Supplementary Methods # Computational design information: Rosetta command lines and input files ``` Fold From Loops ``` ``` fold_from_loops.linuxiccrelease -database minirosetta_database -s target_topology.pdb -loops:loop_file input.loop -loops:frag_sizes 9 3 1 -in:file:frag9 aa*****09_05.200_v1_3 -in:file:frag3 aa*****03_05.200_v1_3 -out:nstruct int_number_of_designs -out:file:silent - fold_from_loops:swap_loops mota_loop.pdb -fold_from_loops:add_relax_cycles 2 -abinitio:increase_cycles 10 -mute all -in:file:psipred_ss2 *****.psipred_ss2 -fold_from_loops:ca_rmsd_cutoff 5 -out:file:silent_struct_type binary -fold_from_loops:native_ca_cst -fold_from_loops:ca_csts_dev 3.0 -fold_from_loops:res_design_bs 67 70 74 80 84 -fold_from_loops:loop_mov_nterm 2 ``` #### Loop File: #LOOP start end cutpoint skip-rate extend LOOP 65 86 0 0.0 X -fold from loops:loop mov cterm 2 #### Fixed-backbone design fixbb.linuxiccrelease -database minirosetta_database -s input_structure -nstruct 50 -resfile resfile -ex1 - ex2 -packing:extrachi cutoff 0 -pdb gz -linmem ig 10 ### Resfile (used for resurfacing): **NATRO** start 1 A PIKAA G 2 A PIKAA S 4 A PIKAA S 5 A PIKAA D 7 A POLAR 8 A PIKAA K 9 A PIKAA D 11 A PIKAA E 13 A PIKAA R 15 A PIKAA D 16 A PIKAA K 20 A PIKAA A 22 A PIKAA K 23 A PIKAA N 24 A PIKAA K 26 A PIKAA D 27 A PIKAA K 29 A PIKAA K 19 A PIKAA E - 31 A PIKAA A 33 A PIKAA R - 34 A PIKAA K 39 A PIKAA E - 40 A PIKAA E - 41 A PIKAA R - 43 A PIKAA K 44 A PIKAA D - 47 A PIKAA K - 50 A PIKAA R - 52 A PIKAA E - 54 A PIKAA E - 55 A PIKAA Q - 57 A PIKAA R - 59 A PIKAA A - 61 A PIKAA R - 62 A PIKAA N - 70 A PIKAA K - 87 A POLAR 90 A PIKAA K - 92 A POLAR - 93 A PIKAA A - 97 A PIKAA K - 98 A PIKAA K - 100 A PIKAA E - 101 A PIKAA A 104 A PIKAA A - 105 A PIKAA D - 107 A PIKAA E - 106 A PIKAA A - 111 A PIKAA T - 112 A PIKAA Q #### Full-atom relaxation relax.linuxiccrelease -database minirosetta_database -s input.pdb -in:file:fullatom -in:ignore_unrecognized_res -out:nstruct 5 -out:file:silent_silent_output -in:file:native input.pdb - out:file:silent_struct_type binary -out:file:fullatom -mute all -ex1 -ex2 -packing:extrachi cutoff 0 # **Experimental Methods** # Crystallography FFL 005 Crystals of FFL_005 purified by size exclusion chromatography were grown by the hanging-drop vapor-diffusion method at 4°C. The protein solution, at a concentration of 7 mg/ml, was mixed 1:1 with a reservoir solution of 0.2 M ammonium citrate tribasic (pH = 6.5) and 22% w/w PEG 3350. Diffraction-quality crystals grew in approximately one week and were cryopreserved in mother liquor consisting of reservoir solution plus 15% v/v glycerol. Diffraction data were collected on beamline 5.0.1 at the Advanced Light Source (Lawrence Berkeley National Laboratory, Berkeley, CA) and were reduced with HKL-2000 ¹. Initial phase information was determined by molecular replacement, using the FFL_005 computational model structure with residues 34-39 and 78-89 deleted as the search model, with the program PHASER ² as implemented in the CCP4i program suite ³. Initial solutions were refined as rigid bodies with REFMAC ⁴, yielding initial crystallographic R-values (R_{cryst} = 53.3%, R_{free} = 54.3%). Phases were improved by subsequent rounds of model building and refinement using COOT ⁵ and REFMAC ⁴. Structure validation was performed through the MolProbity ⁶ (overall score: 100th percentile) and PDB ADIT servers ⁷. Crystallographic statistics are reported in Supplementary Table 6. ### FFL 001+Motavizumab