jhu-usc.edu_BLCA.HumanMethylation450.Level_3.9.8.0 

jhu-usc.edu_BLCA.HumanMethylation450.Level_3.10.8.0 

jhu-usc.edu_BLCA.HumanMethylation450.Level_3.11.8.0 

jhu-usc.edu_BLCA.HumanMethylation450.Level_3.12.8.0 

jhu-usc.edu_BLCA.HumanMethylation450.Level_3.13.8.0 

jhu-usc.edu_BLCA.HumanMethylation450.mage-tab.1.8.0 

 
Unsupervised clustering analysis of DNA methylation data 

We used the Level 3 DNA methylation data contained in the packages listed above for analyses. 

We first removed probes which had any “NA”-masked data points and probes that were designed 

for sequences on X and Y chromosomes. We started with CpG sites that were located in the 

promoter regions (defined as the 3kb region spanning from 1,500 bp upstream to 1,500 bp 

downstream of the transcription start sites) and CpGs associated with CpG islands extracted from 

the UCSC Genome Browser (http://genome.ucsc.edu). To capture cancer-specific DNA 

hypermethylation events, we further eliminated sites that were methylated (mean β-value ≥0.2) 

in the adjacent histologically normal-appearing bladder tissues. However, a clustering analysis 

can be strongly confounded by the purity of tumor samples. To alleviate the potential influence 

of variable levels of tumor purity in our sample set on our clustering result, we dichotomized the 

data using a β-value of >0.3 as a threshold for positive DNA methylation.  We then performed 

unsupervised hierarchical clustering on 11,622 CpG sites with this threshold that are methylated 

in at least 10% of the tumors using a binary distance metric for clustering and Ward’s method for 

linkage. The cluster assignments were generated by cutting the resulting dendrogram. 

  A heatmap was generated based on the original β-values to visualize a subset (10%) of 

randomly selected 1,162 CpG sites used in the hierarchical clustering. The probes are arranged 

based on the order of unsupervised hierarchal clustering of the dichotomous data using a binary 
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distance metric and Ward’s linkage method. We performed Fisher’s exact tests to quantify 

associations between mutations and clustering assignments results. To identify probes that show 

significant DNA methylation differences between the hypermethylated subgroup (Cluster 1; n= 

45) and all the other groups (Clusters 2 and 3; n = 86), we performed Wilcoxon rank-sum test on 

β-values across all loci after “NA”-masked and sex-linked probes are eliminated (n = 380,836). 

The resulting P values were corrected using the Benjamini-Hochberg procedure. Approximately 

7.7% (n = 29,371) of all loci examined exhibited statistically significant (adjusted P value <0.01) 

differences in mean DNA methylation greater than 10%.	
  

Others 

Statistical analysis and data visualization were carried out using the R/Biocoductor software 

packages (http://www.bioconductor.org). 
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Figure	
  S7.1	
  Methylation	
  Clustering	
  	
  

	
  

A) Unsupervised clustering of promoter CpG island methylation data revealed three major subgroups. 

Shown is heatmap representation of DNA methylation β-values of 1,162 randomly selected CpG sites that 

are located in promoter CpG island, and those that showed cancer-specific DNA hypermethylation. Data 

for 131 urothelial tumors and 18 adjacent histologically normal-appearing bladder tissues are plotted. 

DNA methylation levels are indicated by a color spectrum from dark blue (low DNA methylation) to red 

(high DNA methylation). Three major cluster assignments are annotated as a vertical bar above the 

heatmap: lightcoral, cluster 1 (n=45); lightsky blue, cluster 2 (n=29) and yellow, cluster 3 (n=57). 

Selected molecular and clinical features of each tumor sample are also shown as color bars above the 

heatmap, as indicated in the legends to the right of the heatmap. B) Volcano plot comparing DNA 

methylation profiles in the hypermethylated subgroup (cluster 1) and all the other groups (clusters 2 and 3 

combined). Mean DNA methylation β -value differences between hypermethylated subgroup and all the 

other groups are plotted on the x-axis, and −1 × log10-transformed FDR-adjusted P values are plotted on 

the y-axis for each probe (n = 380,836). We identified 29,371 sites that are significantly more frequently 

hypermethylated in the hypermethylated group using FDR-adjusted P = 0.01 and |Δβ| = 0.1 as a cutoff for 

differential methylation. 
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Team Leader: Chad Creighton creighto@bcm.edu  Team Members: Niki Schultz, Josh Stuart, 
Wei Zhang, Ilya Shmulevich, David Kwiatkowski, and Sheila Reynolds 

S8.1:	
  Pathways	
  and	
  integrated	
  analyses:	
  	
  

Text	
  S8.1:	
  Methods	
  and	
  Materials	
  integrated	
  analysis	
  
We surveyed the mutation and copy-number data in the context of well-studied pathways, 

including p53/Rb, PI(3)K, and chromatin remodeling (Figure 4a). Percentages of samples were 

tabulated, denoting activation or inactivation involving at least one allele. For genes with known 

oncogenic roles, genetic alterations inferred to be activating were tabulated; for genes with tumor 

suppressive roles, alterations inferred to be inactivating were tabulated. For inactivating 

alterations, we considered either nonsilent mutation or loss of a single copy (log2[CN ratio] < -

0.42, using “all_data_by_gene” Firehose output, as was applied in Figure 1). For activating 

alterations, we considered either gene copies of three for more (log2[CN ratio] > 0.58) or 

canonical activating mutation, as inferred using prior knowledge and the literature. Mutations 

deemed canonically activating were as follows: PIK3CA: p.E542K, p.E545K, p.E545Q, 

p.H1047L, p.Q546R, p.E453Q, p.M1043I; ERBB2: p.S310F, p.L313V, p.T733I, p.L755S, 

p.D769N, p.T862A; FGFR3: p.R248C, p.G380R, p.S249C, p.Y373C, p.G370C; HRAS: p.G13R, 

p.G12D, p.Q61K. Alteration percentages were calculated, using the 131 sample freeze list. For 

genes involved in histone modification, a summary figure provided by Lawlor and Thiele (2012) 

was used as the basis of the pathway diagram, with a more complete list of chromatin modifier 

genes being considered using a heat map representation (Figure S8.1). 
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Figure	
  S8.1.	
  Mutations	
  involving	
  chromatin	
  modifier	
  genes	
  	
  

 

(red, nonsilent somatic mutation). Percentages computed using the 131 sample freeze set 

 

Reference 
Lawlor ER, Thiele CJ. Epigenetic changes in pediatric solid tumors: promising new targets. Clin 
Cancer Res. 18(10):2768-79, 2012.  
 

Text	
  S8.2	
  PARADIGM	
  Pathway	
  Analysis	
  
PARADIGM Pathway Analysis: Inferring gene activity from pathway analysis of copy 
number and expression data. Integration of copy number, mRNA expression and pathway 
interaction data was performed on 126 out of the 131 BLCA samples that had both copy number 
and RNA-seq gene expression data using the PARADIGM software (Vaske et al 2010). Briefly, 
this procedure infers integrated pathway levels (IPLs) for genes, complexes, and processes using 
pathway interactions and genomic and functional genomic data from a single patient sample. The 
mRNA data was converted to relative mRNA expression levels by subtracting each gene’s 
median computed over 14 tumor-adjacent normal controls from its level observed in each patient 
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sample. Level 3 copy number data (segmented and normalized to reflect the difference in copy 
number between a gene’s level detected in tumor versus normal blood) was mapped to the 
genome using the UCSC hg19 Knowngenes track. Gene-level copy number estimates were then 
derived by taking the median of all segments falling within the length of the gene. Both 
expression and gene-level copy number data were then rank transformed before use by the 
PARADIGM analysis. 
Pathways were obtained in BioPax Level 3 format, and included the NCIPID and BioCarta 
databases from http://pid.nci.nih.gov, the Reactome database from http://reactome.org, and the 
set of signaling and metabolic pathways in the last public release of the KEGG database. Gene 
identifiers were unified by UniProt ID then converted to Human Genome Nomenclature 
Committee’s HUGO symbol using mappings provided by HGNC (http://www.genenames.org/). 
Interactions from all of these sources were then combined into a merged Superimposed Pathway 
(SuperPathway). 

