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Table S1 Factors forGHG emissions from fertilizer and pesticide production and 

transportation, and energy use for irrigation and soil tillage, derived from the footnoted 

reference(s) for each factor. 

Input unit 

GHG emissions 

(kg CO2eqper unit input) 

CO2 CH4 N2O Total 

N fertilizer production1 kg N 7.61 0.56 0.03 8.21 

P fertilizer production2 kg P2O5 0.71 0.02 0.00 0.73 

K fertilizer production2 kg K2O 0.48 0.02 0.00 0.50 

N fertilizer transportation3-7 kg N 0.08 0.00 0.00 0.09 

P fertilizer transportation3-7 kg P2O5 0.05 0.00 0.00 0.06 

K fertilizer transportation3-7 kg K2O 0.04 0.00 0.00 0.05 

Pesticides production and 

transportation8 
kg 18.28 0.80 0.05 19.12 

Electricity for irrigation4 kWh - - - 1.14 

Diesel fuel4-6 kg 3.38 0.01 0.36 3.75 
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Supplementary Discussion –Increasing yield and reducing N input 

 

How can weincrease crop yield significantly in the future? Which approaches will be 

available? Our results show that within our Integrated Soil-crop System Management (ISSM) 

(described in the main text)only relatively small increases in harvest index (HI) are 

possible;the average maximum HI for rice, wheat and maize are 0.54, 0.49 and 0.52, 

respectively.The large yield increases we were able to obtain from increasedbiomass in 

current cultivars (Extended Data Table 2). This results is in agreementwith previous reports by 

crop breeders and as well as agronomists9-12. 

Increasing cropbiomass requires designing crop canopiesto make maximum useof solar 

radiation and periods with favorable temperatures.However, the critical period for increasing 

biomass varies among the three crops. Our results show that high-yielding maize accumulates 

substantialbiomass after anthesis13but wheat biomass increasesmainly during shooting to 

anthesis14, while rice increases biomassboth from tillering to anthesis, and after anthesis15. 

These patterns require management measures thatvaryamong the three crops.  

For maize, besides increasing plant density to increase total biomass, it is important to 

designanappropriate combination of hybrid (growing degree day, GDD) and sowing date 

according to localresources of solar radiation and temperature, in order to lengthen the growth 

period after anthesis and therefore increase the accumulation of biomass after anthesis. For 

tiller crops such as rice and wheat, theappropriate combination of cultivar anddate and amount 

of sowing (wheat) or transplanting (rice) (depending on local solar and radiation and 

temperature) establishes afavorabledynamic structure of population and canopy; additionally, 

topdressing N fertilizer and irrigation (for irrigated wheat) during stem elongationis important 

to regulate crop population and canopy, and to increasethe biomass accumulation from 

shooting to anthesis, whilefor rice, topdressing N fertilizer during tilleringas well as headingis 

important to regulated crop population an canopy, and to increase the biomass accumulation 

from tillering to anthesis and after anthesis. 

Nitrogen applications that meet, but do not exceed, crop N requirements are essential for 

achieving maximum grainyield and minimizing environmental risks, including nitrate-N 

leaching and gaseous losses. We found that N requirement for per unit grain were quite 

different (lower) in high-yielding systems compared with current yield levels. For instance, 

the N requirement per 1 Mg grain yield (Nreq.) for maize and wheat are only 17.4 and 24.3 

kgN, respectively, under high yielding conditions - significantly lower (~20%) than N use 

atcurrent yield levels16,17.In addition, more N accumulated in plants in the middle-late 
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growing season in our study14. This observation differs from some earlier studies that N 

accumulation in major cereals mainly occurs in the pre-anthesis stage, and that grain yields 

are largely depend on the translocation of pre-anthesis assimilates and N 

uptake18-20.Ourobservations highlight the importance of N management in the middle-late 

growing season: the post-anthesis stage in maize, the post-elongation stage in wheat, the 

heading stage for rice. For ISSM, the proportion of N applied during each period was 

calculated according to a crop N demand curve, with two applications for wheat (before 

planting and stem elongation stage), three applications for maize (before planting, 6-leaf stage 

and 10-leaf stage), and also three applications for rice (before planting, tillering and heading 

stage).  

