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1 Methods

Notations

• c: Parameters of a controller (vector)
• x: A location in a discrete behavioral space (i.e. a type of behav-

ior) (vector)
• χ: A location in a discrete behavioral space that has been tested

on the physical robot (vector)
• P : Behavior-performance map (stores performance) (associa-

tive table)
• C : Behavior-performance map (stores controllers) (associative

table)
• P (x): Max performance yet encountered at x (scalar)
• C (x): Controller currently stored in x (vector)
• χ1:t: All previously tested behavioral descriptors at time t (vector

of vectors)
• P1:t: Performance in reality of all the candidate solutions tested

on the robot up to time t (vector)
• P (χ1:t): Performance in the behavior-performance map for all

the candidate solutions tested on the robot up to time t (vector)
• f (): Performance function (unknown by the algorithm) (func-

tion)
• σ2

noi se : Observation noise (a user-specified parameter) (scalar)
• k(x,x): Kernel function (see section “kernel function”) (function)
• K: Kernel matrix (matrix)
• k: Kernel vector [k(x,χ1),k(x,χ2), ...,k(x,χt )] (vector)
• µt (x): Predicted performance for x (i.e. the mean of the Gaussian

process) (function)
• σ2

t (x): Standard deviation for x in the Gaussian process (function)

1.1 Intelligent Trial and Error algorithm (IT&E)

The Intelligent Trial and Error Algorithm consists of two major steps
(Extended Data Fig. 1): the behavior-performance map creation step
and the adaptation step (while here we focus on damage recovery, In-
telligent Trial and Error can search for any type of required adapta-
tion, such as learning an initial gait for an undamaged robot, adapting
to new environments, etc.). The behavior-performance map creation
step is accomplished via a new algorithm introduced in this paper
called multi-dimensional archive of phenotypic elites (MAP-Elites),
which is explained in the next section. The adaptation step is accom-
plished via a second new algorithm introduced in this paper called
the map-based Bayesian optimization algorithm (M-BOA), which is
explained in the “Adaptation Step” section below.

1.2 Behavior-performance map creation (via the
MAP-Elites algorithm)

The behavior-performance map is created by a new algorithm we in-
troduce in this paper called the multi-dimensional archive of phe-
notypic elites (MAP-Elites) algorithm. MAP-Elites searches for the
highest-performing solution for each point in a user-defined space:
the user chooses the dimensions of the space that they are interested
in seeing variation in. For example, when designing robots, the user
may be interested in seeing the highest-performing solution at each
point in a two-dimensional space where one axis is the weight of the
robot and the other axis is the height of the robot. Alternatively, a user
may wish to see weight vs. cost, or see solutions throughout a 3D space
of weight vs. cost vs. height. Any dimension that can vary could be
chosen by the user. There is no limit on the number of dimensions that

can be chosen, although it becomes computationally more expensive
to fill the behavior-performance map and store it as the number of
dimensions increases. It also becomes more difficult to visualize the
results. We refer to this user-defined space as the “behavior space”,
because usually the dimensions of variation measure behavioral char-
acteristics. Note that the behavioral space can refer to other aspects of
the solution (as in this example, where the dimensions of variation are
physical properties of a robot such as its height and weight).

If the behavior descriptors and the parameters of the controller are
the same (i.e. if there is only one possible solution/genome/parameter
set/policy/description for each location in the behavioral space), then
creating the behavior-performance map is straightforward: one sim-
ply needs to simulate the solution at each location in the behavior
space and record the performance. However, if it is not known a priori
how to produce a controller/parameter set/description that will end
up in a specific location in the behavior space (i.e. if the parameter
space is of higher dimension than the behavioral space: e.g., in our
example, if there are many different robot designs of a specific weight,
height, and cost, or if it is unknown how to make a description that will
produce a robot with a specific weight, height, and cost), then MAP-
Elites is beneficial. It will efficiently search for the highest-performing
solution at each point of the low-dimensional behavioral space. It is
more efficient than a random sampling of the search space because
high-performing solutions are often similar in many ways, such that
randomly altering a high-performing solution of one type can produce
a high-performing solution of a different type (see Supplementary Fig.
3 and Supplementary Experiment S4). For this reason, searching for
high-performing solutions of all types simultaneously is much quicker
than separately searching for each type. For example, to generate a
lightweight, high-performing robot design, it tends to be more effec-
tive and efficient to modify an existing design of a light robot rather
than randomly generate new designs from scratch or launch a sepa-
rate search process for each new type of design.

MAP-Elites begins by generating a set of random candidate solu-
tions. It then evaluates the performance of each solution and records
where that solution is located in the behavior space (e.g. if the dimen-
sions of the behavior space are the height and weight, it records the
height and weight of each robot in addition to its performance). For
each solution, if its performance is better than the current solution at
that location in the behavior-performance map, then it is added to the
behavior-performance map, replacing the solution in that location. In
other words, it is only kept if it is the best of that type of solution, where
“type” is defined as a location in the behavior space. There is thus only
one solution kept at each location in the behavior space (keeping more
could be beneficial, but for computational reasons we only keep one).
If no solution is present in the behavior-performance map at that lo-
cation, then the newly generated candidate solution is added at that
location.

Once this initialization step is finished, Map-Elites enters a loop
that is similar to stochastic, population-based, optimization algo-
rithms, such as evolutionary algorithms1: the solutions that are in
the behavior-performance map form a population that is improved
by random variation and selection. In each generation, the algorithm
picks a solution at random via a uniform distribution, meaning that
each solution has an equal chance of being chosen. A copy of the se-
lected solution is then randomly mutated to change it in some way,
its performance is evaluated, its location in the behavioral space is
determined, and it is kept if it outperforms the current occupant at
that point in the behavior space (note that mutated solutions may end
up in different behavior space locations than their “parents”). This
process is repeated until a stopping criterion is met (e.g. after a fixed
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amount of time has expired). In our experiments, we stopped each
MAP-Elites run after 40 million iterations. Because MAP-Elites is a
stochastic search process, each resultant behavior-performance map
can be different, both in terms of the number of locations in the be-
havioral space for which a candidate is found, and in terms of the per-
formance of the candidate in each location.

The pseudo-code of the algorithm is available in Supplementary
Figure 1. More details and experiments about MAP-Elites are available
in (Mouret and Clune, 2015)2.

1.3 Adaptation step (via M-BOA: the map-based
Bayesian optimization algorithm)

The adaptation step is accomplished via a Bayesian optimization al-
gorithm seeded with a behavior-performance map. We call this ap-
proach a map-based Bayesian optimization algorithm, or M-BOA.

Bayesian optimization is a model-based, black-box optimization al-
gorithm that is tailored for very expensive objective functions (a.k.a.
cost functions)3, 4, 5, 6, 7, 8. As a black-box optimization algorithm,
Bayesian optimization searches for the maximum of an unknown ob-
jective function from which samples can be obtained (e.g., by mea-
suring the performance of a robot). Like all model-based optimiza-
tion algorithms (e.g. surrogate-based algorithms9, 10, 11, kriging12, or
DACE13, 14), Bayesian optimization creates a model of the objective
function with a regression method, uses this model to select the next
point to acquire, then updates the model, etc. It is called Bayesian
because, in its general formulation5, this algorithm chooses the next
point by computing a posterior distribution of the objective function
using the likelihood of the data already acquired and a prior on the
type of function.

Here we use Gaussian process regression to find a model15, which
is a common choice for Bayesian optimization16, 7, 4, 3. Gaussian pro-
cesses are particularly interesting for regression because they not only
model the cost function, but also the uncertainty associated with each
prediction. For a cost function f , usually unknown, a Gaussian pro-
cess defines the probability distribution of the possible values f (x) for
each point x. These probability distributions are Gaussian, and are
therefore defined by a mean (µ) and a standard deviation (σ). How-
ever, µ and σ can be different for each x; we therefore define a proba-
bility distribution over functions:

P ( f (x)|x) =N (µ(x),σ2(x)) (1)

where N denotes the standard normal distribution.

To estimate µ(x) and σ(x), we need to fit the Gaussian process
to the data. To do so, we assume that each observation f (χ) is a
sample from a normal distribution. If we have a data set made of
several observations, that is, f (χ1), f (χ2), ..., f (χt ), then the vector[

f (χ1), f (χ2), ..., f (χt )
]

is a sample from a multivariate normal distri-
bution, which is defined by a mean vector and a covariance matrix. A
Gaussian process is therefore a generalization of a n-variate normal
distribution, where n is the number of observations. The covariance
matrix is what relates one observation to another: two observations
that correspond to nearby values of χ1 and χ2 are likely to be corre-
lated (this is a prior assumption based on the fact that functions tend
to be smooth, and is injected into the algorithm via a prior on the
likelihood of functions), two observations that correspond to distant
values of χ1 and χ2 should not influence each other (i.e. their dis-
tributions are not correlated). Put differently, the covariance matrix
represents that distant samples are almost uncorrelated and nearby
samples are strongly correlated. This covariance matrix is defined via

a kernel function, called k(χ1,χ2), which is usually based on the Eu-
clidean distance between χ1 and χ2 (see the “kernel function” sub-
section below).

Given a set of observations P1:t = f (χ1:t ) and a sampling noise
σ2

noi se (which is a user-specified parameter), the Gaussian process is
computed as follows4, 15:

P ( f (x)|P1:t ,x) =N (µt (x),σ2
t (x))

where :

µt (x) = kᵀK−1P1:t

σ2
t (x) = k(x,x)−kᵀK−1k

K =




k(χ1,χ1) · · · k(χ1,χt )
...