complex Fab/scaffold complexes were isolated by size exclusion chromatography in PBS, concentrated to 8.5 mg/ml and crystallized by multiple rounds of macro-seeding, with seeds isolated from crushed intergrown crystals grown by vapor diffusion at room temperature over well solutions of 100 mM Li₂SO₄, 100 mM phosphate-citrate (pH = 4.2), 2% v/v glycerol and 25% w/w PEG 1000. Diffraction-quality crystals were grown by vapor diffusion by seeding into 2 μ l drops of 2.5 to 5 mg/ml protein solution mixed with 2 μ l of a well solution consisting of 100 mM Li₂SO₄, 40 mM phosphate-citrate (pH = 4.2), 2% v/v glycerol and 18 to 23% w/w PEG 1000. Crystals were cryopreserved in 100 mM Li₂SO₄, 40 mM phosphate-citrate (pH = 4.2), 10% v/v glycerol and 30% w/w PEG 1000. Diffraction data were collected on beamline 5.0.1 at the Advanced Light Source (Lawrence Berkeley National Laboratory, Berkeley, CA) and were reduced with HKL-2000 ¹. Initial phase information was determined by molecular replacement, using the 3QWO.pdb ⁸ and 3LHP.pdb ⁹ structures as search models for the Fab and scaffold, respectively, with the program PHASER ² as implemented in the CCP4i program suite ³. Initial solutions were refined as rigid bodies with REFMAC ⁴, yielding reasonable initial crystallographic R-values ($R_{cryst} = 33.7\%$, $R_{free} = 40.4\%$). Iterative rounds of alternating positional refinement and model building, using the programs REFMAC ⁴ and COOT ⁵, including placing ordered solvent molecules and the ordered portion of a single PEG molecule co-crystallized with the complex, were followed by a final round of TLS refinement ¹⁰. Residues or side-chains that did not exhibit $2F_{obs}$ - F_{calc} electron density when contoured at 0.7σ were removed or truncated to the C β atom. Structure validation was performed using PROCHECK ¹¹ and MolProbity ⁶ (overall score: 99^{th} percentile). Crystallographic statistics are reported in Supplementary Table 6. ### FFL 001+31-HG7 complex Fab/scaffold complexes were isolated by size exclusion chromatography in HEPES buffered saline, concentrated to 8.1 mg/ml and screened for crystallizability at room temperature by vapor diffusion in 0.2 µl sitting drops (1:1 protein solution: well solution). Initial crystals were observed in Qiagen's JCSG+ condition #43 (0.2 M Li₂SO₄, 0.1 M Tris (pH = 8.5), 40% w/w PEG 400). Optimization in microliter-scale hanging drops yielded 100 to 200 µm crystals which grew within three days over a well solution of 0.24 M Li₂SO₄, 0.1 M Tris (pH = 8.8), 37.5% w/w PEG 400. Diffraction data were collected on beamline 8.2.2 at the Advanced Light Source (Lawrence Berkeley National Laboratory, Berkeley, CA) and were reduced with d*TREK ¹²; poor spot shape was accommodated by the use of a 30x30 µm collimator setting. Initial phase information was determined by molecular replacement with the program PHASER ² as implemented in the CCP4i program suite ³, using the FFL 001 structure and a Motavizumab-aligned composite Fab model with scaffold epitope and Fab CDR residues excised as sequentially placed search models. The composite Fab model used the heavy chains of PDB entries 3Q6G and 3QZH for N and C terminal domains, and the light chains of entries 3EO9 and 3SOB; Fab subdomains were selected on the basis of interdomain sequence identity from high resolution PDB entries. Initial solutions were refined as rigid bodies with REFMAC5⁴, yielding reasonable initial crystallographic R-values for this resolution (R_{cryst} = 38.3%, R_{free} = 38.5%). Fourier syntheses calculated with the initial rigid-body refined phases showed continuous electron density features consistent with the CDR and epitope loops excluded from the search models. These loops were modeled by fitting substructures from locally homologous Fab structures and the epitope-bearing loop from the FFL 001 structure in the higher-resolution Motavizumab complex into these density features (Supplementary Fig. 24), allowing the overall docking of Fab onto scaffold to be determined. However, subsequent attempts to refine this model failed to resolve geometric and steric issues introduced at the interfaces between the MR model and placed loops. Applicable crystallographic statistics are reported in Supplementary Table 6. ### FFL 001+17HD9 complex Fab/scaffold complexes were isolated by size exclusion chromatography in HEPES buffered saline, concentrated to 9.5 mg/ml and screened for crystallizability at room temperature by vapor diffusion in 0.2 mL sitting drops (1:1 protein solution; well solution). Initial crystals were observed after approximately three months in the Oiagen PEGs II screen condition #54 (0.2M (NH₄)₂SO₄, 0.1M sodium acetate (pH = 5.6), and 12% w/w PEG-4000). Subsequent optimization yielded diffractionquality crystals which grew in approximately 24 hours by vapor diffusion (2 uL total drop volume, 1 mL total well volume) with the concentrated stock used for the initial crystals mixed with an equal volume of $0.2M (NH_4)_2SO_4$, 0.1M sodium acetate (pH = 5.6), and 14% w/w PEG-4000. Diffraction data were collected on beamline 5.0.2 at the Advanced Light Source (Lawrence Berkeley National Laboratory, Berkeley, CA) and were reduced with d*TREK¹²; subsequent molecular replacement was performed using the same model as for 31HG7, with the scaffold failing to generate a successful placement. Iterative rounds of alternating positional refinement and model building, using the programs REFMAC5⁴ and COOT⁵, were conducted using non-crystallographic symmetry restraints between the pairs of complexes related by near-perfect dyad axes; TLS refinement 10 and the placement of solvent molecules followed the placement of all protein residues. Structure validation was performed using MolProbity⁶ (overall score: 96th percentile). Crystallographic statistics are reported in Supplementary Table 6. ## Microneutralization assay The RSV microneutralization assay was performed in 96-well microplates using HEp-2 cells and the RSV A2 strain. Cells were seeded at a concentration of 5x10³ cells/well in 100 μL/well of EMEM (Quality Biological, Inc., Gaithersburg, MD, USA) supplemented with 10% FBS, 1% Pen/Strep, 1% L-glutamine and incubated overnight at 37°C/5%CO₂. Sera derived from immunized animals were serially diluted in 1xPBS/5% FBS and mixed with equal volume of virus diluted in 1xPBS/5% FBS. The dilution amount of virus was selected to yield 80-120 syncytia/well in the absence of neutralizing serum. The virus/serum mix was incubated for 2 hours at 37°C/5%CO₂. Medium was removed from the seeded cells, 25 μL/well of the virus/serum mixture was added, in triplicate, to the cells and incubated for 2 hours at 37°C/5%CO₂. The virus/serum mix was removed from the seeded cells and 100 μL/well of 0.75% methylcellulose in EMEM supplemented with 10% FBS, 1% Pen/Strep, 1% L-glutamine was added. The plates were incubated for 48 hours (+/-8 hours) at 37°C/5%CO₂. To detect and enumerate infected cells, medium