Our results proved that the ISSM is robust and can increase grain yield while optimizing N 

input and reducing environmental costs significantly. Our farmer survey suggested that ISSM 

is possible in practice, because we found about 20% and 5% of rice and wheat farmers 

respectively report yields already close to ISSM yields with similar amounts of N 

fertilizer(Extended Data Table4). The ISSM will not cost farmer's additional inputs too much 

(same amounts of seed and N fertilizer, and almost same times of topdressing ) and indeed 

will take significant benefit to farmers (significant increasing yield), however, there is still a 

long way to implement ISSM to farmers. Firstly, ISSM must carefully integrate crop (crop 

variety, sowing amount and date,...) and soil (soil tillage, fertilization, irrigation,...) 

management measures, according to local eco-conditions, therefore need more intensive 

localized agronomic researches; secondly, transferring this knowledge-riched approach to less 

educated small-holder farmers, need more investment and support from various public and 

private organizations.  

 

Supplementary Discussion – Nr response to increasing N rate or N surplus 

 

It is not possible to measure all of the various Nr (reactive nitrogen) losses (NH3 volatilization, 

N leaching, N2O emission)in-situ directly in a broadmulti-site/year experiments; we and 

others 21,22 must develop a model to calculate Nr losses. Direct N losses and the 

environmental footprint of N fertilization are often expressed as a function of rates of N 

fertilizer application or N surplus in such models. Using an extensive and localized database, 

we establishedanempirical Nr loss model based on N application or N surplus for all three 

crops in China. 

Earlier studies used a variety of methods to calculate Nr losses. For example, the IPCC 
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methodology5adopted a linear relationship to estimate direct N lossesbased on the amount of 

N added to agricultural soils.However, the relationship between agronomic management and 

N losses depends on more than just the amount of N input.CropsaccumulateN from the soil in 

their biomass – and when N fertilizer input is less than or closely matches crop requirements, 

N uptake can consume the N available in the root-zone and thus limit N losses. Excessive soil 

N levels, which occur when N additions exceed crop requirements, canlead to nitrate 

accumulation and promote the production of N2O in soil or N leaching23-25. Consistent with 

this expectation, some recentfield studies have reported exponential increases in direct N2O 

emissions and nitrate leachingwith increasing N applicationrates, indicating a larger 

proportion of N is lost at high N application rates26-28. 

In many cases it is more useful to compare N losses to levels of N surplus rather than N 

application rates. The IPCC method to estimate N2O emissions based on a fixedproportion of 

applied N inputs islikely to overestimate N loses from well-managed, high-yield,and 

high-input systems5. 

   Our results clearly indicated that both IP and ISSM could control the N surplus to around 

zero (Table 1) thereby substantially decreasing N leaching, N2O emission and N runoff (Fig. 

1). Here, N surplus iscalculated asN fertilizer minus N uptake by crops; itdoesnot account for 

inputs of N via deposition29andirrigation water, and return of harvested straw to fields. 

TotalenvironmentalNinputs reached about 89 kg Nha-1 for rice-wheat system in theTaihu 

region and about 104 kg N ha-1 for wheat-maize system on the North ChinaPlain30, so N 

losses can and do persist even when the N surplus is zero. In the longer run, low N surpluses 

on a regional scale lead to reduced losses via leaching and atmospheric fluxes, and so reduced 

environmental inputs of N. 

Ammonia losses follow a different dynamic that do other Nr losses. Normally 

NH3volatilizationoccurswithin 1 to 2 weeks after fertilization30. Consequently, the ability ofN 

uptake by crop roots to acquire NH3islimited in this short period,resultinga linear response of 

NH3 volatilization to the N application rate(Extended Data Figure 2). We found that 

NH3volatilization in agricultural systems in China is quite high (Fig 1), partly because 

calcareous soils with high pH are widespread in China, partly because mostN fertilizers used 

in China are easily volatilized urea and ammonia bicarbonate1.NH3volatilization represents a 

large loss from cropping systems. It also represents a significant threat to human health as 

well as the environment; NH3in the atmosphere reacts with other air pollutants to create 

smalland dangerous aerosol particles (PM2.5) that canlodge deep in the lungs, causing asthma 

attacks, bronchitis, and heart attacks31,32. Mitigating NH3volatilization from agriculture should 
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focus on agronomic measures such as application method (deep application into the soil) as 

well as developing and adopting new fertilizers such as slow/controlled release coated 

fertilizer and urease inhibitors33.  