. . .
...

k(χt ,χ1) · · · k(χt ,χt )


+σ2

noi se I

k =
[

k(x,χ1) k(x,χ2) · · · k(x,χt )
]

(2)

Our implementation of Bayesian optimization uses this Gaussian
process model to search for the maximum of the objective function
f (x), f (x) being unknown. It selects the next χ to test by selecting the
maximum of the acquisition function, which balances exploration –
improving the model in the less explored parts of the search space –
and exploitation – favoring parts that the models predicts as promis-
ing. Here, we use the “Upper Confidence Bound” acquisition function
(see the “information acquisition function” section below). Once the
observation is made, the algorithm updates the Gaussian process to
take the new data into account. In classic Bayesian optimization, the
Gaussian process is initialized with a constant mean because it is as-
sumed that all the points of the search space are equally likely to be
good. The model is then progressively refined after each observation.

The key concept of the map-based Bayesian optimization algorithm
(M-BOA) is to use the output of MAP-Elites as a prior for the Bayesian
optimization algorithm: thanks to the simulations, we expect some
behaviors to perform better than others on the robot. To incorporate
this idea into the Bayesian optimization, M-BOA models the difference
between the prediction of the behavior-performance map and the ac-
tual performance on the real robot, instead of directly modeling the
objective function. This idea is incorporated into the Gaussian pro-
cess by modifying the update equation for the mean function (µt (x),
equation 2):

µt (x) =P (x)+kᵀK−1(P1:t −P (χ1:t )) (3)

where P (x) is the performance of x according to the simulation and
P (χ1:t ) is the performance of all the previous observations, also ac-
cording to the simulation. Replacing P1:t (eq. 2) by P1:t −P (χ1:t )
(eq. 3) means that the Gaussian process models the difference be-
tween the actual performance P1:t and the performance from the
behavior-performance map P (χ1:t ). The term P (x) is the prediction
of the behavior-performance map. M-BOA therefore starts with the
prediction from the behavior-performance map and corrects it with
the Gaussian process.

The pseudo-code of the algorithm is available in Supplementary
Figure 1.

Kernel function The kernel function is the covariance function of
the Gaussian process. It defines the influence of a controller’s perfor-
mance (on the physical robot) on the performance and confidence es-
timations of not-yet-tested controllers in the behavior-performance
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procedure INTELLIGENT TRIAL AND ERROR ALGORITHM (IT&E)
Before the mission:

CREATE BEHAVIOR-PERFORMANCE MAP ( VIA THE MAP-ELITES ALGORITHM IN SIMULATION)
while In mission do

if Significant performance fall then
ADAPTATION STEP ( VIA M-BOA ALGORITHM)

procedure MAP-ELITES ALGORITHM

(P ←�,C ←�) � Creation of an empty behavior-performance map (empty N-dimensional grid).
for iter = 1 → I do � Repeat during I iterations (here we choose I = 40 million iterations).

if iter < 400 then
c′ ← random_controller() � The first 400 controllers are generated randomly.

else � The next controllers are generated using the map.
c ← random_selection(C ) � Randomly select a controller c in the map.
c′ ← random_variation(c) � Create a randomly modified copy of c.

x′ ←behavioral_descriptor(simu(c′)) � Simulate the controller and record its behavioral descriptor.
p ′ ←performance(simu(c′)) � Record its performance.
if P (x′) =� or P (x′) < p ′ then � If the cell is empty or if p ′ is better than the current stored performance.

P (x′) ← p ′ � Store the performance of c′ in the behavior-performance map according
� to its behavioral descriptor x′.

C (x′) ← c′ � Associate the controller with its behavioral descriptor.

return behavior-performance map (P and C )

procedure M-BOA (MAP-BASED BAYESIAN OPTIMIZATION ALGORITHM)
∀x ∈ map: � Initialisation.

P ( f (x)|x) =N (µ0(x),σ2
0(x)) � Definition of the Gaussian Process.

where
µ0(x) =P (x) � Initialize the mean prior from the map.
σ2

0(x) = k(x,x) � Initialize the variance prior (in the common case, k(x,x) = 1).
while max(P1:t) <αmax(µt (x)) do � Iteration loop.

χt+1 ← argmaxx(µt (x)+κσt (x)) � Select next test (argmax of acquisition function).
Pt+1 ← performance(physical_robot(C (χt+1))). � Evaluation of xt+1 on the physical robot.
P ( f (x)|P1:t+1,x) =N (µt+1(x),σ2

t+1(x)) � Update the Gaussian Process.
where
µt+1(x) =P (x)+kᵀK−1(P1:t+1 −P (χ1:t+1)) � Update the mean.
σ2

t+1(x) = k(x,x)−kᵀK−1k � Update the variance.

K =




k(χ1,χ1) · · · k(χ1,χt+1)
...

. . .
...

k(χt+1,χ1) · · · k(χt+1,χt+1)


+σ2

noi se I � Compute the observations’ correlation matrix.

k =
[

k(x,χ1) k(x,χ2) · · · k(x,χt+1)
]

� Compute the x vs. observation correlation vector.

Supplementary Figure 1 | Pseudo-code for the Intelligent Trial and Error Algorithm, the MAP-Elites algorithm, and the Map-based
Bayesian Optimization Algorithm (M-BOA). Notations are described at the beginning of the methods section.
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map that are nearby in behavior space to the tested controller (Sup-
plementary Fig. 2a).

The Squared Exponential covariance function and the Matérn ker-
nel are the most common kernels for Gaussian processes4, 6, 15. Both
kernels are variants of the “bell curve”. Here we chose the Matérn ker-
nel because it is more general (it includes the Squared Exponential
function as a special case) and because it allows us to control not only
the distance at which effects become nearly zero (as a function of pa-
rameter ρ, Supplementary Fig. 2a), but also the rate at which distance
effects decrease (as a function of parameter ν).

The Matérn kernel function is computed as follows17, 18 (with ν =
5/2):

k(x1,x2) =
(
1+

�
5d(x1,x2)

ρ + 5d(x1,x2)2

3ρ2

)
exp

(
−

�
5d(x1,x2)

ρ

)

where d(x1,x2) is the Euclidean distance in behavior space.
(4)

Because the model update step directly depends on ρ, it is one of
the most critical parameters of the Intelligent Trial and Error Algo-
rithm. We selected its value after extensive experiments in simulation
(Supplementary Fig. 2 and section 1.6).

Information acquisition function The information acquisition
function selects the next solution that will be evaluated on the physi-
cal robot. The selection is made by finding the solution that maximizes
the acquisition function. This step is another optimization problem,
but does not require testing the controller in simulation or reality. In
general, for this optimization problem we can derive the exact equa-
tion and find a solution with gradient-based optimization 19. For the
specific behavior space in the example problem in this paper, though,
the discretized search space of the behavior-performance map is small
enough that we can exhaustively compute the acquisition value of
each solution of the behavior-performance map and then choose the
maximum value.

Several different acquisition functions exist, such as the probability
of improvement, the expected improvement, or the Upper Confidence
Bound (UCB)4, 16. We chose UCB because it provided the best results
in several previous studies4, 16. The equation for UCB is:

xt+1 = argmax
x

(µt (x)+κσt (x)) (5)

where κ is a user-defined parameter that tunes the tradeoff between
exploration and exploitation.

The acquisition function handles the exploitation/exploration
trade-off of the adaptation (M-BOA) step. In the UCB function (Eq.
5), the emphasis on exploitation vs. exploration is explicit and easy to
adjust. The UCB function can be seen as the maximum value (argmax)
across all solutions of the weighted sum of the expected performance
(mean of the Gaussian, µt (x)) and of the uncertainty (standard devi-
ation of the Gaussian, σt (x)) of each solution. This sum is weighted
by the κ factor. With a low κ, the algorithm will choose solutions that
are expected to be high-performing. Conversely, with a high κ, the al-
gorithm will focus its search on unexplored areas of the search space
that may have high-performing solutions. The κ factor enables fine
adjustments to the exploitation/exploration trade-off of the M-BOA
algorithm (the adaptation step). We describe how we chose theκ value
in supplementary methods, section 1.6.

Code availability The source code (for GNU/Linux) for the experi-
ments of this paper is available at the following URL:
http://pages.isir.upmc.fr/~mouret/code/ite_source_code.tar.gz

An implementation of the Bayesian optimization algorithm is freely
available on:
http://github.com/jbmouret/limbo

1.4 Hexapod Experiment

Physical robot The robot is a 6-legged robot with 3 degrees of free-
dom (DOFs) per leg. Each DOF is actuated by position-controlled ser-
vos (MX-28 Dynamixel actuators manufactured by Robotis). The first
servo controls the horizontal (front-back) orientation of the leg and
the two others control its elevation. An RGB-D camera (Xtion, from
ASUS) is fixed on top of the robot. Its data are used to estimate the
forward displacement of the robot via an RGB-D SLAM algorithm∗20

from the robot operating system (ROS) framework† 21.

Simulator The simulator is a dynamic physics simulation of the un-
damaged 6-legged robot on flat ground (Fig. 4). We weighted each
segment of the leg and the body of the real robot, and we used the
same masses for the simulations. The simulator is based on the Open
Dynamics Engine (ODE, http://www.ode.org).

Parametrized controller The angular position of each DOF is gov-
erned by a periodic function γ parametrized by its amplitude α, its
phase φ, and its duty cycle τ (the duty cycle is the proportion of one
period in which the joint is in its higher position). The function is de-
fined with a square signal of frequency 1Hz, with amplitude α, and
duty cycle τ. This signal is then smoothed via a Gaussian filter in order
to remove sharp transitions, and is then shifted according to the phase
φ.