Genes, complexes, and abstract processes (e.g. “cell cycle” and “apoptosis”) were retained and 
referred to collectively as pathway features. Before merging gene features, all gene identifiers 
were translated into HUGO standard identifiers. All interactions, even those introducing cycles 
and conflicting paths were retained as PARADIGM’s inference procedure has been shown to be 
robust to both circular and contradictory regulatory logic that may reside within pathway 
databases or as a result from the merging of databases. A breadth-first traversal starting from the 
feature with the highest number of interactions was performed to build one single component. 
The resulting pathway structure contained a total of 14,171 concepts, representing 6122 proteins, 
6370 complexes, 1130 families, 43 RNAs, 15 miRNAs and 491 processes. 

TieDIE identification of connections between genomic perturbations and transcriptional 
changes. 

TieDIE Method. We asked whether the genomic perturbations were significantly associated with 
the transcriptional hubs identified by the PARADIGM (Vaske et al., 2010) analysis. To this end, 
we developed an integrative approach called Tied Diffusion Through Interacting Events 
(TieDIE) to search for significant interconnections between genomic perturbations and 
downstream transcriptional changes. TieDIE uses a heat diffusion process to identify relevant 
pathways. TieDIE can be distinguished from HotNet in that it takes as input two distinct sets and 
searches for interlinking pathways connecting the genes in the two sets to one another. It uses a 
set of sources, in this case the mutated histone-modifying genes and a set of targets, in this case 
transcriptional hubs, whose state in the tumor cells is assumed influenced by one or more of the 
upstream sources. TieDIE then diffuses heat separately from the sources and targets to determine 
a linker set of genes as those that gain more heat from both of the diffusion processes than would 
be gained from diffusion from any one set alone. The method then identifies a sub-network 
connecting the source, target, and linker sets by selecting edges where both adjacent nodes are in 
one of these sets. For each solution network, the TieDIE algorithm computes an influence score 
measuring the degree to which the proportion of diffused heat ends up on a common intersecting 
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set of genes between the two input sets (manuscript in preparation). The method can also 
generalize to three input sets, but diffusing additional heat from a third ‘signaling’ set of genes 
and then finding linker nodes that have significantly more heat from two of the three input sets 
than gained by any one set alone.  

TieDIE Significance Analysis. We determined if the TieDIE solutions were significant by 
performing a constrained permutation analysis to evaluate the significance of the resulting 
influence scores. One random simulation was generated by permuting the set of sources while 
maintaining the given set of targets. A source set that contains a lot of hubs, genes with a large 
number of connections, could produce a significantly interlinked network due trivially to the fact 
that many targets are more likely to be reached from paths emanating from hubs. The random 
simulation therefore needs to control for the degree distribution represented among the sources. 
We therefore performed a constrained permutation of the sources such that random genes 
selected to be the ith source had approximately the same number of neighbors. To do this, we 
sorted all of the genes by their degree. We then created non- overlapping bins by collecting K 
consecutive genes from the sorted list and putting them into the same bin together. Note that it is 
possible to include multiple sources in the same bin using this procedure, which makes the 
overall random model more conservative. The bin size, K, was chosen to be n*10, where n was 
the number of sources supplied. In this case, n=29,23 so bins of 290 and 230 genes were created, 
respectively. Permutations were performed by permuting within each bin only to create swaps 
among genes of approximately the same size. Once all genes were swapped with another gene in 
the same bin, the TieDIE algorithm was repeated and a random influence score was recorded. 
The influence score of the network determined for the original dataset could then be compared to 
the background distribution obtained from this permutation analysis. 

TieDIE Application to BLCA dataset. For the sources we used the 29 genes identified as 
significant by MutSig analysis. For the targets, Gene Set Enrichment Analysis (GSEA) 
(Subramanian et al., 2005) was then used to identify transcription factors having targets with a 
non-random distribution of EdgeR (Robinson et al., 2010) significance scores. This resulted in 
the selection of 26 transcription factors including JUN, FOS and MYC/Max. Not surprisingly 
since RB1 is one of the genes in the SMG, several retinoblastoma-pathway TFs were selected 
including HDAC1, E2F1, E2F4, and TFDP1. The TieDIE solution was found to be highly 
significant using a conservative background model determined with constrained permutations 
(Figure S8.2A). The resulting network (Figure S8.3) contained 103 genes connected by 1,233 
interactions (523 HPRD-PPI, 409 regulatory, 301 component; p < 0.008). 24 (83%) of the 
sources were connected by some path in this network to all 26 of the targets, with 56 
interconnecting linking genes. 

To investigate the specific effects of mutations in histone-modifying genes, we selected 23 genes 
with known histone-modifying activity and at least 1 non-synonymous mutation, and weighted 
these genes by their mutation frequency to define the ‘source’ set. For the targets, we divided the 
samples into 2 groups: one containing at least 1 non-synonymous mutation in the list of histone-
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modifying genes (100 samples) and those without (28 samples), and used EdgeR to (Robinson et 
al., 2010) to rank the genes by differential expression between those groups. Gene Set 
Enrichment Analysis (GSEA) (Subramanian et al., 2005) was then used to identify transcription 
factors having targets with a non-random distribution of EdgeR (Robinson et al., 2010) 
significance scores, which resulted in the selection of 35 transcription factors, weighted by 
GSEA significance. TieDIE was run on this source and target set, producing a highly significant 
network (Figure S8.2B) with 107 nodes and 2463 edges (603 HPRD-PPI, 322 regulatory, and 
1538 component; p < 0.001).  

To investigate genes correlated to histone-modification activity, we ran PARADIGM on the 
samples to produce Inferred Pathway Levels (IPLs): a two-sided t-test was then calculated for 
each gene using the IPLs, and 12 genes were found to correlate (p < 0.05). We re-ran TieDIE 
using the original source and target sets along with this additional IPL-correlated set of genes, 
with the algorithm set to find linker genes with high heat in either the source and IPL-correlated 
sets, or the target and IPL-correlated sets. The resulting network was notably smaller (49 genes, 
600 edges), and we ran an additional filtering step by performing a graph traversal from the 3 
most mutated histone-modifying genes (EP300, CREBBP, MLL) to the 7 most differentially 
active transcriptional hubs (TP53, MYC, MAX, MYB, HES1, FOXA2, HSP90AA1). The 
resulting network contained 24 genes, including 4 of the IPL-correlated input nodes (SP1, 
HNF4A, FOXA2, CD19), and 66 edges (55 HPRD-PPI, 10 transcriptionally activating, 1 post-
transcriptionally activating).  
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Figure S8.2. Genomic perturbations in bladder cancers are significantly associated with 
downstream transcriptional changes through known and novel pathway circuitry. A) The 
TieDIE algorithm was used to identify a network connecting the top 29 significantly mutated 
genes to transcriptional hubs identified from the identification of transcription factors with 
targets significantly up- or down-regulated in tumors relative to normal controls. These inputs 
sets are significantly close in pathway space, under 1000 random permutations of the input sets; 
blue bars are the scores of the permutations, the green line represents the score of the real 
network. B) The TieDIE algorithm was applied to connect 23 mutated histone-modifying genes, 
weighted by mutation frequency, to transcription factors with differential activity in histone-gene 
mutated and non-mutated samples. The   
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Figure	
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Figure S8.2.1 TieDIE network connecting Significantly Mutated Genes (SMGs) to 

transcription factors with altered activity in tumor samples. SMGs (orange) are shown as 

part of a network that connects these mutated genes to transcription factors (green) with altered 

activity. Solid lines indicate transcriptional regulation and dashed lines indicate protein 

regulation, and dotted lines indicate HPRD-PPI interactions or component associations. Size of 

the node reflects the betweeness centrality measure of the gene’s position in the network with 

larger nodes as more “central” to the network solution. 
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The resulting linking set of genes in the full SMG solution contained over a dozen “linker” genes 

with high betweeness centrality measures (Figure S8.3). While many of the highly central genes 

by this measure correspond to the starting input set (TP53, RB1, HDAC1, E2F1), several genes 

were found as linkers that were not part of either the source or target sets used as input to TieDIE 

that increase the overall connectivity of the solution. These genes are depicted as large white 

nodes in Figure S8.3. Among these linkers were several cycle-cycle related genes such as 

CCND1, CDC25A, CDK1 and CDK4. Also among the list was the DNA repair gene, BRCA1. 