Althoughwe collected as complete and as large a database of N losses as possible, 

uncertaintyin the magnitude ofN losses still persists. The primary limitation to compiling a 

larger data set for this analysis was the absence of yield data in studies where GHG (or Nr 

losses) was measured. In this study, included all data sources from Chinesejournals (or thesis) 

and ISI journals that met our criteria;we found the data from these two groups coincide well 

(Extended Data Figure 2-4). In addition to N surplus (or N application rate for NH3), N losses 

also depend on specific local conditions and other management practices; together these 

include topography, soil type, climate, N application method, and N fertilizer type 34-36. Where 

possible, these environmental factors and crop practices affecting Nr losses should be taken 

into account in calculating Nr losses from any particular site or treatment. However, the intent 

of this study was to comparethe Nr losses and GHG emission of different management 

approaches on a very broad scale across crops and across regions, to determine if a 

high-yielding treatment that optimized N supply (ISSM) alsoreducedpotential Nr loss and 

GHG emission intensity. The soil, environmentalconditions, and N applicationmethodswere 

the same for all four treatments in each experimental site in each year. 

In summary, reducing N surplus by both increasing crop uptake through measures that 

increase crop yieldand optimizing nutrient management should be a priority for scientists, 

policy-makers and farmers. In this study, the ISSM approachmatched N supply from thesoil 

and environment to N demand by the crops, through the right source, rate, timing, and 

placementof N fertilizer. At the same time, ISSM reduced N surplus by increasing grain yield 

throughbest management practices.This approach is particularly importantincountries/regions 

where N fertilizer is overused but the potential for yield increase is still high. 

 

Supplementary Discussion –increasing yield while reducing environmental costs 

 

To the extent that yields have already stagnated or reached yield plateaus in a large portion of 

the world’s crop production area, current yield trends will not suffice to meet future demands on 

existing farmland37. Moreoptimistic projections of future grain production suggest that it would 

be possible to achieve a 40-70% increase in yieldsfor maize, wheat and rice globally by closing 

yield gaps38,39.The yields in ISSM treatment we obtainedfrom these multi-sites/years field 

experiments (8.5, 8.9 and 14.2 Mg ha-1), are comparable to what are considered to be yield 
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potentials in the areas with the most favorable conditions and intensive agronomic management 

globally, and are 27%, 53% and 87% higher than those obtained in practice by Chinese farmers 

(6.7, 5.8, 7.6Mg ha-1 ) (Table 1). The major factors explainingthe gap between our ISSM 

treatmentand farmers’ practices are: (i) low efficiency of light and heat resource use due to low 

plant density, unsuitable sowing dates, short-duration varieties, and other poor crop management 

practices; (ii) poor nutrient and water management with either too largeor too small additions40. 

The potential for substantial gains in grain yield for maize, wheat and rice suggests an 

opportunity to meet food demandon existing farmland in China. 

We found that a conventional“bottom-up” approach, which sought to overcome the main 

limiting factors for yield and nutrient use efficiency increase (treatment IP), succeeded in 

increasing crop yieldsand reducing environmental costs. However,an integrated soil-crop 

system management(ISSM) approach yielded significantly better results, indicating that 

agroecologicalinnovation in crop and soil management has great promise for increasing crop 

yield, improving the resource efficiency of agriculture, and greatly reducing harm to the 

environment13. This ISSM approach re-designedthe whole production system to reduce yield 

gaps while at the same time optimizingresource inputs like fertilizers, according to our 

modern understanding of crop nutrient demand, and root zone nutrient supply and losses29.  

Realizing the potential of agroecological innovations depends not only on progress in science 

and technology, but also on socioeconomic factors. We suggest that the reported“upper yield 

plateaus” for rice in China41 maynot represent a biophysical yield limitation, but rather the 

prevalence ofextremely small farm sizes and growth in the proportion of part-time farmers. 

Forexample, in Heilongjiang province, Northeast China, the grain yield forrice in smallholding 

farmshas remained ata plateau since the mid-1990s.However, large-scale farms in the same 

regionmade use of new technologies and economies of scale to continuously increase 

yieldsoverthe past 10 years (Extended Data Figure 5).Interestingly, we foundabout 20% and 5% 

of rice and wheat farmers respectively report yields close to ISSM yields; for maize, even the top 

5% farmers do not achieve yields close to ISSM (Extended Data Table 4). This information 

shows that the most successful farmers are not using excessive fertilizer; at least their practices 

are closer to ISSM or IP than to the HY treatments. We believe that with rapid economic 

development, urbanization, and changes in land tenure, innovative agricultural technologies 

canbe more widely adopted,and socioeconomic barriers to simultaneously increasing crop yield 

and mitigating environmental costsshould diminish. 
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