Angular positions are sent to the servos every 30 ms. In order to
keep the “tibia” of each leg vertical, the control signal of the third servo
is the opposite of the second one. Consequently, angles sent to the i th

leg are:

• γ(t , αi1 , φi1 , τi1 ) for DOF 1
• γ(t , αi2 , φi2 , τi2 ) for DOF 2
• −γ(t , αi2 , φi2 , τi2 ) for DOF 3

This controller makes the robot equivalent to a 12 DOF system, even
though 18 motors are controlled.

There are 6 parameters for each leg (αi1 , αi2 , φi1 , φi2 , τi1 , τi2 ),
therefore each controller is fully described by 36 parameters. Each pa-
rameter can have one of these possible values: 0, 0.05, 0.1, ... 0.95, 1.
Different values for these 36 parameters can produce numerous dif-
ferent gaits, from purely quadruped gaits to classic tripod gaits.

This controller is designed to be simple enough to show the per-
formance of the algorithm in an intuitive setup. Nevertheless, the al-
gorithm will work with any type of controller, including bio-inspired
central pattern generators22 and evolved neural networks23, 24, 25, 26.

Reference controller Our reference controller is a classic tripod
gait27, 28, 29, 30, 31, 32. It involves two tripods: legs 1-4-5 and legs 2-3-6
(Fig. 4). This controller is designed to always keep the robot balanced
on at least one of these tripods. The walking gait is achieved by lifting
one tripod, while the other tripod pushes the robot forward (by shift-
ing itself backward). The lifted tripod is then placed forward in order
to repeat the cycle with the other tripod. This gait is static, fast, and
similar to insect gaits28, 33.

∗http://wiki.ros.org/ccny_openni_launch
†http://www.ros.org
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Table S1 shows the 36 parameters of the reference controller. The
amplitude orientation parameters (αi1 ) are set to 1 to produce the
fastest possible gait, while the amplitude elevation parameters (αi2 )
are set to a small value (0.25) to keep the gait stable. The phase eleva-
tion parameters (φi2 ) define two tripods: 0.25 for legs 2-3-5; 0.75 for
legs 1-4-5. To achieve a cyclic motion of the leg, the phase orientation
values (φi1 ) are chosen by subtracting 0.25 to the phase elevation val-
ues (φi2 ), plus a 0.5 shift for legs 1-3-5, which are on the left side of
the robot. All the duty cycle parameters (τi ) are set to 0.5 so that the
motors spend the same proportion of time in their two limit angles.
The actual speed of the reference controller is not important for the
comparisons made in this paper: it is simply intended as a reference
and to show that the performance of classic, hand-programmed gaits
tend to fail when damage occurs.

Random variation of controller’s parameters Each parameter
of the controller has a 5% chance of being changed to any value in
the set of possible values, with the new value chosen randomly from a
uniform distribution over the possible values.

Main Behavioral descriptor (duty factor) The default behavioral
descriptor is a 6-dimensional vector that corresponds to the propor-
tion of time that each leg is in contact with the ground (also called
duty factor). When a controller is simulated, the algorithm records at
each time step (every 30 ms) whether each leg is in contact with the
ground (1: contact, 0: no contact). The result is 6 Boolean time series
(Ci for the i th leg). The behavioral descriptor is then computed with
the average of each time series:

x =




∑
t C1(t )

numTimesteps(C1)
...∑

t C6(t )
numTimesteps(C6)


 (6)

During the generation of the behavior-performance map, the be-
haviors are stored in the maps’s cells by discretizing each dimension
of the behavioral descriptor space with these five values: {0, 0.25, 0.5,
0.75, 1}. During the adaptation phase, the behavioral descriptors are
used with their actual values and are thus not discretized.

Alternative Behavioral descriptor (orientation) The alternative
behavioral descriptor tested on the physical robot (we investigated
many other descriptors in simulation: Supplementary Experiment
S5) characterizes changes in the angular position of the robot during
walking, measured as the proportion of 15ms intervals that each of the
pitch, roll and yaw angles of the robot frame are positive (three dimen-
sions) and negative (three additional dimensions):

x =




1
K

∑
k U (ΘT (k)−0.005π)

1
K

∑
k U (−ΘT (k)−0.005π)

1
K

∑
k U (ΨT (k)−0.005π)

1
K

∑
k U (−ΨT (k)−0.005π)

1
K

∑
k U (ΦT (k)−0.005π)

1
K

∑
k U (−ΦT (k)−0.005π)




(7)

where ΘT (k), ΨT (k) and ΦT (k) denote the pitch, roll and yaw an-
gles, respectively, of the robot torso (hence T ) at the end of interval k,
and K denotes the number of 15ms intervals during the 5 seconds of

simulated movement (here, K = 5s/0.015s ≈ 334). The unit step func-
tion U (·) returns 1 if its argument exceeds 0, and returns 0 otherwise.
To discount for insignificant motion around 0 rad, orientation angles
are only defined as positive if they exceed 0.5% of π rad. Similarly, ori-
entation angles are only defined as negative if they are less than −0.5%
of π rad.

Performance function In these experiments, the “mission” of the
robot is to go forward as fast as possible. The performance of a con-
troller, which is a set of parameters (section 1.4: Parametrized con-
troller), is defined as how far the robot moves in a pre-specified direc-
tion in 5 seconds.

During the behavior-performance map creation step, the perfor-
mance is obtained thanks to the simulation of the robot. All odome-
try results reported on the physical robot, during the adaptation step,
are measured with the embedded simultaneous location and mapping
(SLAM) algorithm20. The accuracy of this algorithm was evaluated by
comparing its measurements to ones made by hand on 40 different
walking gaits. These experiments revealed that the median measure-
ment produced by the odometry algorithm is reasonably accurate, be-
ing just 2.2% lower than the handmade measurement (Supplementary
Fig. 2d).

Some damage to the robot may make it flip over. In such cases,
the visual odometry algorithm returns pathological distance-traveled
measurements either several meters backward or forward. To re-
move these errors, we set all distance-traveled measurements less
than zero or greater than two meters to zero. The result of this ad-
justment is that the algorithm appropriately considers such behaviors
low-performing. Additionally, the SLAM algorithm sometimes reports
substantially inaccurate low values (outliers on Supplementary Fig.
2d). In these cases the adaptation step algorithm will assume that the
behavior is low-performing and will select another working behavior.
Thus, the overall algorithm is not substantially impacted by such in-
frequent under-measurements of performance.

Stopping criterion In addition to guiding the learning process to
the most promising area of the search space, the estimated perfor-
mance of each solution in the map also informs the algorithm of the
maximum performance that can be expected on the physical robot.
For example, if there is no controller in the map that is expected to
perform faster on the real robot than 0.3m/s, it is unlikely that a faster
solution exists. This information is used in our algorithm to decide if
it is worth continuing to search for a better controller; if the algorithm
has already discovered a controller that performs nearly as well as the
highest value predicted by the model, we can stop the search.

Formally, our stopping criterion is

max(P1:t ) ≥αmax
x∈P

(µt (x)), with α= 0.9 (8)

where x is a location in the discrete behavioral space (i.e. a type of be-
havior) and µt is the predicted performance of this type of behavior.
Thus, when one of the tested solutions has a performance of 90% or
higher of the maximum expected performance of any behavior in the
map, the algorithm terminates. At that point, the highest-performing
solution found so far will be the compensatory behavior that the algo-
rithm selects. An alternative way the algorithm can halt is if 20 tests
on the physical robot occur without triggering the stopping criterion
described in equation 8: this event only occurred in 2 of 240 exper-
iments performed on the physical robot described in the main text.
In this case, we selected the highest-performing solution encountered
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Table S1 Parameters of the reference controller.

Leg number 1 2 3 4 5 6

First joint

αi1 1.00 1.00 1.00 1.00 1.00 1.00

φi1 0.00 0.00 0.50 0.50 0.00 0.00

τi1 0.5 0.5 0.5 0.5 0.5 0.5

Two last joints

αi2 0.25 0.25 0.25 0.25 0.25 0.25

φi2 0.75 0.25 0.25 0.75 0.75 0.25

τi2 0.5 0.5 0.5 0.5 0.5 0.5

during the search. This user-defined stopping criterion is not strictly
necessary, as the algorithm is guaranteed to stop in the worst case af-
ter every behavior in the map is tested, but it allows a practical limit
on the number of trials performed on the physical robot.

Initiating the Adaptation Step The adaptation step is triggered
when the performance drops by a certain amount. The simplest way
to choose that threshold is to let the user specify it. Automating the
selection of this value, and the impact of triggering the algorithm pre-
maturely, is an interesting question for future research in this area.

Main parameters of MAP-Elites

• parameters in controller: 36
• parameter values (controller): 0 to 1, with 0.05 increments
• size of behavioral space: 6
• possible behavioral descriptors: {0,0.25,0.5,0.75,1}
• iterations: 40 million

Main parameters of M-BOA

• σ2
noi se : 0.001

• α: 0.9
• ρ: 0.4
• κ: 0.05

1.5 Robotic Arm Experiment

Physical robot The physical robot is a planar robotic arm with
8 degrees of freedom (Extended Data Fig. 7a) and a 1-degree-of-
freedom gripper. The robot has to release a ball into a bin (a vari-
ant of the classic “pick and place” task in industrial robotics). To as-
sess the position of the gripper, a red cap, placed on top of the grip-
per, is tracked with a video camera. The visual tracking is achieved
with the “cmvision” ROS package, which tracks colored blobs (http:
//wiki.ros.org/cmvision). The eight joints of the robot are
actuated by position-controlled servos manufactured by Dynamixel.
To maximize the reliability of the the arm, the type of servo is not the
same for all the joints: heavy-duty servos are used near the base of the
robot and lighter ones are used for the end of the arm. The first joint,
fixed to the base, is moved by two MX-28 servos mounted in parallel.
The second joint is moved by an MX-64 servo. The 3 subsequent ser-
vos are single MX-28s, and the 3 remaining servos are AX-18s. All the
robot’s joints are limited to a motion range of ±π/2.