Finally, the linker with the highest centrality was CREBBP, which is a transcriptional co-

activitator of several transcription factors that couples chromatin remodeling to transcription 

factor recognition involving growth, homeostasis, and development. CREBBP was also included 

in the chromatin-remodeling sub-network included as Figure 3B in the main text. Interestingly, 

even though 17 samples in the BLCA cohort have non-silent mutations in CREBBP, the level of 

significance did not reach the cutoff for CREBBP to merit inclusion into the SMG by Mutsig 

analysis. Therefore, the TieDIE analysis provides an important orthogonal perspective on the 

significant role of CREBBP and other linking genes in terms of their role in bladder 

carcinogenesis. 

PARADIGM-Shift identification of gain-of-function mutation in NFE2L2 gene in BLCA. 

PARADIGM-Shift (Ng et al., 2012) predicts the functional impact of a mutation, gain- or loss-

of-function, by interrogating the pathway surrounding a mutated gene. PARADIGM is used to 

score the observed downstream consequences of a gene's activity, as well as what is expected 

from its regulatory inputs, and the discrepancy between these two scores is used to infer the 

impact of mutation in the gene of interest. The significance of this ‘shift’ is determined through 

comparison to a random background simulation that permutes the gene labels while fixing the 

pathway.  

We employed the PARADIGM-Shift algorithm to compare the pathway impact of mutations in 

NRF2/NFE2L2 (the pathway activation of which is an emerging feature present in many tumors) 

in BLCA. There were 126 of the white-listed samples with available copy number and 

expression data to run PARADIGM and PARADIGM-Shift analysis on the mutant versus non-

mutant comparison, with 10 mutations annotated for NFE2L2. NFE2L2 mutation neighborhoods 

were selected in a supervised fashion by selecting features based on a rank ratio of the features 
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determined by two-sided t-test.  PARADIGM-Shift (P-Shift) scores for NFE2L2 (reflecting the 

shift between activity as inferred by up-/down- stream pathway signals) were computed as the 

difference in activity between two runs of PARADIGM - one in which only upstream regulators 

are connected (R-run) and one where only downstream targets are connected (T-run). The results 

of PARADIGM-Shift analysis are shown in Figure S8.4A 

We then assessed the accuracy of the models by using the absolute P-Shift score as a classifier to 

predict NFE2L2 mutation status with 5-fold cross validation.  The average AUC over the 5-folds 

for predicting mutations (against non-mutants) is 0.61, suggesting that PARADIGM-Shift is 

effective at distinguishing mutants from non-mutants. Comparing the distribution of P-Shift 

scores between mutants and non-mutants shows an enrichment of positive P-Shift scores in the 

mutant samples indicative of a gain-of-function (GOF) mutation. The significance of this GOF 

call was determined by running a background model in which the selected network topology is 

fixed, but the data is permuted.  Under this background model, the GOF call was found to have a 

z-score of 6.2 (Supplemental Figure S8.4B-C). The entire sample set was used for training to 

determine the functional impact of mutations of NFE2L2 on the SuperPathway network. 
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Figure S8.2.2. PARADIGM-Shift Analysis of reveals gain of function mutation in NFE2L2. 

A) Circlemap display of mutation neighborhood selected for NFE2L2 mutations. Solid lines 

indicate transcriptional regulation and dashed lines indicate protein regulation. Samples are 

sorted first by the NFE2L2 mutation status, then by PARADIGM-Shift (P-Shift) score; rings 

represent mutation status (inner ring), expression, inferred activity from upstream, inferred 

activity from downstream, and the P-Shift score. B) Distribution of P-Shift scores for mutated 

(red) and non-mutated samples (black), yielding a t-statistic of 1.88. C) Distribution of t-statistics 

of the difference in P-Shift scores between non-mutants and mutants, under the permuted 

background model. 
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To gain greater insight into the underlying system-level phenomena that characterize the 
development and progression of urothelial carcinoma, we have integrated all of the data types 
produced by TCGA and described in this paper into a single “feature matrix”.  From this single 
heterogeneous dataset, significant pairwise associations have been inferred using statistical 
analysis and can be visually explored in a genomic context using Regulome Explorer, an 
interactive web application (http://explorer.cancerregulome.org).  In addition to associations that 
are inferred directly from the TCGA data, additional sources of information and tools are 
integrated into the visualization for more extensive exploration (e.g., literature-based 
associations, molecular interaction databases, miRBase, the UCSC Genome Browser, etc).   

Feature Matrix Construction 
A feature matrix was constructed using all available clinical, sample, and molecular data for 131 
unique patient/tumor samples.  The clinical information includes features such as age, stage, 
smoking history; while the sample information includes features derived from molecular data 
such as single-platform cluster assignments, and mutation rates.  The molecular data includes 
mRNA and microRNA expression levels (Illumina HiSeq data), protein levels (RPPA data), 
copy number alterations (derived from segmented Affymetrix SNP data as well as GISTIC 
regions of interest and arm-level values), DNA methylation levels (Illumina Infinium 
Methylation 450k array), and germline and somatic mutations.  For each mutated gene, several 
binary mutation features indicating the presence or absence of a mutation in each sample were 
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generated, depending on the type and position of the mutations.  Mutation types considered were 
synonymous, missense, nonsense and frameshift.  Protein domains (InterPro) including any of 
these mutation types were annotated as such, with nonsense and frameshift annotations being 
propagated to all subsequent protein domains. 
 

Pairwise Statistical Significance  

The statistical significance of each pairwise association is assessed using rank-ordered data and a 
statistical test appropriate to each data type pair, e.g. Fisher’s test (categorical-categorical), F-
statistic (continuous-continuous) and ANOVA (continuous-categorical).   
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Text	
  S9.1	
  Viruses	
  and	
  their	
  integration	
  site	
  detection	
  in	
  TCGA	
  Bladder	
  samples	
  
We detected virus transcripts in 8 out of 122 tumor samples as follows: three tumors with 

unequivocal CMV, all harboring transcripts encoding RL5A, RNA2.7, RL6, RL8A, RL9A, 

RNA1.2, UL5, UL22A; one tumor with BK virus; four tumors with HPV6, 16, 45, 56 

respectively. None of the two tumors with CMV has evidence of CMV integration into the host 

genome. In one tumor with BK, BKPyVgp1_agnoprotein and BKPyVgp5_largeTantigen were 

integrated into GRB14 that is known to interact with a number of receptor tyrosine kinases and 

signaling molecules. In the tumor with HPV45, HPV45-E1, E6, and E7 transcripts were 

integrated into DEC1, a putative tumor-suppressor gene. In the tumor with HPV56, HPV56-E6, 

and E7 transcripts were integrated into NOTCH1, a key member of the Notch signaling pathway 

that plays a central role in virus–mediated host cellular network perturbations. In the same tumor, 

HPV56-E1, E6, and E7 transcripts were also integrated into SEC16A, a gene involved in the 

assembly of endoplasmic reticulum exit sites and endoplasmic reticulum-to-Golgi protein 

transport. In the tumor with HPV16, HPV16-E6, E4, L1 transcripts were integrated into 

BCL2L1. In the tumor with HPV6, there is no evidence of HPV6 integration into the host 

genome. Of note, two tumors with HPV6 or HPV56 have >50% squamous tissue, and the tumor 

with HPV45 might be cervical in origin. 