was removed, cells were fixed with 100 µL/well of 10% buffered formalin (Sigma-Aldrich, St. Louis, MO, USA) for 1.5 hours at room temperature and permeabilized with 100 μL/well of 1xPBS/2.5% FBS, 0.5% saponin, 0.1% sodium azide for 1.5 hours at room temperature. The infected cells were incubated with a mouse monoclonal antibody to RSV F (Abcam, Inc., Cambridge, MA, USA) for 1 hour at room temperature. Bound antibody was detected by incubating with peroxidase-labeled goat anti-mouse IgG (Vector, Burlingame, CA, USA) for 1 hour at room temperature followed by staining with True Blue Peroxidase Substrate (KPL, Gaithersburg, MD, USA). The next day, blue foci (represent infected cells) were counted using a light microscope (Fisher Scientific, Hampton, NH, USA). The number of infected cells representing 50% reduction in the virus count was calculated for each plate on the basis of the average infected cell count in the diluent plus virus control wells. Fifty percent neutralization titer was defined as the serum dilution factor yielding 50% reduction in the virus count and was calculated by linear regression interpolation between the 2 dilutions with wells yielding average infected cell counts above and below the number of infected cells presenting 50% reduction in the virus count. The microneutralization assay was also used to measure neutralization activities of NHP D39 isolated monoclonal antibodies. The neutralizing activity of the antibodies was measured in pg/µL with titers being calculated by linear regression interpolation. #### References - Otwinowski, Z. & Minor, W. in *Meth. Enzymol.* Vol. 276 eds C.W. Carter Jr. & R.M. Sweet) 307-326 (Academic Press, 1997). - McCoy, A. J. et al. Phaser crystallographic software. *Journal of Applied Crystallography* **40**, 658-674 (2007). - Potterton, E., Briggs, P., Turkenburg, M. & Dodson, E. A graphical user interface to the CCP4 program suite. *Acta Crystallogr D Biol Crystallogr* **59**, 1131-1137 (2003). - ⁴ Murshudov, G. N., Vagin, A. A. & Dodson, E. J. Refinement of macromolecular structures by the maximum-likelihood method. *Acta Crystallogr D Biol Crystallogr* **53**, 240-255 (1997). - Emsley, P. & Cowtan, K. Coot: model-building tools for molecular graphics. *Acta Crystallogr D Biol Crystallogr* **60**, 2126-2132 (2004). - Davis, I. W. *et al.* MolProbity: all-atom contacts and structure validation for proteins and nucleic acids. *Nucleic Acids Res* **35**, W375-383 (2007). - Berman, H. M. et al. The Protein Data Bank. Nucleic Acids Res 28, 235-242 (2000). - McLellan, J. S. *et al.* Design and characterization of epitope-scaffold immunogens that present the motavizumab epitope from respiratory syncytial virus. *J Mol Biol* **409**, 853-866 (2011). - ⁹ Correia, B. E. *et al.* Computational design of epitope-scaffolds allows induction of antibodies specific for a poorly immunogenic HIV vaccine epitope. *Structure* **18**, 1116-1126 (2010). - Winn, M. D., Isupov, M. N. & Murshudov, G. N. Use of TLS parameters to model anisotropic displacements in macromolecular refinement. *Acta Crystallogr D Biol Crystallogr* **57**, 122-133 (2001). - Laskowski, R. A., MacArthur, M. W., Moss, D. S. & Thornton, J. M. PROCHECK: a program to check the stereochemical quality of protein structures. *Journal of Applied Crystallography* **26**, 283-291 (1993). - Pflugrath, J. W. The finer things in X-ray diffraction data collection. *Acta Crystallogr D Biol Crystallogr* **55**, 1718-1725 (1999). Supplementary Table 1. ELISA endpoint titers for NHP sera binding to whole RSV lysate (white columns) and recombinant RSV F protein (gray columns). | W32 | 2.5E+4 | 2644 | 1.0E+4 | 8295 | 1.2E+4 | 9698 | 2.9E+4 | 3.0E+4 | 0809 | 9429 | 1.8E+4 | 1.2E+4 | 1.4E+4 | 2.7E+4 | 8.0E+4 | 1.1E+4 | 3.3E+4