Simulator The generation of the behavior-performance map is
made with a simulated robot in the same way as for the hexapod ex-
periment. For consistency with the simulated hexapod experiments,

we used the dynamic (as opposed to kinematic) version of the simula-
tor, based on the ODE library. Any joint configuration that resulted in
the arm colliding with itself was not added to the map.

Parametrized controller The controller defines the target position
for each joint. The controller is thus parametrized by eight continuous
values from 0 to 1 describing the angle of each joint, which is mapped
to the the total motion range of each joint of ±π/2. The 8 joints are
activated simultaneously and are driven to their target position by in-
ternal PID controllers.

We chose this simple control strategy to make the experiments easy
to reproduce and highlight the contribution of Intelligent Trial & Error
for damage recovery. More advanced control strategies, for instance
visual servoing27, would be more realistic in a industrial environment,
but they would have made it hard to analyze the experimental results
because both Intelligent Trial & Error and the controller would com-
pensate for damage at the same time.

Randomly varying the controller’s parameters Each parame-
ter of the controller (section “Parametrized controller”) has a 12.5%
chance of being changed to any value from 0 to 1, with the new value
chosen from a polynomial distribution as described on p. 124 of (Deb,
2000), with ηm = 10.0.

Behavioral descriptor Because the most important aspect of the
robot’s behavior in this task is the final position of the gripper, we use
it as the behavioral descriptor:

behavioral_descriptor(simu(c)) =
[

xg

yg

]
(9)

where (xg , yg ) denotes the position of the gripper once all the joint
have reached their target position.

The size of the working area of the robot is a rectangle measuring
1.4m×0.7m. For the behavior-performance map, this rectangle is dis-
cretized into a grid composed of 20000 square cells (200× 100). The
robot is 62cm long.

Performance function Contrary to the hexapod experiment,
for the robotic arm experiment the performance function for the
behavior-map creation step and for the adaptation step are different.
We did so to demonstrate that the two can be different, and to create a
behavior-performance map that would work with arbitrary locations
of the target bin.

For the behavior-performance map generation step (accomplished
via the MAP-Elites algorithm), the performance function captures the
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idea that all joints should contribute equally to the movement. Specif-
ically, high-performance is defined as minimizing the variance of the
joint angles, that is:

performance(simu(c))) =−1

8

i=7∑
i=0

(
pi −m

)2 (10)

where pi is the angular position of joint i (in radians) and m =
1
8

∑i=7
i=0 pi is the mean of the joint angles. This performance function

does not depend on the target. The map is therefore generic: it con-
tains a high-performing controller for each point of the robot’s work-
ing space.

For the adaptation step (accomplished via the M-BOA algorithm),
the behavior-performance map, which is generic to many tasks, is
used for a particular task. To do so, the adaption step has a differ-
ent performance measure than the step that creates the behavior-
performance map. For this problem, the predicted performance mea-
sure is the Euclidean distance to the target (closer is better). Specifi-
cally, for each behavior descriptor x in the map, performance is

P (x) =−||x−b|| (11)

where b is the (x, y) position of the target bin. Note that the variance
of the joint angles, which is used to create the behavior-performance
map, is ignored during the adaptation step.

The performance of a controller on the physical robot is minimiz-
ing the Euclidean distance between the gripper (as measured with the
external camera) and the target bin:

performance(physical_robot(C (χ))) =−||xg −b|| (12)

where xg is the position of the physical gripper after all joints have
reached their final position, b is the position of the bin, and C (χ) is the
controller being evaluated (χ is the position in simulation that con-
troller reached).

If the gripper reaches a position outside of the working area, then
the camera cannot see the marker. In these rare cases, we set the per-
formance of the corresponding controller to a low value (−1 m).

For the control experiments with traditional Bayesian optimiza-
tion on the physical robot (see Supplementary Experiment S1), self-
collisions are frequent during adaptation, especially given that we ini-
tialize the process with purely random controllers (i.e. random joint
angles). While a single self-collision is unlikely to break the robot, hun-
dreds of them can wear out the gearboxes because each servo con-
tinues to apply a force for a period of time until it determines that it
cannot move. To minimize costs, and because we ran 210 indepen-
dent runs of the algorithm (14 scenarios× 15 replicates), we first tested
each behavior in simulation (taking the damage into account) to check
that there were no self-collisions. If we detected a self-collision, the
performance for that behavior was set to a low value (−1m).

Auto-collisions are much less likely with Intelligent Trial & Error be-
cause the behavior-performance map contains only controllers that
do not self-collide on the undamaged, simulated robot. As a conse-
quence, in the Intelligent Trial & Error experiments we did not simu-
late controllers before testing them on the physical robot.

Stopping criterion Because the robot’s task is to release a ball into
a bin, the adaptation step can be stopped when the gripper is above
the bin. The bin is circular with a diameter of 10 cm, so we stopped
the adaptation step when the red cap is within 5 cm of the center of
the bin.

Main MAP-Elites parameters for the robotic arm experiment:

• parameters in controller: 8
• controller parameter values: 0 to 1 (continuous)
• dimensions in the behavioral space: 2
• simulated evaluations to create the behavior-performance map:

20 million

Main M-BOA parameters for the robotic arm experiment:

• σ2
noi se : 0.03

• ρ: 0.1
• κ: 0.3

1.6 Selection of parameters

All of the data reported in this section comes from experiments with
the simulated hexapod robot, unless otherwise stated.

Selecting the ρ value For ρ between 0.1 and 0.8, we counted the
number of behaviors from the map that would be influenced by a sin-
gle test on the real hexapod robot (we considered a behavior to be in-
fluenced when its predicted performance was affected by more than
25% of the magnitude of the update for the tested behavior): with
ρ = 0.2, the update process does not affect any neighbor in the map,
with ρ = 0.4, it affects 10% of the behaviors, and with ρ = 0.8, it affects
80% of them. Additional values are shown in Supplementary Fig. 2c.

The previous paragraph describes tests we conducted to determine
the number of behaviors in the map affected by different ρ values, but
those experiments do not tell us how different ρ values affect the per-
formance of the algorithm overall. To assess that, we then repeated
the experiments from the main paper with a set of possible values
(ρ ∈ [0.1 : 0.025 : 0.8]) in simulation (i.e., with a simulated, damaged
robot), including testing on 6 separate damage scenarios (each where
the robot loses a different leg) with all 8 independently generated
replicates of the default 6-dimensional behavior-performance map.
The algorithm stopped if 20 adaptation iterations passed without suc-
cess according to the stopping criteria described in the main text and
section 1.4: Stopping criterion. The results reveal that median per-
formance decreases only modestly, but significantly, when the value
of ρ increases: changing ρ from 0.1 to 0.8 only decreases the median
value 12%, from 0.25 m/s to 0.22 m/s (p-value = 9.3× 10−5 via Mat-
lab’s Wilcoxon ranksum test, Supplementary Fig. 2b). The variance
in performance, especially at the extreme low end of the distribution
of performance values, is not constant over the range of explored val-
ues. Around ρ = 0.3 the minimum performance (Supplementary Fig.
2b, dotted red line) is higher than the minimum performance for more
extreme values of ρ.

A larger effect of changing ρ is the amount of time required to find
a compensatory behavior, which decreases when the value of ρ in-
creases (Supplementary Fig. 2b). With a ρ value lower than 0.25, the
algorithm rarely converges in less than the allotted 20 iterations, which
occurs because many more tests are required to cover all the promis-
ing areas of the search space to know if a higher-performing behavior
exists than the best-already-tested. On the other hand, with a high ρ

value, the algorithm updates its predictions for the entire search space
in a few observations: while fast, this strategy risks missing promising
areas of the search space.

In light of these data, we chose ρ = 0.4 as the default value for our
hexapod experiments because it represents a good trade-off between
a high minimum performance and a low number of physical tests on
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Supplementary Figure 2 | The effect of changing the algorithm’s parameters. (a) The shape of the Matérn kernel function for different
values of the ρ parameter. (b) Performance and required adaptation time obtained for different values of ρ. For each ρ value, the M-BOA al-
gorithm was executed in simulation with 8 independently generated behavior-performance maps and for 6 different damage conditions (each
case where one leg is missing). (c) The number of controllers in the map affected by a new observation according to different values of the ρ

parameter. (d) The precision of the odometry value. The distances traveled by the physical robot, as measured manually (“real performance”)
is compared to the measurements automatically provided by the simultaneous location and mapping (SLAM) algorithm(“measured perfor-
mance”). The dashed black line indicates the hypothetical case where SLAM measurements are error-free and thus are the same as manual
measurements. In (b), (c) and (d), the middle, black lines represent medians and the borders of the shaded areas show the 25th and 75th per-
centiles. The dotted lines are the minimum and maximum values. The gray bars show the ρ value chosen for the hexapod experiments in the
main text.



w w w. n a t u r e . c o m / NATURE       |  9

SUPPLEMENTARY INFORMATION RESEARCH

the robot. The value of ρ for the robotic arm experiment has been
chosen with the same method.