METHODS 

Mapping/Alignment: We first performed quality checks on sequencing data using the HTSeq 

package (http://www-huber.embl.de/users/anders/HTSeq/doc/count.html). The raw paired-end 

(PE) reads in FASTQ format were then aligned to the human reference genome, GRCh37/hg19, 

using MOSAIK (Hiller, et al., 2008) alignment software. MOSAIK works with PE reads, and 

uses both a hashing scheme and the Smith-Waterman algorithm to produce gapped optimal 

alignments and to map exon junction-spanning reads with a local alignment option for RNA-seq 

data. VirusSeq (Chen et al., 2013) was used to detect both viruses and theirs integration sites in 

Bladder RNA-seq data. 
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Virus detection from RNA-Seq: VirusSeq started by computationally subtracting human 

sequences, followed by generating a set of nonhuman sequences (e.g., viruses) on RNA-Seq. 

Once raw PE reads from RNA-Seq were aligned to the human genome reference, any read with 

more than a half read length mapped to the human reference genome was removed along with its 

paired mate in this subtraction step. Thus, a set of nonhuman sequences was generated after 

human sequence subtraction. In the second step, VirusSeq determined whether the nonhuman 

sequences matched with any known viral sequences by searching a comprehensive database that 

includes all known viral sequences (Genome Information Broker for Viruses; GIB-V, http://gib-

v.genes.nig.ac.jp/), and quantified virus representation by a measure of the virus genome 

coverage (or overall count of mapped reads) to determine the existence of viruses in human 

samples with an empirical cutoff. Any virus with an overall count of mapped reads below the 

cutoff was treated as nonexistent. We used 1000 as the cutoff for the overall count of mapped 

reads within a virus genome. 

Identification of virus integration sites: The genomes of viruses detected in the previous steps 

were concatenated into a single genome named chrVirus with related annotation of each virus in 

refFlat format. A new hybrid reference genome named hg19Virus was built by combining hg19 

and chrVirus. All PE reads without computational subtraction were mapped to this reference 

(hg19Virus). If the PE reads were uniquely mapped with one end to hg19 and the other to 

chrVirus, the read pair was reported as a discordant read pair. All discordant reads were then 

annotated by using the genes and viruses defined in the curated refFlat file. VirusSeq then 

clustered the remaining discordant read pairs that support the same integration (fusion) event 

(e.g., HPV56-NOTCH1), and selected them as fusion candidates. The cluster size was 

constrained by the library insert size (fragment length) distribution after excluding the sizes of 

introns if mapped reads were located across adjacent exons. VirusSeq implemented a dynamic 

clustering procedure to accurately determine the exact fusion junction between a human gene 

and a virus. In order to remove outliers within a cluster, VirusSeq implemented the robust 

“extreme studentized deviate” multiple-outlier procedure (Rosner, 1983). Meanwhile, an in-

silico sequence was generated using the consensus of reads within discordant read clusters for 

each fusion candidate to help the PCR primer design, which facilitates quick PCR validation. 

 

WWW.NATURE.COM/NATURE | 96

SUPPLEMENTARY INFORMATIONRESEARCHdoi:10.1038/nature12965



Table	
  S9.1	
  	
  Viral	
  Integration	
  
	
  

SampleID	
   Discordant_reads	
   Virus	
   Viral_Transcript	
   HostGenes	
   Integrated_Site	
  

A3I6-­‐01A	
   5	
   HPV16	
   HpV16gp5_E4	
   BCL2L1	
   exon2	
  

A3I6-­‐01A	
   7	
   HPV16	
   HpV16gp8_L1	
   BCL2L1	
   intron2	
  

A3I6-­‐01A	
   3	
   HPV16	
   HpV18gp1_E6	
   BCL2L1	
   intron2	
  

A20V-­‐01A	
   60	
   HPV45	
   HpV45gp1_E6	
   DEC1	
   intron1	
  

A20V-­‐01A	
   351	
   HPV45	
   HpV45gp2_E7	
   DEC1	
   intron1	
  

A20V-­‐01A	
   62	
   HPV45	
   HpV45gp3_E1	
   DEC1	
   intron1	
  

A3B4-­‐01A	
   82	
   HPV56	
   HpV56gp1_E6	
   NOTCH1	
   exon27	
  

A3B4-­‐01A	
   11	
   HPV56	
   HpV56gp2_E7	
   NOTCH1	
   exon27	
  

A3B4-­‐01A	
   10	
   HPV56	
   HpV56gp1_E6	
   SEC16A	
   exon2	
  

A3B4-­‐01A	
   227	
   HPV56	
   HpV56gp2_E7	
   SEC16A	
   exon3	
  

A3B4-­‐01A	
   19	
   HPV56	
   HpV56gp3_E1	
   SEC16A	
   exon3	
  

A3B4-­‐01A	
   36	
   HPV56	
   HpV56gp3_E1	
   SEC16A	
   intron1	
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A3IT-­‐01A	
   72	
   BK	
   BKPyVgp1_agnoprotein	
   GRB14	
   3Prime	
  

A3IT-­‐01A	
   48	
   BK	
   BKPyVgp5_largeTantigen	
   GBR14	
   3Prime	
  
 

  

Table	
  S9.2	
  	
  Pathology	
  Review	
  
SampleID	
   Virus	
   Path_Review	
  

A1AF-­‐01A	
   CMV	
   Clean	
  
A3JZ-­‐01A	
   CMV	
   Clean	
  
A3SN-­‐01A	
   CMV	
   Clean	
  
A3IT-­‐01A	
   BK	
   Clean	
  
A3I6-­‐01A	
   HPV16	
   Clean	
  

A20V-­‐01A	
   HPV45	
  

Questionable	
  squamous,	
  
HPV	
  associated	
  (no	
  

feedback	
  from	
  TSS),	
  per	
  
path	
  report	
  -­‐-­‐>	
  bladder	
  
tumor	
  but	
  also	
  extensive	
  
involvement	
  of	
  ectocervix,	
  
endocervix,	
  endometrium	
  

and	
  myometrium.	
  