3.2E+4 | 1.9E+4 | 5.1E+4 | 6428 | 2.2E+4 | 2.5E+4 | 1.9E+4 | |--------|--------|--------|--------|--------|--------|--------|--------|-----------|-------------|--------|--------|--------|--------|--------|--------|--------|------------------|--------|--------|--------|--------|--------|--------| | | 400 | 0 | 0 | 0 | 100 | 200 | 400 | 160 | 0 | 0 | 200 | 757 | 0 | 0 | 100 | 0 | 500 | 100 | 200 | 0 | 0 | 22 | 86 | | | - | • | 1 | -1 | | | - | 1 | • | -1 | | | 1 | • | • | 1 | - 1 | - | • | • | 1 | - 1 | | | W28 | 800 | 0 | 0 | 100 | 225 | 386 | 400 | 6400 | 100 | 100 | 1750 | 3103 | 0 | 0 | 800 | 0 | 1750
3103 | 200 | 400 | 0 | 0 | 150 | 192 | | | 1 | 1 | 1 | -1 | | | - | - 1 | • | -1 | | | 1 | 1 | 1 | 1 | - 1 | 1 | 1 | 1 | 1 | | | | W24 | 800 | 0 | 200 | 200 | 300 | 346 | 800 | 1280
0 | 400 | 200 | 3550 | 6172 | 0 | 100 | 400 | 0 | 3550
6172 | 200 | 400 | 0 | 0 | 150 | 192 | | W20 | 8.2E+4 | 1.7E+4 | 6.3E+4 | 6.8E+4 | 5.7+E4 | 2.8E+4 | 2.1E+5 | 1.5E+5 | 8.6E+4 | 7.2E+4 | 1.3E+5 | 6.4E+5 | 1.2E+5 | 1.3E+5 | 2.9E+5 | 1.2E+5 | 1.7E+5
8.6E+4 | 1.4E+5 | 2.2E+5 | 2.4E+4 | 7.3E+4 | 1.1E+5 | 5.5E+5 | | * | 3200 | 200 | 400 | 200 | 100 | 1470 | 3200 | 12800 | 400 | 800 | 4300 | 2800 | 0 | 200 | 1600 | 200 | 500
739 | 800 | 800 | 0 | 100 | 425 | 435 | | _ | 4.6E+4 | 6057 | 2.1E+4 | 2.4E+4 | 2.4E+4 | I.7E+4 | 4.8E+4 | 5.3E+4 | 5.9E+4 | 2.8E+4 | 4.7E+4 | .3E+4 | 2.9E+4 | 6.8E+4 | 9.5E+4 | 2.8E+4 | 5.5E+4
3.2E+4 | 2.7E+4 | 9.6E+4 | 6223 | 2.8E+4 | 4.0E+4 | 3.9E+4 | | W18 | 7 0091 | 800 | 200 | 200 | | | 3200 4 | 3200 | 400 | 400 | - | 1617 1 | 200 | 200 | 400 | 0 | 200 | 800 | 1600 | 0 | 0 | 7 009 | | | | | | | | | | | | | | Ì | , | | | | | | | • | | | | | | W16 | 7.5E+4 | 8131 | 2.5E+4 | 3.0E+4 | 3.4E+4 | 2.8E+4 | 6.3E+4 | 7.0E+4 | 5.6E+4 | 4.1E+4 | 57E+4 | 12E+4 | 6.1E+4 | 7.7E+4 | 1.2E+5 | 3.7E+4 | 7.3E+4
3.3E+4 | 6.3E+4 | 1.3E+5 | 7465 | 5.2E+4 | 6.4E+5 | 5.3E+4 | | | 3200 | 3200 | 200 | 200 | 1700 | 1732 | 1600 | 6400 | 400 | 800 | 2300 | 2778 | 0 | 400 | 1600 | 100 | 525
737 | 400 | 1600 | 0 | 200 | 220 | 719 | | W12 | 9.1E+4 | 1.1E+4 | 3.7E+4 | 7.3E+4 | 5.3E+4 | 3.6E+4 | 5.6E+4 | 9.4E+4 | 6.2E+4 | 6.4E+4 | 6.9E+4 | 1.7E+4 | 8.9E+4 | 1.0E+5 | 2.4E+5 | 1.3E+5 | 1.4E+5
7.2E+5 | 5.3E+4 | 2.0E+5 | 2.0E+4 | 6.0E+4 | 8.3E+4 | 8.1E+4 | | > | 1600 | 200 | 200 | 200 | 220 | 200 | 800 | 3200 | 400 | 400 | 1200 | 1347 | 0 | 100 | 400 | 0 | 125
189 | 400 | 800 | 0 | 0 | 300 | 383 | | W8 | 2.7E+4 | 1476 | 6927 | 1.5E+4 | 1.2E+4 | 1.1+4 | 1.3E+4 | 2.4E+4 | 2.7E+4 | 1.0E+4 | 1.9E+4 | 8180 | 2.9E+4 | 4.1E+4 | 8.2E+4 | 2.0E+4 | 4.3E+4
2.7E+4 | 3663 | 2.0E+4 | 5928 | 1617 | 7839 | 8394 | | | 800 | 0 | 100 | 100 | 250 | 370 | 400 | 800 | 200 | 100 | 374 | 310 | 0 | 0 | 100 | 0 | 25
50 | 0 | 200 | 0 | 0 | 20 | 100 | | W4 | 178 | 66 | 470 | 292 | 260 | 161 | 688 | 703 | 943 | 262 | 649 | 284 | 326 | 633 | 738 | 437 | 533 | 66 | 369 | 66 | 66 | 167 | 137 | | 5 | 200 | 0 | 200 | 0 | 100 | 116 | 200 | 100 | 100 | 0 | 100 | 82 | 0 | 0 | 0 | 0 | 0 | 100 | 400 | 0 | 0 | 125 | 189 | | W2 | 1 | 1 | 1 | - | | | 1 | 1 | 1 | -1 | | • | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | | | | > | 0 | 0 | 0 | 0 | • | > | 100 | 0 | 0 | 0 | 25 | 50 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | C | , | | WO | 160 | 66 | 66 | 66 | 4. | | 167 | 66 | 66 | 66 | 116 | 34 | 66 | 66 | 66 | 103 | 1.9 | 66 | 66 | 66 | 66 | 66 | | | a | 2 0 | 0 / | 2 0 | 2 0 | C | 0 | 4 0 | 0 | 0 | 4 | _ |) | 2 0 | 0 | 0 0 | 0 0 | 0 | 0 0 | 0 0 | 0 / | 7 0 | С |) | | Animal | C012 | D027 | D052 | D172 | | | C004 | D039 | D130 | D184 | | | D032 | D104 | D180 | D190 | | C010 | D030 | D087 | D227 | | | | Group | | 5 | 1 | | AVE | SD | | HBcAG- | - PFL - 000 | | AVE | SD | | בבו | C00 - | | AVE