Selection of the κ value For the hexapod robot experiments, we
chose κ = 0.05. This relatively low value emphasizes exploitation
over exploration. We chose this value because the exploration of the
search space has already been largely performed during the behavior-
performance map creation step: the map suggests which areas of the
space will be high-performing, and should thus be tested, and which
areas of the space are likely unprofitable, and thus should be avoided.

For the robotic arm experiments, we chose κ = 0.3, which empha-
sizes exploration more, because it experimentally leads to better re-
sults.

1.7 Running time

Computing hardware All computation (on the physical robots and
in simulation) was conducted on a hyperthreaded 16-core computer
(Intel Xeon E5-2650 2.00GHz with 64Gb of RAM). This computational
power is mainly required for the behavior-performance map creation
step. Creating one map for the hexapod experiment took 2 weeks, tak-
ing advantage of the fact that map creation can easily be parallelized
across multiple cores. Map creation only needs to be performed once
per robot (or robot design), and can happen before the robot is de-
ployed. As such, the robot’s onboard computer does not need to be
powerful enough to create the map.

For the hexapod robot experiment, the most expensive part of
adaptation is the Simultaneous Localization And Mapping (SLAM)
algorithm20, 34, 35, which measures the distance traveled on the phys-
ical hexapod robot. It is slow because it processes millions of 3D
points per second. It can be run on less powerful computers, but do-
ing so lowers its accuracy because fewer frames per second can be
processed. As computers become faster, it should be possible to run
high-accuracy SLAM algorithms in low-cost, onboard computers for
robots.

The rest of the adaptation step needs much less computational
power and can easily be run on an onboard computer, such as a smart-
phone. That is because it takes approximately 15,000 arithmetic oper-
ations between two evaluations on the physical robot, which requires
less than a second or two on current smartphones.

Measuring how long adaptation takes (hexapod robot) The
reported time to adapt includes the time required for the computer
to select each test and the time to conduct each test on the physical
robot. Overall, evaluating a controller on the physical hexapod robot
takes about 8 seconds (median 8.03 seconds, 5th and 95th percentiles
[7.95; 8.21] seconds): 0.5-1 second to initialize the robot, 5 seconds
during which the robot can walk, 0.5-1 second to allow the robot to
stabilize before taking the final measurement, and 1-2 seconds to run
the SLAM algorithm. Identifying the first controller to test takes 0.03
[0.0216; 0.1277] seconds. The time to select the next controller to test
increases depending on the number of previous experiments because
the size of the Kernel Matrix (K matrix, see Methods and Supplemen-
tary Fig. 1), which is involved in many of the arithmetic operations,
grows by one row and one column per test that has been conducted.
For example, selecting the second test takes 0.15 [0.13; 0.22] seconds,
while the 10th selection takes 0.31 [0.17; 0.34] seconds.

2 Supplementary Experiments S1

Additional conditions for the robotic arm

Methods We investigated 11 damage conditions on the physical
robot in addition to the 3 described in the main text (Fig. 3). We used
the same setup as described in the main text (see main text and sec-
tion 1.5). Extended Data Fig. 7 shows the 14 scenarios.

For each of the 14 damage scenarios, we replicated experiments
on the physical robot with 15 independently generated behavior-
performance maps (210 runs in total). We also replicated control ex-
periments, which consist of traditional Bayesian optimization directly
in the original parameter space (i.e. without behavior-performance
maps), 15 times for each of the 14 damage conditions (210 runs in to-
tal). For both the experimental and control treatments, each experi-
ment involved 30 evaluations on the physical robot (31 if the first trial
is counted). In many cases, not all 30 evaluations were required to
reach the target, so we report only the number of trials required to
reach that goal.

Results After running the MAP-Elites algorithm for 20 million eval-
uations, each of the 15 generated maps contain more than 11,000 be-
haviors (11,209 [1,1206; 1,1217] behaviors, Extended Data Fig. 7c).

In all the generated maps, the regions of different performance val-
ues for behaviors are arranged in concentric shapes resembling car-
dioids (inverted, heart-shaped curves) that cover the places the robot
can reach (Extended Data Fig. 7c). The black line drawn over the
shown map corresponds to all the positions of the end-effector for
which all the degrees of freedom are set to the same angle (from −π/4
to +π/4), that is, for the theoretically highest achievable performance
(i.e. the lowest possible variance in servo angles). The performance of
the behaviors tends to decrease the further they are from this optimal
line.

The adaptation results (Extended Data Fig. 7e) show that the In-
telligent trial and error algorithm manages to reach the goal of being
less than 5 cm from the center of the bin for all the runs in all the
tested scenarios save two (scenarios 11 & 12). For these two scenar-
ios, the algorithm still reaches the target 60% and 80% of the time,
respectively. For all the damage conditions, the Intelligent Trial and
Error algorithm reaches the target significantly more often than the
Bayesian optimization algorithm (p < 10−24). Specifically, the median
number of iterations to reach the target (Extended Data Fig. 7f) is be-
low 11 iterations (27.5 seconds) for all scenarios except 11 and 12, for
which 31 and 20 iterations are required, respectively. When the robot
is not able to reach the target, the recorded number of iterations is
set to 31, which explains why the median number of iterations for the
Bayesian optimization algorithm is equal to 31 for most damage con-
ditions. For all the damage conditions except one (scenario 11), the
Intelligent Trial and Error algorithm used fewer trials to reach the tar-
get than the traditional Bayesian optimization algorithm.

If the robot is allowed to continue its experiment after reaching the
5 cm radius tolerance, for a total of 31 iterations (Extended Data Fig.
7g), it reaches an accuracy around 1 cm for all the damage conditions
except the two difficult ones (scenarios 11 and 12). This level of ac-
curacy is never achieved with the classic Bayesian optimization algo-
rithm, whose lowest median accuracy is 2.6cm.

Scenarios 11 and 12 appear to challenge the Intelligent Trial and
Error algorithm. While in both cases the success rate is improved,
though not substantially, in case 11 the median accuracy is actually
lower. These results stem from the fact that the difference between
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the successful pre-damage and post-damage behaviors is so large that
the post-damage solutions for both scenarios lie outside of the map.
This illustrates a limit of the proposed approach: if the map does not
contain a behavior able to cope with the damage, the robot will not be
able to adapt. This limit mainly comes from the behavioral descriptor
choice: we chose it because of its simplicity, but it does not capture
all of the important dimensions of variation of the robot. More so-
phisticated descriptors are likely to allow the algorithm to cope with
such situations. On the other hand, this experiment shows that with a
very simple behavioral descriptor, using only the final position of the
end-effector, our approach is able to deal with a large variety of dif-
ferent target positions and is significantly faster than the traditional
Bayesian optimization approach (Extended Data Fig. 7d, maximum
p-value over each time step < 10−16), which is the current state of the
art technique for direct policy search in robotics3, 36, 16, 37.

3 Supplementary Experiments S2

The contribution of each subcomponent of the
Intelligent Trial and Error Algorithm

Methods The Intelligent Trial and Error Algorithm relies on three
main concepts: (1) the creation of a behavior-performance map in
simulation via the MAP-Elites algorithm, (2) searching this map with
a Bayesian optimization algorithm to find behaviors that perform well
on the physical robot, and (3) initializing this Bayesian optimization
search with the performance predictions obtained via the MAP-Elites
algorithm: note that the second step could be performed without the
third step by searching through the MAP-Elites-generated behavior-
performance map with Bayesian optimization, but having the initial
priors uniformly set to the same value. We investigated the contribu-
tion of each of these subcomponents by testing five variants of our
algorithm : in each of them, we deactivated one of these three sub-
components or replaced it with an alternative algorithm from the lit-
erature. We then tested these variants on the hexapod robot. The vari-
ants are as follows:

• Variant 1 (MAP-Elites in 6 dimensions + random search): evalu-
ates the benefit of searching the map via Bayesian optimization
by searching that map with random search instead. Each itera-
tion, a behavior is randomly selected from the map and tested on
the robot. The best one is kept.

• Variant 2 (MAP-Elites in 6 dimensions + Bayesian optimiza-
tion, no use of priors): evaluates the contribution of initializing
the Gaussian process with the performance predictions of the
behavior-performance map. In this variant, the Gaussian process
is initialized with a constant mean (the average performance of
the map: 0.24 m/s) at each location in the behavior space and
a constant variance (the average variance of the map’s perfor-
mance: 0.005 m2/s2). As is customary, the first few trials (here,
5) of the Bayesian optimization process are selected randomly
instead of letting the algorithm choose those points, which is
known to improve performance.16

• Variant 3 (MAP-Elites in 6 dimensions + policy gradient): eval-
uates the benefit of Bayesian optimization compared to a more
classic, local search algorithm37, 38; there is no obvious way to use
priors in policy gradient algorithms.

• Variant 4 (Bayesian optimization in the original parameter space
of 36 dimensions): evaluates the contribution of using a map in
a lower-dimensional behavioral space. This variant searches di-
rectly in the original 36-dimensional parameter space instead of
reducing that space to the lower-dimensional (six-dimensional)

behavior space. Thus, in this variant no map of behaviors is pro-
duced ahead of time: the algorithm searches directly in the orig-
inal, high-dimensional space. This variant corresponds to one of
the best algorithms known to learn locomotion patterns3, 16. In
this variant, the Gaussian process is initialized with a constant
mean set to zero and with a constant variance (0.002m2/s2). As
described above, the five first trials are selected from pure ran-
dom search to prime the Bayesian optimization algorithm16.