Seriously	
  consider	
  cervical	
  

primary	
  

A3B4-­‐01A	
   HPV56	
   >50	
  squamous	
  in	
  3	
  
reviews,	
  HPV	
  associated	
  

A3N6-­‐01A	
   HPV6	
   >50	
  squamous	
  in	
  3	
  
reviews,	
  HPV	
  associated	
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RPPA experiments and data processing 
Protein was extracted using RPPA lysis buffer (1% Triton X-100, 50 mmol/L Hepes (pH 7.4), 
150 mmol/L NaCl, 1.5 mmol/L MgCl2, 1 mmol/L EGTA, 100 mmol/L NaF, 10 mmol/L NaPPi, 
10% glycerol, 1 mmol/L phenylmethylsulfonyl fluoride, 1 mmol/L Na3VO4, and aprotinin 10 
ug/mL) from human tumors and RPPA was performed as described previously [1-5]. Lysis 
buffer was used to lyse frozen tumors by Precellys homogenization. Tumor lysates were adjusted 
to 1 µg/µL concentration as assessed by bicinchoninic acid assay (BCA) and boiled with 1% 
SDS. Tumor lysates were manually serial diluted in two-fold of 5 dilutions with lysis buffer. An 
Aushon Biosystems 2470 arrayer (Burlington, MA) printed 1,056 samples on nitrocellulose-
coated slides (Grace Bio-Labs). Slides were probed with 179 validated primary antibodies 
followed by corresponding secondary antibodies (Goat anti-Rabbit IgG, Goat anti-Mouse IgG or 
Rabbit anti-Goat IgG). Signal was captured using a DakoCytomation-catalyzed system and DAB 
colorimetric reaction. Slides were scanned in CanoScan 9000F. Spot intensities were analyzed 
and quantified using Microvigene software (VigeneTech Inc., Carlisle, MA), to generate spot 
signal intensities (Level 1 data). The software SuperCurveGUI[3,5], available at 
http://bioinformatics.mdanderson.org/Software/supercurve/, was used to estimate the EC50 
values of the proteins in each dilution series (in log2 scale). Briefly, a fitted curve ("supercurve") 
was plotted with the signal intensities on the Y-axis and the relative log2 concentration of each 
protein on the X-axis using the non-parametric, monotone increasing B-spline model [1]. During 
the process, the raw spot intensity data were adjusted to correct spatial bias before model fitting. 
A QC metric [5] was returned for each slide to help determine the quality of the slide: if the 
score is less than 0.8 on a 0-1 scale, the slide was dropped. In most cases, the staining was 
repeated to obtain a high quality score. If more than one slide was stained for an antibody, the 
slide with the highest QC score was used for analysis (Level 2 data). Protein measurements were 
corrected for loading as described [3,5,6] using median centering across antibodies (level 3 data). 
In total, 179 antibodies and 127 samples were used. Final selection of antibodies was also driven 
by the availability of high quality antibodies that consistently pass a strict validation process as 
previously described [7]. These antibodies are assessed for specificity, quantification and 
sensitivity (dynamic range) in their application for protein extracts from cultured cells or tumor 
tissue. Antibodies are labeled as validated and use with caution based on degree of validation by 
criteria previously described [7].  
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Two RPPA arrays were quantitated and processed (including normalization and load controlling) 
as described previously, using MicroVigene (VigeneTech, Inc., Carlisle, MA) and the R package 
SuperCurve (version-1.3), available at http://bioinformatics.mdanderson.org/OOMPA [1,3]. Raw 
data (level 1), SuperCurve nonparameteric model fitting on a single array (level 2), and loading 
corrected data (level 3) were deposited at the DCC. 
 
References: 
1. Tibes R, Qiu Y, Lu Y, et al: Reverse phase protein array: validation of a novel proteomic 
technology and utility for analysis of primary leukemia specimens and hematopoietic stem cells. 
Molecular Cancer Therapeutics 5:2512-2521, 2006 
2. Liang J, Shao SH, Xu Z-X, et al: The energy sensing LKB1-AMPK pathway regulates 
p27kip1 phosphorylation mediating the decision to enter autophagy or apoptosis. Nat Cell Biol 
9:218-224, 2007 
3. Hu J, He X, Baggerly KA, et al: Non-parametric quantification of protein lysate arrays. 
Bioinformatics 23:1986-1994, 2007 
4. Hennessy BT, Lu Y, Poradosu E, et al: Pharmacodynamic Markers of Perifosine 
Efficacy. Clinical Cancer Research 13:7421-7431, 2007 
5. Coombes K, Neeley S, Joy C, et al: SuperCurve: SuperCurve Package. R package version 
1.4.1. 2011 
6. Gonzalez-Angulo A, Hennessy B, Meric-Bernstam F, et al: Functional proteomics can 
define prognosis and predict pathologic complete response in patients with breast cancer. Clin 
Proteomics 8:11 
7. Hennessy B, Lu Y, Gonzalez-Angulo A, et al: A Technical Assessment of the Utility of 
Reverse Phase Protein Arrays for the Study of the Functional Proteome in Non-microdissected 
Human Breast Cancers. Clin Proteomics 6:129-151 
 
Data normalization 
We performed median centering across all the antibodies for each sample to correct for sample 
loading differences. Those differences arise because protein concentrations are not uniformly 
distributed per unit volume. That may be due to several factors, such as differences in protein 
concentrations of large and small cells, differences in the amount of proteins per cell, or 
heterogeneity of the cells comprising the samples. By observing the expression levels across 
many different proteins in a sample, we can estimate differences in the total amount of protein in 
that sample vs. other samples. Subtracting the median protein expression level forces the median 
value to become zero, allowing us to compare protein expressions across samples. All of the 127 
samples were processed in a single RPPA batch. 
 
Reference: 

1) Neeley ES, Kornblau SM, Coombes KR, Baggerly KA (2009). Variable Slope 
Normalization of Reverse Phase Protein Arrays. Bioinformatics, 25(11), 1384-1389. 
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Unsupervised clustering 
We performed unsupervised clustering on the protein expression data. Pearson correlation was 
used as the distance metric and Ward was used as the linkage algorithm in an bootstrapped 
ensemble clustering algorithm that merges the output of hierarchical and k-means clustering. The 
method clustered the samples by bootstrapping and counted how frequently two samples are in 
the same cluster. The resampling analysis identified four robust sample clusters. The four 
clusters and their protein expression patterns are shown in Supplemental Figure SXX. 
 
The red cluster has elevated levels of Her2, E-cadherin, claudin 7, SRC and Gata3, indicating a 
hormonally responsive subtype. It also has several FGFR3 and STAG2 mutants. There is little 
difference between the four clusters in MLL2 mutants. The green cluster is enriched in caveolin, 
MYH11 and rictor, indicative of a previously identified “reactive” RPPA signature found in 
breast cancer [1]. It is depleted in FGFR3 and STAG2 mutations. The cyan cluster shows very 
low Her2, SRC, and Gata 3 levels, indicating low hormonal responsiveness. It has low caveolin 
and MYH11, but high collagen VI and fibronectin that is indicative of a second reactive 
signature. It has low levels of AMPK-alpha and phospho-AMPK and no mutations in FGFR3 
and STAG2. The blue cluster shows low hormonal and reactive signatures, as well as low levels 
of AKT. It has some FGFR3 mutants.  
 
References 

1) The Cancer Genome Atlas (TCGA) Research Network. Comprehensive molecular 
characterization of human breast cancers. Nature. 2012 Oct 4;490(7418):61-70 
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Figure	
  S10.1:	
  Unsupervised	
  hierarchical	
  clustering	
  of	
  127	
  samples	
  and	
  179	
  
antibodies,	
  showing	
  4	
  RPPA	
  clusters.	
  	
  
 

	
  

The red cluster has elevated levels of Her2, E-cadherin, claudin 7, SRC and Gata3, indicating a 
hormonally responsive subtype. It also has several FGFR3 and STAG2 mutants. There is little 
difference between the four clusters in MLL2 mutants. The green cluster is enriched in caveolin, 
MYH11 and rictor, indicative of a previously identified “reactive” RPPA signature found in 
breast cancer [1]. It is depleted in FGFR3 and STAG2 mutations. The cyan cluster shows very 
low Her2, SRC, and Gata 3 levels, indicating low hormonal responsiveness. It has low caveolin 
and MYH11, but high collagen VI and fibronectin that is indicative of a second reactive 
signature. It has low levels of AMPK-alpha and phospho-AMPK and no mutations in FGFR3 
and STAG2. The blue cluster shows low hormonal and reactive signatures, as well as low levels 
of AKT. It has some FGFR3 mutants	
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Team Lead: Michael Ryan mryan@insilico.us.com Team Member: John Weinstein 

S11.1:	
  Splicing	
  Analysis	
  	
  	
  

Text	
  S11.1:	
  Methods	
  and	
  Materials:	
  splicing	
  Analysis	
  
SpliceSeq1 was used to analyze the BLCA RNASeq data for transcript splicing variation.  
SpliceSeq aligned reads to splice graphs representing all protein coding isoforms of human genes 
in Ensembl.  Read totals and normalized read totals were calculated for each exon and splice. For 
all potential splice events, a percent spliced in (PSI) value was also calculated.  The PSI is the 
ratio of reads indicating the inclusion path vs. the reads indicating the exclusion path.  If, for 
example, a skip of exon 4 is evaluated, then reads of exon 4 and junction reads that cross exon 4 
would be include reads and reads of the junction that splices out exon 4 would be exclude reads.  
A PSI of 20% would indicate that the exon is included in approximately 20% of the transcripts in 
a sample and spliced out in 80% of transcripts.  Differential analysis of groups of samples was 
performed in SpliceSeq by calculating t-test p-values on the individual PSIs from each group and 
then calculating a Benjamini–Hochberg FDR q_value.  Splice Events with a delta PSI of > 20% 
and a q_value of < .01 are reported. Results were further filtered to include only genes with an 
average expression level > 2 RPKM in both groups and which had PSI values for > 90% of 
group members. For further details on SpliceSeq methods, see: 
http://bioinformatics.mdanderson.org/main/SpliceSeqV2:Methods.  The type of splice events 
detected include exon skip (ES), retained intron (RI), alternate donor (AD), alternate acceptor 
(AA), mutually exclusive exon (ME), alternate promoter (AP), and alternate terminator (AT).  
HG19 exon coordinates are provided for exons involved in each splice event. 
 