SD | | 100 | 700 | | AVE | SD | Supplementary Table 2. RSV neutralization titers expressed as the serum dilution producing 50% neutralization, from a plaque reduction assay (white columns) or a microneutralization assay (gray columns). | 32 | - | | | ٠ | | | 1 | ı | | | | 1 | 1 | | 1 | | 1 | ı | | | | |--------|------|------|------------------|------|----------------|------|--------|---------|------|--------------|------|------|------|------|--------------|------|------|------------------|------|----------|--------| | W32 | 25 | 0 | 238 | 0 | 65.75
115.4 | 53 | 24 | 0 | 0 | 19.3 | 0 | 0 | 0 | 0 | 00 | 0 | 0 | 0 | 0 | 0 | 0 | | 8: | 237 | 127 | 161 | 25 | 137.5 | 839 | 1367 | 118 | 138 | 615.5 | 25 | 25 | 383 | 71 | 126
172.7 | 157 | 356 | 25 | 75 | 153.3 | 145.7 | | W28 | - | , | , | , | | | , | ı | , | | | , | , | , | , | | , | , | , | , | | | 0 | 801 | 302 | 296 | 25 | 326
323.57 | 2052 | 3289 | 342 | 260 | 1485.8 | 83 | 97 | 212 | 61 | 113.3 67.5 | 1235 | 699 | 25 | 25 | 488.5 | 582.95 | | W20 | 156 | 31 | 4 | 0 | 57.75
68.1 | 249 | 757 | 47 | 23 | 269
340 8 | 0 | 34 | 40 | 23 | 24.3
17.6 | 72 | 66 | 0 | 0 | 42.75 | 50.6 | | | - | • | | ı | ı | | 1 | • | ı | | | 1 | 1 | • | | 1 | 1 | 1 | ı | | | | W18 | 0 | 0 | 21 | 0 | 5.25 | 44 | 263 | 24 | 20 | 87.8 | 0 | 0 | 27 | 20 | 11.8 | 0 | 62 | 0 | 0 | 15.5 | 31 | | 9 | - | • | • | 1 | 1 | 1 | 1 | , | - | 1 | 1 | 1 | 1 | - | 1 | 1 | 1 | 1 | - | | | | W16 | 23 | 19 | 0 | 0 | 10.5 | 47 | 195 | 20 | 0 | 65.5 | 0 | 0 | 47 | 0 | 11.8 | 21 | 29 | 0 | 0 | 22 | 31.6 | | 12 | - | • | • | 1 | ı | • | 1 | | , | • | ı | 1 | 1 | | 1 | 1 | 1 | ı | , | | | | W12 | 0 | 24 | 0 | 0 | 9 27 | 48 | 772 | 0 | 23 | 210.8 | 0 | 0 | 26 | 23 | 12.3
14.2 | 22 | 176 | 0 | 0 | 58.3 | 83 | | ۸8 | 71 | 20 | 84 | 25 | 57.5
25.8 | 84 | 374 | 53 | 28 | 142.3 | 25 | 54 | 25 | 25 | 32.3
14.5 | 25 | 89 | 25 | 25 | 35.8 | 21.5 | | > | 0 | 0 | 0 | 0 | 0 | 0 | 61 | 0 | 0 | 15.3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | C |) | | W4 | ٠ | • | 1 | ٠ | • | 1 | • | ı | • | • | ı | • | • | • | 1 | ı | ı | 1 | • | • | • | | | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | C | | | W2 | - 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ٔ ۔ | | | | | ı | | | | | 1 | ı | | 1 | | | 1 | | | | 1 | 1 | | | • | | W0 | C | > | | Animal | C012 | D027 | D052 | D172 | | C004 | D039 | D130 | D184 | | D032 | D104 | D180 | D190 | | C010 | D030 | D087 | D227 | | | | Group | | 100 | -
-
-
- | | AVE
SD | | HBcAG- | FFL_001 | | AVE | 3 | | | | AVE
SD | | 100 | ,001
 -
 - | | AVE | SD | Supplementary Table 3. Solvent accessibility of epitope residues in the complexes of Mota+peptide (PDBid: 3ixt) and 17HD9+peptide (PDBid: 4N9G). Solvent accessible surface areas were computed using NACCESS. Accessibilities are presented as the percentage of total area (backbone+sidechain) of a given residue accessible to solvent. The residue burial is the percentage area buried by antibody binding, and was computed as: burial = unbound accessibility - bound accessibility. | 1 | ſ | 1 | Ī | | 1 | l | | l | | | | | | | | | l | | | | | | 1 | | | | | j | | l | l | l | | | | | |-------------------|------------------------------------|-------|------|------|------|------|------|------|------|------|------|------|------|------|-------|------|------|------|------|------|------|------|------|------|------|------|-------|------|------|------|------|------|------|------|------|-------| | | Residue