• Variant 5 (Policy gradient in the original parameter space of 36 di-
mensions): a stochastic gradient descent in the original param-
eter space38. This approach is a classic reinforcement learning
algorithm for locomotion37 and it is a baseline in many papers3.

It was necessary to compare these variants in simulation because
doing so on the physical robot would have required months of ex-
periments and would have repeatedly worn out or broken the robot.
We modified the simulator from the main experiments (section 1.4:
Simulator) to emulate 6 different possible damage conditions, each of
which involved removing a different leg. For variants in which MAP-
Elites creates a map (variants 1, 2 and 3), we used the same maps
from the main experiments (the eight independently generated maps,
which were all generated with a simulation of the undamaged robot):
In these cases, we launched ten replicates of each variant for each of
the eight maps and each of the six damage conditions. There are there-
fore 10×8×6 = 480 replicates for each of those variants. For the other
variants (4 and 5), we replicated each experiment 80 times for each of
the six damage conditions, which also led to 80×6 = 480 replicates per
variant. In all these simulated experiments, to roughly simulate the
distribution of noisy odometry measurements on the real robot, the
simulated performance values were randomly perturbed with a mul-
tiplicative Gaussian noise centered on 0.95 with a standard deviation
of 0.1.

We analyze the fastest walking speed achieved with each variant af-
ter two different numbers of trials: the first case is after 17 trials, which
was the maximum number of iterations used by the Intelligent Trial
and Error Algorithm, and the second case is after 150 trials, which is
approximately the number of trials used in previous work38, 3, 16.

Results After 17 trials on the robot, Intelligent Trial and Error signif-
icantly outperforms all the variants (Extended Data Fig. 2b, p < 10−67,
Intelligent Trial and Error performance: 0.26 [0.20; 0.33] m/s), demon-
strating that the three main components of the algorithm are needed
to quickly find high-performing behaviors. Among the investigated
variants, the random search in the map performs the best (Variant 1:
0.21 [0.16; 0.27] m/s), followed by Bayesian optimization in the map
(Variant 2: 0.20 [0.13; 0.25] m/s), and policy gradient in the map (Vari-
ant 3: 0.13 [0; 0.23] m/s). Variants that search directly in the parame-
ter space did not find any working behavior (Variant 4, Bayesian opti-
mization: 0.04m/s, [0.01; 0.09]; Variant 5, policy gradient: 0.02 [0; 0.06]
m/s).

There are two reasons that random search performs better than one
might expect. First, the map only contains high-performing solutions,
which are the result of the intense search of the MAP-Elites algorithm
(40 million evaluations in simulation). The map thus already contains
high-performing gaits of nearly every possible type. Therefore, this
variant is not testing random controllers, but is randomly selecting
high-performing solutions. Second, Bayesian optimization and policy
gradient are not designed for such a low number of trials: without the
priors on performance predictions introduced in the Intelligent Trial
and Error Algorithm, the Bayesian optimization process needs to learn
the overall shape of the search space to model it with a Gaussian pro-
cess. 17 trials is too low a number to effectively sample six dimensions
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(for a uniform sampling with only two possible values in each dimen-
sion, 26 = 64 trials are needed; for five possible values, 56 = 15,625
samples are needed). As a consequence, with this low number of tri-
als, the Gaussian process that models the performance function is not
informed enough to effectively guide the search. For the policy gra-
dient algorithm, a gradient is estimated by empirically measuring the
partial derivative of the performance function in each dimension. To
do so, following38, the policy gradient algorithm performs 15 trials at
each iteration. Consequently, when only 17 trials are allowed, it iter-
ates only once. In addition, policy gradient is a local optimization al-
gorithm that highly depends on the starting point (which is here cho-
sen randomly), as illustrated by the high variability in the performance
achieved with this variant (Extended Data Fig. 2b).

The issues faced by Bayesian optimization and policy gradient are
exacerbated when the algorithms search directly in the original, 36-
dimensional parameter space instead of the lower-dimensional (six-
dimensional) behavior space of the map. As mentioned previously, no
working controller was found in the two variants directly searching in
this high-dimensional space.

Overall, the analysis after 17 trials shows that:

• The most critical component of the Intelligent Trial and Error Al-
gorithm is the MAP-Elites algorithm, which reduces the search
space and produces a map of high-performing behaviors in that
space: p < 5× 10−50 when comparing variants searching in the
behavior-performance map space vs. variants that search in the
original, higher-dimensional space of motor parameters.

• Bayesian optimization critically improves the search, but only
when it is initialized with the performance obtained in simula-
tion during the behavior-performance map creation step (with
initialization: 0.26 [0.20; 0.33] m/s, without initialization: 0.20
[0.13; 0.25] m/s, p = 10−96).

To check whether these variants might perform better if allowed the
number of evaluations typically given to previous state-of-the-art
algorithms38, 3, 16, we continued the experiments until 150 trials on the
robot were conducted (Extended Data Fig. 2c). Although the results
for all the variants improved, Intelligent Trial and Error still outper-
forms all them (p < 10−94; Intelligent Trial and Error: 0.31 [0.26; 0.37]
m/s, random search: 0.26 [0.22; 0.30] m/s, Bayesian optimization: 0.25
[0.18; 0.31] m/s, policy search: 0.23 [0.19, 0.29] m/s). These results are
consistent with the previously published results38, 3, 16, 37, which opti-
mize in 4 to 10 dimensions in a few hundred trials. Nevertheless, when
MAP-Elites is not used, i.e. when we run these algorithms in the origi-
nal 36 dimensions for 150 evaluations, Bayesian optimization and pol-
icy gradient both perform much worse (Bayesian optimization: 0.08
[0.05; 0.12]; policy gradient: 0.06 [0.01; 0.12] m/s). These results shows
that MAP-Elites is a powerful method to reduce the dimensionality of
a search space for learning algorithms, in addition to providing helpful
priors about the search space that speed up Bayesian optimization.

Overall, these additional experiments demonstrate that each of
the three main components of the Intelligent Trial and Error Algo-
rithm substantially improves performance. The results also indi-
cate that Intelligent Trial and Error significantly outperforms previ-
ous algorithms for both damage recovery 39, 40, 41, 42, 43 and gait learning
44, 38, 45, 22, 46, 3, 36, 16, 37, 23, and can therefore be considered the state of the
art.

4 Supplementary Experiments S3

Robustness to environmental changes

Methods The map creation algorithm (MAP-Elites) uses an undam-
aged robot on flat terrain. The main experiments show that this al-
gorithm provides useful priors for damage recovery on a flat terrain.
In these supplementary experiments, we evaluated, in simulation, if
the map created on flat terrain also provides a useful starting point for
discovering gaits for sloped terrains.

We first evaluated the effect slopes have on undamaged robots (Ex-
tended Data Fig. 3a). We launched 10 replicates for each of the eight
maps and each one-degree increment between −20◦ and +20◦, for a
total of 10×8×41 = 3280 experiments. As in Supplementary Experi-
ments S2, to roughly simulate the distribution of noisy odometry mea-
surements on the real robot, we perturbed performance values with a
multiplicative Gaussian noise centered on 0.95 with a standard devia-
tion of 0.1.

Results The results show that, when the slope is negative (descend-
ing), the Intelligent Trial and Error approach finds fast gaits in fewer
than than 3 trials. For reference, a hand-designed, classic, tripod gait
(section 1.4) falls on slopes below −15◦ degrees. When the slope is
positive (ascent), Intelligent Trial and Error finds slower behaviors, as
is expected, but even above 10◦ the gait learned by Intelligent Trial and
Error outperforms the reference gait on flat ground. Overall, for every
slope angle, the controller found by Intelligent Trial and Error is faster
than the hand-designed reference controller.

We further evaluated damage recovery performance for these same
slopes with the same setup as Experiments S2 (6 damage conditions).
We launched 10 replicates for each damage condition, for 8 indepen-
dently generated behavior-performance maps, and each two-degree
increment between −20◦ and +20◦ degrees. There are therefore 480
replicates for each two-degree increment between −20◦ and +20◦, for
a total of 480×21 = 10080 experiments.

Intelligent Trial and Error is not critically affected by variations of
slope between −10◦ and +10◦ (Extended Data Fig. 3b): for these
slopes, and for all 6 damage conditions, Intelligent Trial and Error
finds fast gaits (above 0.2 m/s) in less than 15 tests on the robot despite
the slope. As expected, it finds faster gaits for negative slopes (descent)
and slower gaits for positive slopes (ascent). For slopes below −10◦
and above 10◦, the algorithm performs worse and requires more trials.
These results likely are caused by the constraints placed on the con-
troller and the limited sensors on the robot, rather than the inabilities
of the algorithm. Specifically, the controller was kept simple to make
the science clearer, more intuitive, and more reproducible. Those con-
straints, of course, prevent it from performing the more complex be-
haviors necessary to deal with highly sloped terrain. For example, the
constraints prevent the robot from keeping its legs vertical on sloped
ground, which would substantially reduce slippage. Nevertheless, the
median Intelligent Trial and Error compensatory gait still outperforms
the median performance of the reference gait on all slope angles.
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5 Supplementary Experiments S4

Comparison between MAP-Elites and Random
Sampling

Methods The MAP-Elites algorithm is a stochastic search algorithm
that attempts to fill a discretized map with the highest-performing so-
lution at each point in the map. As explained in the main text, each
point in the map represents a different type of behavior, as defined by
the behavioral dimension of the map. MAP-Elites generates new can-
didate points by randomly selecting a location in the map, changing
the parameters of the controller that is stored there, and then saving
that controller in the appropriate map location if it is better than the
current occupant at that location. Intuitively, generating new candi-
date solutions from the best solutions found so far should be better
than generating a multitude of controllers randomly and then keep-
ing the best one found for each location in the map. In this section we
report on experiments that confirm that intuition.