Several sub-groups of BLCA samples were evaluated for differential splicing patterns.  No 
substantive differences were observed for comparisons of tumor disease stage, patient smoking 
status, gender, age, or lymph node status.  The group comparison that did show many significant 
splicing events was tumor vs. adjacent normal.  Splicing pattern analysis is sensitive to tissue 
type differences so only tumor samples with an abs_purity score of > 90% were included in the 
tumor / normal analysis.  Splicing events identified in this analysis have been included as a 
separate supplemental spreadsheet, BLCA_SpiceSeq_Normal_V_PureTumor.xlsx. 
Discussion 
A total of 116 splice events on 111 genes were identified as differentially spliced in BLCA tumor 
samples as compared to adjacent normal tissue.  Fifteen (15) of the differentially spliced genes 
have been associated with tumor suppression or tumor growth and metastasis.    Genes with 
structural function (adhesion, cellular matrix, actin related) were prevalent in the splice event list 
totaling 16 of the 111 genes.   
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Table	
  S11.1:	
  Cancer	
  related	
  genes	
  from	
  the	
  list	
  of	
  alternatively	
  spliced	
  BLCA	
  
genes	
  compared	
  to	
  adjacent	
  normal.	
  
 

	
  
 

One particularly interesting member of this list is the alternate termination event on MLTK.  
MLTK is reduced in expression in the tumor cells and the alternate termination event indicates a 
reduction in tumor samples of MLTK-β and a corresponding increase in the relative 
concentration of MLTK-α.  MLTK is a mixed-lineage kinase that plays a role in activating 
MAPK pathways which in turn regulate cell proliferation, differentiation, stress response, and 
cell death. The MLTK-α isoform has been shown to induce proliferation and malignant cell 
transformation.  MLTK is also implicated in actin organization and MLTK-α has been shown to 
disrupt actin stress fibers and   induce dramatic morphological changes. 
  

Gene	
  
Symbol

Splice	
  
Event	
  
Type Exons dPSI p-­‐value q_value Gene	
  Function

ABI1 ES 5 -­‐0.25 3.80E-­‐05 0.0081

Mediates	
  signal	
  transduction	
  from	
  Ras	
  to	
  Rac.	
  May	
  play	
  a	
  
role	
  in	
  the	
  progression	
  of	
  several	
  malignancies	
  including	
  
melanoma,	
  colon	
  cancer	
  and	
  breast	
  cancer,

CDKN2C AP 3.1 -­‐0.34 5.40E-­‐07 7.00E-­‐04
Tumor	
  supressor.	
  Cyclin-­‐dependent	
  kinase	
  inhibitor	
  that	
  
regulates	
  growth.

CXCL12 AT 5.2 0.46 3.89E-­‐06 0.0023 Plays	
  a	
  role	
  in	
  tumor	
  growth	
  and	
  metastasis.

FBLN1 AT 22 -­‐0.22 3.77E-­‐05 0.00815
Tumor	
  suppressor.	
  Implicated	
  in	
  cellular	
  transformation	
  
and	
  tumor	
  invasion.

FN1 ES 40.2 0.21 3.36E-­‐06 0.0023
Fibronectin	
  is	
  involved	
  in	
  cell 	
  adhesion	
  and	
  migration	
  
processes	
  including	
  metastasis

GNE RI 13.2 -­‐0.47 1.67E-­‐06 0.00145
Implicated	
  in	
  cell 	
  adhesion,	
  tumorigenicity	
  and	
  metastatic	
  
behavior	
  of	
  malignant	
  cells.

MLTK AT 14 -­‐0.32 2.13E-­‐07 5.00E-­‐04 Pro-­‐apoptotic.	
  Isoform	
  1	
  may	
  role	
  in	
  cancer	
  development.

MORF4L2 AP 1 -­‐0.23 1.41E-­‐06 0.0013
Component	
  of	
  histone	
  acetyltransferase.	
  Activates	
  
transcription	
  of	
  oncogenes	
  and	
  tumor	
  suppressors.

SEPT9 AP 1 0.20 3.65E-­‐05 0.008 Cell	
  cycle	
  control.	
  Candidate	
  ovarian	
  tumor	
  suppressor.

SPAG9 ES 30 -­‐0.52 2.56E-­‐05 0.00645
Mediates	
  c-­‐Jun-­‐terminal	
  kinase	
  signaling.	
  May	
  play	
  a	
  role	
  
in	
  tumor	
  growth	
  and	
  development.

TACC2 ES 12 0.36 5.58E-­‐07 7.00E-­‐04
Centrosome-­‐	
  and	
  microtubule-­‐interacting	
  proteins	
  that	
  are	
  
implicated	
  in	
  tumorigenesis.

TNFSF12 AT 13 0.31 6.26E-­‐07 7.50E-­‐04 TNF	
  ligand.	
  	
  Cytokine	
  that	
  can	
  induce	
  apoptosis.	
  

TPM1 AP 1 -­‐0.61 2.34E-­‐07 4.50E-­‐04
Tumor	
  supressor	
  that	
  promotes	
  structural	
  stability	
  and	
  
controls	
  growth.

TSC2 ES 27:28.1 0.24 2.22E-­‐05 0.00615
Implicated	
  as	
  a	
  tumor	
  suppressor.	
  Negatively	
  regulates	
  
mTORC1	
  signaling.

URGCP AP 3 -­‐0.22 1.52E-­‐06 0.00135
Cell	
  cycle.	
  Regulates	
  cyclin	
  D1.	
  Implicated	
  in	
  hepatocellular	
  
carcinoma	
  and	
  gastric	
  cancer.
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Table	
  11.1.2:	
  Structural	
  protein	
  genes	
  with	
  splice	
  events	
  in	
  BLCA	
  tumor	
  vs.	
  
adjacent	
  normal	
  comparison. 

 
 

Adjacent normal tissue is not a perfect control to use in finding tumor specific splicing changes 
particularly in epithelial cancers because it is likely to be a heterogeneous mix of tissue and may 
display field effects.  The identified differential splicing is likely to contain both tissue specific 
splicing differences and tumor specific splicing differences.   Some confidence that many of 
these splicing events are tumor specific is provided by the prevalence of literature association to 
cancer.  The structural nature of many of the identified splicing events may relate to the focus of 
this study on muscle invasive bladder cancer requiring changes in cell adhesion and mobility. 
  

Gene	
  
Symbol

Splice	
  
Event	
  
Type Exons dPSI p-­‐value q_value Gene	
  Function

ABI1 ES 5 -­‐0.25 3.80E-­‐05 0.0081
Abelson-­‐interactor	
  adaptor	
  protein.	
  Regulate	
  actin	
  
polymerization	
  and	
  cytoskeletal	
  remodeling.

ARHGAP6 AP 1 -­‐0.26 1.84E-­‐05 0.0056
GTPase	
  activator.	
  Regulates	
  signaling	
  with	
  actin	
  
cytoskeleton.	
  	
  Role	
  in	
  cell 	
  morphology.