burial | | 0 | 0 | 6.7 | 0 | 0 | 17.9 | 28.2 | 0 | 0.1 | 9.79 | 65.5 | 11.7 | 34.7 | 7.9 | 32.3 | 87 | 28.7 | 0 | 19.9 | 12.3 | 0 | 0 | 15.1 | 0 | 0 | 0 | 0.8 | 0 | 0 | 0 | 0 | 0 | 0 | _ | | 17-HD9(chain ABC) | Unbound | | 50.9 | 37.3 | 71.5 | 58.5 | 43.9 | 26.7 | 53 | 54.4 | 5 | 9.79 | 73 | 40.5 | 95.8 | 37.2 | 58.9 | 87 | 8.69 | 43.6 | 19.9 | 26.4 | 50.9 | 39.5 | 22.8 | 61.8 | 40.1 | 15.4 | 44.5 | 54.9 | 74.2 | 21.8 | 52.9 | 68.5 | 81.6 | 85.7 | | 17-1 | Antibody
bound
accessibility | | 50.9 | 37.3 | 61.8 | 58.5 | 43.9 | 8.8 | 24.8 | 54.4 | 4.9 | 0 | 7.5 | 28.8 | 61.1 | 29.3 | 26.6 | 0 | 41.1 | 43.6 | 0 | 14.1 | 50.9 | 39.5 | 7.7 | 61.8 | 40.1 | 15.4 | 43.7 | 54.9 | 74.2 | 21.8 | 52.9 | 68.5 | 81.6 | 7 10 | | | Residue
burial | 0 | 0 | 0 | 3.4 | 0 | 0 | 18.4 | 19.7 | 0 | 0.5 | 75.9 | 69.4 | 1.3 | 36.8 | 10.1 | 28.2 | 85.2 | 30 | 0 | 18.9 | 36.7 | 0 | 0 | 21.5 | 0 | 0 | 0 | 6.2 | 0 | 0 | 0 | 0 | 0 | 0 | < | | 17-HD9(chain HLY) | Unbound | 104.3 | 32.6 | 45 | 54.1 | 50.7 | 52.9 | 27.2 | 44.6 | 55.4 | 6 | 92 | 81 | 40.6 | 100.5 | 32.4 | 49.6 | 85.2 | 63 | 46 | 18.9 | 76.3 | 69.5 | 33.2 | 24.8 | 53.7 | 61 | 11 | 41.8 | 54.4 | 76.5 | 17 | 51.5 | 71.1 | 82.8 | 6 24 | | | Antibody
bound
accessibility | 104.3 | 32.6 | 45 | 50.7 | 50.7 | 52.9 | 8.8 | 24.9 | 55.4 | 8.5 | 0.1 | 11.6 | 39.3 | 63.7 | 22.3 | 21.4 | 0 | 33 | 46 | 0 | 39.6 | 69.5 | 33.2 | 3.3 | 53.7 | 61 | 11 | 35.6 | 54.4 | 76.5 | 17 | 51.5 | 71.1 | 82.8 | 76.0 | | | RES | 62 | 63 | 64 | 65 | 99 | 29 | 89 | 69 | 20 | 71 | 72 | 73 | 74 | 75 | 9/ | 77 | 28 | 62 | 80 | 81 | 82 | 83 | 84 | 85 | 98 | 87 | 88 | 86 | 06 | 91 | 95 | 63 | 94 | 62 | 7 | | | AA | ASN | ARG | LEU | SER | CLU | LEU | LEU | SER | TAS | ILE | ASN | ASP | MET | PRO | ILE | THR | ASN | ASP | CLN | LYS | LYS | LEU | MET | SER | ASN | ASP | VAL | LEU | LYS | PHE | ALA | ALA | CTU | ALA | 11 17 | | l l | Residue
burial | | | 0 | 20.2 | 0 | 0 | 41.8 | 23.3 | 0 | 1.7 | 63.8 | 17.2 | 8.0 | 0 | 0 | 4.6 | 75.2 | 54.1 | 0 | 15.5 | 64.5 | 8.3 | 0 | 32.9 | 22.7 | 0 | | | | | | | | | | | muzi | Unbound
Accessibility | | | 86.7 | 84.7 | 65.8 | 20 | 50.6 | 49.6 | 61.8 | 12.7 | 68.5 | 84.2 | 34.8 | 9.76 | 30.3 | 59.2 | 82.4 | 77.7 | 44.9 | 24.2 | 65.7 | 66.4 | 42.8 | 46.4 | 76.4 | 106.6 | | | | | | | | | | | Motav | Antibody
bound
Accessibility | | | 86.7 | 64.5 | 65.8 | 20 | 8.8 | 26.3 | 61.8 | 11 | 4.7 | 29 | 34 | 9.76 | 30.3 | 54.6 | 7.2 | 23.6 | 44.9 | 8.7 | 1.2 | 58.1 | 42.8 | 13.5 | 53.7 | 106.6 | | | | | | | | | | | 11100 | RES | | | 254 | 255 | 256 | 257 | 258 | 528 | 260 | 261 | 797 | 263 | 264 | 265 | 997 | 267 | 897 | 697 | 270 | 271 | 272 | 273 | 274 | 275 | 276 | 277 | | | | | | | | | | | 200 | AA | | | ASN | SER | CLU | LEU | LEU | SER | LEU | ILE | ASN | ASP | MET | PRO | ILE | THR | ASN | ASP | CLN | TAS | LYS | LEU | MET | SER | ASN | ASN | | | | | | | | | | **Supplementary Table 4.