To understand the advantages of MAP-Elites over random sam-
pling, we compared the two algorithms by generating data with the
simulated hexapod. The experiments have the same virtual robot, en-
vironment, controller, performance function, and behavioral descrip-
tors as in the main experiments (see Methods). We analyzed the num-
ber of cells for which a solution is found (an indication of the diversity
of behavior types the algorithms generate), the average performance
of behaviors in the map, and the maximum performance discovered.

We replicated each experiment 8 times, each of which included 20
million evaluations on the simulated robot.

Results The results show that the MAP-Elites algorithm outper-
forms random sampling on each of these measures (Supplementary
Fig. 3). After 20 million evaluations, about 13000 cells (median: 12968,
5th & 95th percentiles: [12892; 13018]) are filled by MAP-Elites (about
83% percent of the map), whereas random sampling only filled ap-
proximately 8600 (8624 [8566; 8641]) cells (about 55% percent of the
map) (Supplementary Fig. 3a). The difference between the two algo-
rithms is large and appears early (Supplementary Fig. 3a); after only 1
million evaluations, MAP-Elites filled 10670 [10511; 10775] cells (68%
of the map), whereas random sampling filled 5928 [5882; 5966] cells
(38% of the map).

The solutions discovered by MAP-Elites are not only more numer-
ous, but also outperform those found by random sampling (Supple-
mentary Fig. 3b): with MAP-Elites, after 20 million evaluations the
average performance of filled cells is 0.22 [0.22; 0.23] m/s, whereas
it is 0.06 [0.06; 0.06] m/s with random sampling, which is similar to
the performance obtained with the reference controller on a damaged
robot (Fig. 3). These two results demonstrate that MAP-Elites is a
much better algorithm than random sampling to find a map of the
diverse, “elite” performers in a search space.

In addition, MAP-Elites is a better optimization algorithm, as mea-
sured by the performance of the best single solution produced. The
performance of the best solution in the map after 20 million evalua-
tions is 0.40 [0.39;0.41] m/s with MAP-Elites, compared to 0.21 [0.20;
0.22] m/s with random sampling.

6 Supplementary Experiments S5

Alternative behavioral descriptors

Methods To create a map with MAP-Elites, one has to define the di-
mensions of the behavioral space, i.e. the behavioral descriptors. The
main experiments show that using a predefined behavioral descriptor
(the proportion of time that each leg of a hexapod robot is in contact
with the ground, i.e. the duty factor) creates a map that provides useful
priors for damage recovery.

This section describes how we tested (in simulation) how perfor-
mance is affected by alternative behavioral descriptors, including de-
scriptors that have a different number of dimensions. We also evalu-
ated how performance is affected if the behavioral descriptors are ran-
domly selected from a large list of potential descriptors. This test sim-
ulates the algorithm’s performance if the behavioral descriptors are
chosen without insight into the problem domain.

The behavioral descriptors we tested are as follows:

1. Duty factor (6-dimensional): This descriptor is the default one
from the main experiment. It corresponds to the proportion of
time each leg is in contact with the ground:

x =




∑
t C1(t )

numTimesteps
...∑

t C6(t )
numTimesteps


 (13)

where Ci (t ) denotes the Boolean value of whether leg i is in con-
tact with the ground at time t (1: contact, 0: no contact).

2. Orientation (6-dimensional): This behavioral descriptor charac-
terizes changes in the angular position of the robot during walk-
ing, measured as the proportion of 15ms intervals that each of the
pitch, roll and yaw angles of the robot frame are positive (three
dimensions) and negative (three additional dimensions):

x =




1
K

∑
k U (ΘT (k)−0.005π)

1
K

∑
k U (−ΘT (k)−0.005π)

1
K

∑
k U (ΨT (k)−0.005π)

1
K

∑
k U (−ΨT (k)−0.005π)

1
K

∑
k U (ΦT (k)−0.005π)

1
K

∑
k U (−ΦT (k)−0.005π)




(14)

where ΘT (k), ΨT (k) and ΦT (k) denote the pitch, roll and yaw
angles, respectively, of the robot torso (hence T ) at the end of in-
terval k, and K denotes the number of 15ms intervals during the 5
seconds of simulated movement (here, K = 5s/0.015s ≈ 334). The
unit step function U (·) returns 1 if its argument exceeds 0, and re-
turns 0 otherwise. To discount for insignificant motion around 0
rad, orientation angles are only defined as positive if they exceed
0.5% of π rad. Similarly, orientation angles are only defined as
negative if they are less than −0.5% of π rad.

3. Displacement (6-dimensional): This behavioral descriptor char-
acterizes changes in the postion of the robot during walking. It
is measured as the proportion of 15ms intervals that the robot is
positively or negatively displaced along each of the x, y , and z
axes:
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Supplementary Figure 3 | Comparing MAP-Elites and random sampling for generating behavior-performance maps. (a) The number of
points in the map for which a behavior is discovered. (b) The mean performance of the behaviors in the map. (c) The maximum perfor-
mance of the behaviors in the map. For all these figures, the middle lines represent medians over 8 independently generated maps and the
shaded regions extend to the 25th and 75th percentiles, even for (a) and (b), where the variance of the distribution is so small that it is difficult
to see. See Supplementary Experiment S4 for methods and analysis.

x =




1
K

∑
k U (∆x(k)−0.001)

1
K

∑
k U (−∆x(k)−0.001)

1
K

∑
k U (∆y(k)−0.001)

1
K

∑
k U (−∆y(k)−0.001)

1
K

∑
k U (∆z(k)−0.001)

1
K

∑
k U (−∆z(k)−0.001)




(15)

where
[
∆x(k),∆y(k),∆z(k)

]
denote the linear displacement in

meters of the robot during interval k, and K denotes the num-
ber of 15ms intervals during 5 seconds of simulated movement
(here, K = 5s/0.015s ≈ 334). The unit step function U (·) returns a
value of 1 if its argument exceeds 0, and returns a value of 0 oth-
erwise. To ignore insignificant motion, linear displacements are
defined to be positive if they exceed 1mm, and are defined to be
negative if they are less than −1mm.

4. Total energy expended per leg (6-dimensional): This behavioral
descriptor captures the total amount of energy expended to move
each leg during 5 seconds of movement:

x =




E1
ME

...
E6
ME


 (16)

where Ei denotes the energy utilized by leg i of the robot during
5 seconds of simulated movement, measured in N.m.rad. ME is
the maximum amount of energy available according to the servo
model of the simulator, which for 5 seconds is 100 N.m.rad.

5. Relative energy expended per leg (6-dimensional): This behav-
ioral descriptor captures the amount of energy expended to move

each leg relative to the energy expended by all the legs during 5
seconds of simulated movement:

x =




E1∑
i=1..6 Ei

...
E6∑

i=1..6 Ei


 (17)

where Ei denotes the energy utilized by leg i of the robot during
5 seconds of simulated movement, measured in N.m.rad.

6. Deviation (3-dimensional): This descriptor captures the range of
deviation of the center of the robot frame versus the expected lo-
cation of the robot if it traveled in a straight line at a constant
speed.

x =




0.95
(
max

t
(x(t ))−min

t
(x(t ))

)

0.2
0.95

(
max

t
(y(t )− yfinal

5 ×t )−min
t

(y(t )− yfinal
5 ×t )

)

0.2
0.95

(
max

t
(z(t ))−min

t
(z(t ))

)

0.2




(18)

where
[
x(t ), y(t ), z(t )

]
denote the position of robot’s center at

time t , and
[
xfinal, yfinal, zfinal

]
denote its final position after 5

seconds.

The robot’s task is to move along the y-axis. Its starting position is
(0,0,0). The deviation along the x and z axes is computed as the
maximum difference in the robot’s position in those dimensions
at any point during 5 seconds. For the y axis,

yfinal
5 corresponds

to the average speed of the robot (the distance covered divided by
total time), therefore

yfinal
5 ×t is the expected position at timestep

t if the robot was moving at constant speed. The deviation from
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the y axis is computed with respect to this “theoretical” position.

To obtain values in the range [0,1], the final behavioral descrip-
tors are multiplied by 0.95 and then divided by 20 cm (these val-
ues were determined empirically).

7. Total ground reaction force per leg (6-dimensional): This behav-
ioral descriptor corresponds to the amount of force each leg ap-
plies to the ground, measured as a fraction the total possible
amount of force that a leg could apply to the ground. Specifically,
the measurement is

x =




F1
MF

...
F6

MF


 (19)

where Fi denotes the ground reaction force (GRF) each leg i gen-
erates, averaged over 5 seconds of simulated movement. MF is
the maximum such force that each leg can apply, which is 10N.

8. Relative ground reaction force per leg (6-dimensional): This be-
havioral descriptor corresponds to the amount of force each leg
applies to the ground, relative to that of all the legs:

x =




F1∑
i=1..6 Fi

...
F6∑

i=1..6 Fi


 (20)

where Fi denotes the ground reaction force (GRF) each leg i gen-
erates, averaged over 5 seconds of simulated movement.