CALD1 ES 8.3:9 -­‐0.70 1.16E-­‐09 1.00E-­‐04
calmodulin-­‐	
  and	
  actin-­‐binding	
  protein	
  that	
  regulates	
  
muscle	
  contraction

FBLN1 AT 22 -­‐0.22 3.77E-­‐05 0.00815
Role	
  in	
  cell 	
  adhesion	
  and	
  migration	
  along	
  protein	
  fibers	
  
within	
  the	
  extracellular	
  matrix

FBLN2 ES 11 -­‐0.56 1.89E-­‐07 5.00E-­‐04
Extracellular	
  matrix	
  protein.	
  Binds	
  various	
  extracellular	
  
l igands	
  and	
  calcium

FBLN5 AP 2 -­‐0.26 4.19E-­‐06 0.00235
Extracellular	
  matrix	
  protein.	
  Promotes	
  adhesion.	
  Possible	
  
role	
  in	
  vascular	
  development	
  and	
  remodeling.

FLNA ES 30 0.48 5.70E-­‐09 1.00E-­‐04
Aactin-­‐binding	
  protein	
  that	
  crosslinks	
  actin	
  fi laments	
  
and	
  links	
  actin	
  fi laments	
  to	
  membrane	
  glycoproteins.

FN1 ES 40.2 0.21 3.36E-­‐06 0.0023
Fibronectin,	
  a	
  glycoprotein	
  involved	
  in	
  cell 	
  adhesion	
  and	
  
migration.

GNE RI 13.2 -­‐0.47 1.67E-­‐06 0.00145
Regulates	
  the	
  biosynthesis	
  of	
  N-­‐acetylneuraminic	
  acid	
  
(NeuAc)	
  involved	
  in	
  cell 	
  adhesion.

INF2 ES 22 0.20 9.97E-­‐06 0.00415
Formin	
  proteins	
  -­‐	
  may	
  function	
  in	
  polymerization	
  and	
  
depolymerization	
  of	
  actin	
  fi laments.

MLTK AT 14 -­‐0.32 2.13E-­‐07 5.00E-­‐04
Component	
  of	
  a	
  protein	
  kinase	
  signal	
  transduction	
  
cascade.	
  Can	
  induce	
  disruption	
  of	
  actin	
  stress	
  fibers.

PPP1R12A ES 26 -­‐0.58 5.15E-­‐06 0.0027
myosin-­‐binding	
  subunit	
  of	
  myosin	
  phosphatase.	
  
Regulates	
  the	
  interaction	
  of	
  actin	
  and	
  myosin.

SVIL ES 21 -­‐0.65 8.53E-­‐08 2.50E-­‐04
Tightly	
  associated	
  with	
  both	
  actin	
  fi laments	
  and	
  plasma	
  
membranes.

TAGLN RI 1.2 0.20 5.28E-­‐05 0.0095
Actin	
  cross-­‐linking/gelling	
  protein	
  found	
  in	
  fibroblasts	
  
and	
  smooth	
  muscle.

TPM1 AP 1 -­‐0.61 2.34E-­‐07 4.50E-­‐04
Tropomyosin.	
  Actin-­‐binding	
  proteins	
  involved	
  in	
  
contractile	
  systems	
  and	
  cytoskeleton.

VCL ES 19 -­‐0.58 9.22E-­‐07 9.50E-­‐04
Cytoskeletal	
  protein	
  associated	
  with	
  cell-­‐cell 	
  and	
  cell-­‐
matrix	
  junctions.	
  Anchors	
  F-­‐actin	
  to	
  the	
  membrane.
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PKM 
An important alternative splicing event in observed in the development of tumors is the shift 
from the PKM1 to the PKM2 isoform of pyruvate kinase M.  The PKM2 isoform induces aerobic 
glycolysis (Warburg effect) which produces less energy than oxidative phosphorylation but 
provides advantages for proliferating cells.  The SpliceSeq isoform analysis of all BLCA 
RNASeq samples showed an average expression ratio of 3% PKM1 to 97% PKM2.  In the 
samples with matched adjacent normal, the tumor samples showed a nearly twofold increase of 
PKM expression but all of the increased expression was the PKM2 isoform while PKM1 
expression remained constant or decreased.  PKM2 is expressed in normal tissue at varying 
levels depending on tissue type.  The BLCA adjacent normal tissue showed an average ratio of 
24% PKM1 to 76% PMK2.  In normal vs. pure tumor group analysis, the PKM mutually 
exclusive exon event showed a dPSI of 18%, p_value of < .003 and q_value of < .03. 
 
CD44 
The transmembrane CD44 protein has a large set of variable exons in the center of its transcript 
that are expressed in complex combinations in normal tissue.  CD44 has many roles but a 
primary role is cell adhesion and altered splicing of CD44 has been strongly associated with 
metastasis.  For example, inducing expression of the variable exons v6-7 in a parental pancreatic 
carcinoma cell line was sufficient to enable the cells to become metastatic.  In the BLCA 
samples, 5 of 16 samples with matched adjacent normal showed very significant increase in 
expression of variable exons v2-6  (SI 6.2) and increase to a lesser degree of v1 (SI 3.0).  Two 
other samples showed a modest increase in exons v7-9.  The remaining samples showed similar 
expression patterns for the variable exons in tumor compared to adjacent normal. 

Figure	
  11.1:	
  SpliceSeq	
  compartive	
  splicing	
  analysis	
  of	
  CD44	
  in	
  TCGA_BL_A13J	
  
showing	
  dramatically	
  increased	
  expression	
  of	
  variable	
  exons	
  v2-­‐9	
  in	
  tumor	
  vs.	
  
adjacent	
  normal	
  tissue.	
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Table	
  11.1.3:	
  CD44	
  Definition	
  of	
  variable	
  exons.	
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S12:	
  Analysis	
  of	
  APOBEC	
  Mutagenesis	
  

Figure	
  S12.1	
  Expression	
  analysis	
  of	
  APOBEC	
  enzymes	
  
	
  

	
  

Top panel. mRNA expression levels of APOBEC3B in 130 BLCA samples are mostly higher 
than the median level of APOBEC3B expression in 16 matched normal samples available in 
TCGA.  Other APOBECs in tumor samples are expressed at the levels comparable with normal 
tissue samples.  APOBEC expression in tumors was compared to expression in matched normal 
by Mann-Whitney.  
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Bottom panel.  Median APOBEC3B mRNA expression levels in BLCA TCGA samples is 
higher than in BRCA samples analyzed in1	
  based on comparison by Mann-Whitney.  

 

Figure	
  S12.2	
  APOBEC	
  mutagenesis	
  pattern	
  in	
  bladder	
  cancer	
  exomes.	
  

 

Note:  Here and below the term APOBEC without the gene-designating suffix is used to indicate 
a subclass of APOBECs with TC (mutated nucleotide underlined) specificity.  This specificity is 
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different from Activation-Induced Cytosine Deaminase (AID) (WRC, R – stands for either A or 
G) or from APOBEC3G (CC) 

a. Top panel. APOBEC mutagenesis pattern in mutation clusters.  APOBEC cytidine 
deaminases display strong preference to ssDNA over dsDNA, therefore they tend to cause 
clusters of mutations in positions of ssDNA accidentally formed at double-strand breaks (DSBs) 
or at uncoupled replication forks2.  Since only one of two DNA strands is present in ssDNA, 
several cytidine deamination events occur in the same DNA strand and thus mutations within a 
cluster are strand-coordinated (i.e., mutations within a single cluster occur only in cytosines or 
only in guanines).  A high excess of C- or G-coordinated clusters over A- or T-coordinated 
clusters agrees with an APOBEC mutagenesis pattern. 

Middle panel. Mutation clusters were identified and enrichment of the APOBEC 
mutation signature was calculated as in3 assuming that an exome contains approximately 1% of 
the mutations in a whole-genome.  In agreement with APOBEC mutagenesis, mutation events in 
C- and G-coordinated clusters are highly enriched with the APOBEC mutation motif TCW and 
are depleted for other known C-containing motifs targeted by mutagenic factors (W is A or T, R 
is A or G, Y is T or C).  (***Bonferroni-corrected q value < 0.0001, as determined by a one-
tailed Fisher’s exact test comparing the ratio of the number of cytosine mutations at a specified 
motif and the number of cytosine mutations not in the motif to the analogous ratio for all 
cytosines within a sample fraction of the genome. Complementary DNA sequences and 
mutations are included.) 