** Pairs of residues making van der Waals contacts across the antibody-epitope interfaces in the Mota+peptide complex and the 17-HD9+peptide complexes. Atomic contacts were assessed using the contact application in CCP4. | Epitope Residue | Epitope Residue | Motavizumab | 17-HD9 | 17-HD9_ABC | |-----------------|-----------------|-------------|-------------|-------------| | (Mota+peptide) | (17HD9+peptide) | (chain HLP) | (chain HLY) | (chain ABC) | | SER255 | - | ALA32H | | | | LEU68 | LEU68 | | | MET99H | | SER69 | SER69 | | MET99H | | | ASN262 | ASN72 | ASP54H | TYR33H | TYR33H | | | | TRP53H | ILE97H | ILE97H | | | | | VAL98H | VAL98H | | | | | VAL100H | VAL100H | | | | | ARG100EH | ARG100EH | | | ASP73 | | TYR33H | TYR33H | | | | | TYR56H | TYR56H | | | | | ASN58H | | | | MET74 | | | TYR94L | | | ILE76 | | TYR94L | TYR94L | | | THR77 | | ASN92L | ASN92L | | | | | SER93L | SER93L | | ASN268 | ASN78 | GLY91L | TYR32L | TYR32L | | | | SER92L | HIS91L | HIS91L | | | | TYR94L | ASN92L | ASN92L | | | | PHE96L | PHE100AH | PHE100AH | | | | PHE100H | ARG100EH | ARG100EH | | ASP269 | ASP79 | GLY31L | SER30L | SER30L | | | | SER92L | | | | LYS272 | LYS82 | ASP50L | ASP100C | | | | | ILE97H | | | | | | PHE98H | | | **Supplementary Table 5.** Hydrogen bonds across the antibody-epitope interfaces in the Mota+peptide complex and the 17-HD9+peptide complexes. Hydrogen bonds were assessed using the angle application implemented in CCP4. Each hydrogen bond is given with the donor-acceptor distance and the donor-Hacceptor angle. NA indicates that the angle calculation could not be made due to missing atoms. | Epitope Residue
(Mota+peptide) | Epitope Residue
(17HD9+peptide) | Motavizumab
(chain HLP) | 17-HD9
(chain HLY) | 17-HD9_ABC
(chain ABC) | |-----------------------------------|------------------------------------|----------------------------|-----------------------|---------------------------| | ASN262-0 | ASN72-0 | LYS56H-NZ | <u> </u> | | | ASN262-U | ASN/2-0 | | TYR33H-OH | TYR33H-OH | | | | (2.60 A, NA) | (3.17,111.5) | (3.45,108.8) | | | | | ARG100EH-NH2 | ARG100EH-NH2 | | | | | (3.02,178.1) | (3.38,128.7) | | ASN262-ND2 | ASN72-ND2 | ASP54H-OD2 | VAL98H-O | VAL98H-0 | | | | (2.70,116.11) | (2.78,104.5) | (3.38,107.9) | | | | | ILE97H-O | ILE97H-O | | | | | (3.09,133.5) | (2.96,136.6) | | ASN262-0D1 | ASN72-OD1 | | ARG100EH-NE | | | | | | (2.75,142.3) | | | | ASP73-N | | TYR33H-OH | TYR33H-OH | | | | | (3.28,144.7) | (3.01,140.0) | | | ASP73-0 | | ASN58H-ND2 | ASN58H-ND2 | | | | | (2.73,NA) | (2.79,NA) | | | ASP73-OD1 | | TYR33H-OH | ASN52H-ND2 | | | | | (2.67,109.5) | (3.40,NA) | | | | | ASN52H-ND2 | (6.13) | | | | | (2.86,NA) | | | | ASP73-OD2 | | ASN52H-ND2 | | | | 1131 73 002 | | (3.57,NA) | | | | ASN78-N | | ASN92L-OD1 | ASN92L-OD1 | | | ASIN7 0-IN | | (2.88,132.6) | (2.80,134.7) | | | | | ASN92L-0 | ASN92L-0 | | | | | | | | ACNOCO NDO | ACNIZO NIDO | CLVO1LO | (2.81,134.4) | (3.22,115.1) | | ASN268-ND2 | ASN78-ND2 | GLY91L-0 | ARG100EH-0 | ARG100EH-0 | | | | (2.96,147.5) | (2.94,119.7) | (2.88,134.7) | | | | | HIS91L-0 | HIS91L-0 | | | | | (3.25,159.0) | (2.82,142.8) | | | ASN78-OD1 | | | HIS91L-O | | | | | | (3.59,149.9) | | | ASP79-N | | ASN92L-OD1 | ASN92L-OD1 | | | | | (3.21,156.0) | (3.08,151.3) | | ASP79-OD1 | | | SER30L-OG | | | | | | (2.57,128.6) | | | LYS81-NZ | | | TYR94L-OH | ARG100EH-NH1 | | | | | (3.02,123.2) | (3.48,130.1) | | | | | | TYR94L-OH | | | | | | (3.12,117.3) | | LYS272-NZ | LYS82-NZ | ASP50L-OD1 | TYR50L-0H | | | | | (2.82,133.9) | (3.15,119.4) | | | SER275-OG | | ILE97H-O | | | | | | (2.89,103.5) | | | | ASN276-ND2 | | | | | | | | | | | | ASN276-OD1 | | ` ' | | | | | | | | | | | | ILE97H-O | (3.15,119.4) | |