9. Lower-leg pitch angle (6-dimensional): This descriptor captures
the pitch angle for the lower-leg with respect to the ground (in a
global coordinate frame), averaged over 5 seconds:

x =




∑
t Θ

L
1 (t )

π×N1
...∑

t Θ
L
6 (t )

π×N6




(21)

where ΘL
i (t ) is the pitch angle of lower-leg i (hence the L in ΘL

i )
when it is in contact with the ground at time t , and Ni is the num-
ber of time-steps for which lower-leg i touches the ground. The
foot pitch angles are in range [0,π] (as the leg can not penetrate
the ground) and normalized to [0,1].

10. Lower-leg roll angle (6-dimensional): This descriptor captures
the roll angle for the lower-leg with respect to the ground (in a
global coordinate frame), averaged over 5 seconds:

x =




∑
t Ψ

L
1 (t )

π×N1
...∑

t Ψ
L
6 (t )

π×N6




(22)

where ΨL
i (t ) is the roll angle of lower-leg i (hence L in ΨL

i ) when
it is in contact with the ground at time t , and Ni is the number of
time-steps for which lower-leg i touches the ground. The foot roll
angles are in range [0,π] (as the leg can not penetrate the ground)
and normalized to [0,1].

11. Lower-leg yaw angle (6-dimensional): This descriptor captures
the yaw angle for the lower-leg with respect to the ground (in a
global coordinate frame), averaged over 5 seconds:

x =




∑
t Φ

L
1 (t )+π

2π×N1
...∑

t Φ
L
6 (t )+π

2π×N6




(23)

where ΦL
i (t ) is the yaw angle of lower-leg i (hence L in ΦL

i ) when
it is in contact with the ground at time t ,and Ni is the number
of time-steps for which lower-leg i touches the ground. The foot
yaw angles are in range [−π,π] and are normalized to [0,1].

12. Random (6-dimensional): The random behavioral descriptor dif-
fers from the other intentionally chosen descriptors in that it
does not consist of one type of knowledge, but is instead ran-
domly selected as a subset of variables from the previously de-
scribed 11 behavioral descriptors. This descriptor is intended to
simulate a situation in which one has little expectation for which
behavioral descriptor will perform well, so one quickly picks a
few different descriptor dimensions without consideration or ex-
perimentation. Instead of generating one such list in this fashion,
we randomly sample from a large set to find the average perfor-
mance of this approach over many different possible choices.

For the random descriptor, each of the 6-dimensions is selected
at random (without replacement) from the 1×3+10×6 = 63 avail-
able behavior descriptor dimensions described in the previous 11
descriptors (1 of the above descriptors is three-dimensional and
the other 10 are six-dimensional):

x =




R1
...

R6


 (24)

where Ri denotes the i th dimension of the descriptor, randomly
selected uniformly and without replacement from the 63 avail-
able dimensions in behavior descriptors 1-11.

It was necessary to compare these behavioral descriptors in sim-
ulation because doing so on the physical robot would have required
months of experiments and would have repeatedly worn out or bro-
ken the robot. We modified the simulator from the main experiments
(section 1.4) to emulate 6 different possible damage conditions, each
of which involved removing a different leg. The MAP-Elites algo-
rithm, run for 3 million iterations, was used to create the behavior-
performance maps for each of the behavioral descriptors (using a
simulation of the undamaged robot). During the generation of the
behavior-performance maps, the behaviors were stored in the map’s
cells by discretizing each dimension of the behavioral descriptor space
with these five values: {0,0.25,0.5,0.75,1} for the 6-dimensional be-
havioral descriptors, and with twenty equidistant values between [0,1]
for the 3-dimensional behavioral descriptor. During the adaptation
phase, the behaviors were used with their actual values and thus not
discretized.

We independently generated eight maps for each of the 11 inten-
tionally chosen behavioral descriptors. Twenty independently gener-
ated maps were generated for the random behavioral descriptor. We
launched ten replicates of each descriptor for each of the maps (eight
for intentionally chosen behavioral descriptors and twenty for random
behavioral descriptor) and each of the six damage conditions. There
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are therefore 10× 8× 6 = 480 replicates for each of the intentionally
chosen descriptors, and 10× 20× 6 = 1200 replicates for the random
descriptor. In all these simulated experiments, to roughly simulate the
distribution of noisy odometry measurements on the real robot, the
simulated performance values were randomly perturbed with a mul-
tiplicative Gaussian noise centered on 0.95 with a standard deviation
of 0.1.

We analyze the fastest walking speed achieved with each behavioral
descriptor after two different numbers of trials: the first case is after 17
trials, and the second case is after 150 trials.

Results The following results include 17 trials on the simulated
robot, which was the maximum number of trials required for Intelli-
gent Trial and Error to find a compensatory gait in the Supplementary
Experiment S2. The post-adaptation performance achieved with our
alternative, intentionally chosen behavioral descriptors (numbers 2-
11) was similar to the original duty factor behavioral descriptor (num-
ber 1) (Extended Data Fig. 4a). All 11 alternative, intentionally chosen
descriptors (numbers 2-11) led to a median performance within 17%
of the duty factor descriptor (performance: 0.241 [0.19; 0.29] m/s). The
difference in performance was effectively nonexistent with the devia-
tion descriptor (0.241 [0.14; 0.31] m/s), the total GRF descriptor (0.237
[0.15; 0.30] m/s), and the lower-leg roll angle descriptor (0.235 [0.14;
0.31] m/s). The lowest performance was discovered with the rela-
tive GRF descriptor (16.7% lower than the duty factor descriptor, 0.204
[0.08; 0.31] m/s). In terms of statistical significance, the performance
achieved with the duty factor descriptor was no different from the de-
viation (p = 0.53) and total GRF (p = 0.29) descriptors. With all the
remaining descriptors, the difference in performance was statistically
significant (p < 10−3), but it did not exceed 0.04m/s. Additionally, the
compensatory behaviors discovered with all our 11 alternative, inten-
tionally chosen descriptors were always faster than the reference gait
for all damage conditions.

To check whether our alternative, intentionally chosen behavioral
descriptors lead to better performance if allowed a higher number of
evaluations, we extended the experiments to 150 trials on the robot
(Extended Data Fig. 4b). After 150 trials, the difference in performance
between the duty factor behavioral descriptor (0.277 [0.24; 0.34] m/s)
and our alternative behavioral descriptors was further reduced. For
all but three alternative, intentionally chosen descriptors (displace-
ment, total GRF and lower-leg yaw angle), the median performance
was within 4% of the duty factor descriptor. The difference in perfor-
mance was at ±3.6% with the orientation (0.274 [0.22; 0.32] m/s), total
energy (0.274 [0.19; 0.33] m/s), relative energy (0.273 [0.20; 0.32] m/s),
deviation (0.287 [0.21; 0.34] m/s), relative GRF (0.266 [0.15; 0.35] m/s),
lower-leg pitch angle (0.271 [0.21; 0.34] m/s) and lower-leg roll angle
(0.268 [0.17; 0.34] m/s) descriptors. In the three remaining behavioral
descriptors, displacement, total GRF, and lower-leg yaw angle, the per-
formance was 0.264 [0.18; 0.32] m/s, 0.299 [0.25; 0.35] m/s and 0.255
[0.18; 0.32] m/s, respectively (difference at ±7.8% of duty factor de-
scriptor in all three cases). In terms of statistical significance, the per-
formance achieved with the duty factor descriptor was barely statisti-
cally significantly different from the deviation descriptor (p = 0.041).
In all the remaining descriptors, the performance difference was sta-
tistically significant (p < 10−2), but no larger than 0.02m/s.

Our random behavioral descriptor also performed similarly to the
duty factor descriptor. After 17 trials, the performance of M-BOA with
the maps generated by the random descriptor was 0.232 [0.14; 0.30]
m/s (4.2% lower than the duty factor descriptor performance). While
the difference is statistically significant (p < 10−3), the difference in
performance itself was negligible at 0.01m/s. This difference in perfor-

mance was further reduced to 3.6% after 150 trials (random descriptor
performance: 0.274 [0.21; 0.34] m/s, duty factor description perfor-
mance: 0.277 [0.24; 0.34] m/s, p = 0.002). Moreover, as with the in-
tentionally chosen behavioral descriptors, the compensatory behavior
discovered with the random descriptor was also faster than the refer-
ence gait.

These experiments show that the selection of the behavioral dimen-
sions is not critical to get good results. Indeed, all tested behavioral
descriptors, even those randomly generated, perform well (median
> 0.20 m/s after 17 trials). On the other hand, if the robot’s design-
ers have some prior knowledge about which dimensions of variation
are likely to reveal different types of behaviors, the algorithm can ben-
efit from this knowledge to further improve results (as with the duty
factor descriptor).

7 Caption for Supplementary Videos

Video S1

Damage Recovery in Robots via Intelligent Trial and Error. The video
shows the Intelligent Trial and Error Algorithm in action with the two
robots introduced in this paper: the hexapod robot and the 8 degrees
of freedom robotic arm (Fig. 3). The video shows several examples of
the different types of behaviors that are produced during the behavior-
performance map creation step, from classic hexapod gaits to more
unexpected forms of locomotion. Then, it shows how the hexapod
robot uses that behavior-performance map to deal with a leg that has
lost power (Fig. 3a:C3). Finally, the video illustrates how the Intelligent
Trial and Error Algorithm can be applied to the second robot and to
different damage conditions.

Video S2

A Behavior-Performance Map Containing Many Different Types of
Walking Gaits. In the behavior-performance map creation step, the
MAP-Elites algorithm produces a collection of different types of walk-
ing gaits. The video shows several examples of the different types of
behaviors that are produced, from classic hexapod gaits to more un-
expected forms of locomotion.
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