Bottom panel. The major pathway of mutagenesis caused by cytidine deamination occurs 
via uracil-DNA-glycosylase generation of abasic sites, followed by error-prone trans-lesion 
synthesis placing either A or C across from the lesion.  This results in approximately equal 
numbers of CàT and CàG changes with very few CàA mutations2,4. This pattern is clearly 
seen in TCW motifs of mutation clusters. 

 

b. High presence of the APOBEC mutagenesis pattern in the vast majority of BLCA 
samples.  121 out of 130 samples show statistically significant (q<0.05 after FDR-correction) 
enrichment with the APOBEC mutagenesis pattern (pie chart), with fold enrichment reaching 
4.5x over expected for random mutagenesis at cytosines (left graph). Fold enrichment is 
calculated as the frequency mutated cytosines involve CàT and CàG changes at the TCW 
motif divided by the frequency cytosine bases occur in the DNA sequence TCW.  
Complementary DNA sequences and mutations are included.  Up to 64% of all exome mutations 
can carry the APOBEC signature with up to 955 APOBEC mutations in a single exome (right 
graph). 
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c. The value of fold enrichment with the APOBEC mutation pattern highly correlates with 
the mutation load caused by this type of mutagenesis, which further supports genome-wide 
mutagenesis by APOBEC (p<0.0001 by non-parametric Spearman Correlation). 
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S13	
  Batch	
  Effects	
  

Text	
  S13.1:	
  Batch	
  Effects	
  	
  
 
We used hierarchical clustering and Principal Components Analysis (PCA) to assess batch 
effects in the bladder cancer data sets. Four different data sets were analyzed: miRNA 
sequencing (Illumina HiSeq), DNA methylation (Infinium HM450 microarray), mRNA 
sequencing (Illumina HiSeq), and SNPs (GW SNP 6). All of the data sets were at TCGA level 3, 
since that’s the level on which most of the analyses in the paper are based. We assessed batch 
effects with respect to two variables; batch ID and Tissue Source Site (TSS). Detailed results and 
batch effects analysis of other TCGA data sets can be found at: 
http://bioinformatics.mdanderson.org/tcgabatcheffects  
 
For hierarchical clustering, we used the average linkage algorithm with 1 minus the Pearson 
correlation coefficient as the dissimilarity measure. We clustered the samples and then annotated 
them with colored bars at the bottom. Each color corresponded to a batch ID or a TSS. For PCA, 
we plotted the first four principal components, but only plots of the first two components are 
shown here. To make it easier to assess batch effects, we enhanced the traditional PCA plot with 
centroids. Points representing samples with the same batch ID (or TSS) were connected to the 
batch centroid by lines. The centroids were computed by taking the mean across all samples in 
the batch. That procedure produced a visual representation of the relationships among batch 
centroids in relation to the scatter within batches. The results for the four data sets follow. 
 

miRNA (RNA-seq Illumina HiSeq) 

Figures 1-3 show clustering and PCA plots for miRNA seq data. miRNAs with zero values were 
removed and the read counts were log2-transformed before generating the figures. The figures 
show a small batch effect by the tissue source site ILSBio. However, the magnitude of batch 
effects wasn’t too great, so we didn’t think that it warranted batch effects correction for the type 
of analyses done in this paper. The trade off with batch effects correction algorithms is the 
possibility of losing important biological variation in the data, along with the technical variation. 
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Figure	
  S13.1.	
  Hierarchical	
  clustering	
  for	
  miRNA	
  expression	
  from	
  miRNA-­‐seq	
  
data	
  
 

 

 

Legends 

 

     

 

Figure	
  S13.2.	
  PCA:	
  First	
  two	
  principal	
  components	
  for	
  miRNA	
  expression	
  from	
  
miRNA-­‐seq	
  data	
  with	
  samples	
  connected	
  by	
  centroids	
  according	
  to	
  batch	
  ID	
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Figure	
  S13.3.	
  PCA:	
  First	
  two	
  principal	
  components	
  for	
  miRNA	
  expression	
  from	
  
miRNA-­‐seq	
  data,	
  with	
  samples	
  connected	
  by	
  TSS-­‐wise	
  centroids.	
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DNA	
  Methylation	
  (Infinium	
  HM450	
  microarray)	
  
 
Figures 4-6 show clustering and PCA plots for the Infinium DNA methylation platform. None of 
the batches or tissue source sites stood apart from the others, indicating no serious batch effects 
were present. 
 

Figure	
  S13.4.	
  Hierarchical	
  clustering	
  plot	
  for	
  DNA	
  methylation	
  data.	
  
 

 

 

 

.  

 

Legends  
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Figure	
  S13.5.	
  PCA	
  for	
  DNA	
  methylation,	
  with	
  samples	
  connected	
  by	
  centroids	
  
according	
  to	
  batch	
  ID.	
  
	
  

 

 

	
  

Figure	
  S13.6.	
  PCA	
  for	
  DNA	
  methylation,	
  with	
  samples	
  connected	
  by	
  centroids	
  
according	
  to	
  TSS	
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RNASeqV2 (RNA-Seq Illumina HiSeq) 

Figures 7-9 show clustering and PCA plots for the RNA-seq platform. Genes with zero values 
were removed and the values were log2-transformed before generating the figures. Once again, 
the TSS ILSBio showed small batch effects, but not enough to warrant batch effects correction 
for the type of analyses done in this paper. 
 

	
  

Figure	
  	
  S13.7	
  Hierarchial	
  clustering	
  for	
  mRNA	
  expression	
  from	
  RNA-­‐seq	
  data	
  
 

 

	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  

 

Figure	
  	
  S13.8	
  PCA:	
  First	
  two	
  principal	
  components	
  for	
  RNA-­‐seq	
  with	
  samples	
  
connected	
  	
  by	
  centroids	
  	
  according	
  to	
  batch	
  ID	
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Figure	
  S13.9.	
  PCA:	
  First	
  two	
  principal	
  components	
  for	
  RNA-­‐seq,	
  with	
  samples	
  
connected	
  by	
  centroids	
  according	
  to	
  TSS	
  
 

 

 

 

 

 

 

 

 

 

 

 

SNP (SNP 6) 

Figures 10-12 show clustering and PCA plots for the Genome Wide SNP 6 platform. Segment 
values were mapped to gene values for the analysis using Hg19. Batch 235 stood out from the 
rest, because samples in that batch had very few copy number aberrations. Consequently, we left 
those samples in the dataset, considering them to reflect actual biology, rather than batch effects. 
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Figure	
  S13.10	
  Hierarchical	
  clustering	
  for	
  SNP6	
  data	
  

 

 

Legends 

 

  

 

 

	
  

Figure	
  S13.11.	
  PCA:	
  First	
  two	
  principal	
  components	
  for	
  SNP6,	
  with	
  samples	
  
connected	
  by	
  centroids	
  according	
  to	
  batch	
  ID	
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Figure	
  	
  S13.12.	
  PCA:	
  First	
  two	
  principal	
  components	
  for	
  SNP6,	
  with	
  samples	
  
connected	
  by	
  centroids	
  according	
  to	
  TSS	
  
	
  

	
  

	
  

 

 
 
 
 
 
 
 
 
 
 
 
 
Conclusions 
 
Batch effects were analyzed in four different data sets. miRNA and mRNA data showed a small 
batch effect in samples from the tissue source site ILSBio. However, the batch effects weren’t 
considered strong enough to warrant algorithmic batch effects correction, since that often 
removes useful biology along with the batch effects. In SNP 6 data, batch 235 stood out from the 
rest because the samples in that batch had little copy number variation. That was thought to 
reflect real biology rather than batch effects, so no correction was applied. DNA methylation 
data didn’t show any major batch effects. 
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