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A Framework

A.1 Aggregation across productive units (Equation 1)

Numerous micro-econometric studies have identified the e↵ects of momentary temperature on small

units of analysis, such as the e↵ect of variation in hourly temperature on county-level agricultural

yields1,2 or the e↵ect of variation in daily temperatures on the productivity of individual workers3,4.

In these cases, the e↵ect of temperature on these scales is highly nonlinear (Figure 1), which has lead

some researchers to suggest that the macroeconomy should exhibit similarly nonlinear responses5,6.

However, the units analyzed in micro-econometric studies are vanishingly small, in terms of economic

value, relative to the scale of a macroeconomy. For example, the output of an individual worker is

negligible relative to the output of an entire country. Further, the periods of time analyzed in micro-

econometric studies are typically short, ranging from an hour to a day in most cases and sometimes

weeks or months—periods that are much shorter than the annual timescale over which macroeconomic

data are typically aggregated⇤. Here we use a simple model to consider how highly nonlinear changes

⇤In some cases,1,7 prior micro studies recover the net e↵ect of a short-lived (e.g. daily) temperature event using
annual data. In these cases, the “daily response” is actually the cumulative response to a daily event, integrated over a
period substantially longer than a day. This approach is particularly important in cases where short-lived events have
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in productivity on short time scales and across many small elements in the economy might aggregate

and be reflected in macroeconomic responses over longer periods of time.

We partition a macroeconomy into “industries” indexed by i, with all individual units of production

within each industry assumed to respond identically to temperature. Each industry could thus be

highly specific—for example, one industry could be all maize farms using a given technology to produce

a specific variety of maize. Production in each industry occurs at numerous small locations in space,

indexed by `; countries, indexed by L, are large collections of locations. The incremental moments

in time that micro studies have analyzed (e.g. hours) are indexed by t and longer periods of time

composed of many sequential moments (e.g. years) are indexed by ⌧ .

We follow the notation of Deryugina and Hsiang (2014)7 and describe capital K
i

and labor L

i

in each industry as having respective productivities A

K

i

and A

L

i

that are functions of instantaneous

temperature T

`t

experienced at a location ` and time t. The total quantity of capital and labor

allocated to industry i could also potentially change with temperature. The price of a unit of output is

p and ↵ is a constant in this stylized production function. For a subunit of the economy at a location

` at time t using technologies described by i, total production Y

i`t

is then

Y

i`t

(T
`t
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i

�
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i
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)K
i`t
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)
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. (2)

For simplicity, we assume that capital and labor are not rapidly reallocated across locations in response

to temperature changes†. Changes in the total allocation of time individuals allocate to labor is known

to change with temperature3, however this response can be easily described by changes to labor

productivity A

L

i

since we observe empirically that labor is not reallocated across di↵erent industries

in response to temperature3,7. Note that in a competitive equilibrium Ki`t
Li`t

= ↵

1�↵

, such that capital

labor ratios are fixed and output scales linearly with the total quantity of capital and labor allocated

to i (constant returns to scale).

For notational convenience, we define U

i`t

= p

i

K

↵

i`t

L

1�↵

i`t

as a scalar measure of resources applied

to i at location ` at time t. We think of U
i

as describing the number of modular units of production

allocated to industry i (e.g. firms). These assumptions and notations allow us to simplify Equation 2

to

Y
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= f
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(3)

where f
i

(T
`t

) is a function describing how overall productivity in industry i responds to instantaneous

temperatures. Note that for clarity, we have assumed here that the economy is additively separable

across industries and locations, with firms behaving as atomistic producers. It is likely that large scale

climatic changes generate emergent impacts on firms beyond what an atomistic firm might experience

in response to an isolated change in their individual climate exposure, since cross-firm spillovers might

be substantial and novel price responses might emerge when climatic events are correlated in either

delayed impacts8,9.
†This assumption is consistent with findings in Deryugina and Hsiang (2014) from the United States.
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time or space. For example, climate-induced interruptions in a firm’s supply chain might amplify the

economic impact of a climatic event that the firm is itself exposed to. If these e↵ects are substantial

and cross national boundaries, then our empirical approach below is likely to understate the overall

economic impact of large scale climatic changes since we focus on country-level changes as if they occur

in isolation.

To form a measure of aggregate output, such as Gross Domestic Product (GDP), we must sum

across all industries i and integrate production across all locations in a country and all moments in

time within the period of observation. Thus total output in country L during year ⌧ is then:

Y

L⌧

=
X

i

Y

iL⌧

=
X

i

Z

t2⌧

Z

`2L

f

i

(T
`t

)U
i`t

d`dt. (4)

The spatial and temporal distribution of units U
i`t

, as well as the spatial distribution of atmospheric

temperatures, will determine what temperatures T
`t

individual units are exposed to. Within country

L and period ⌧ , we can integrate the number of points in time when individual productive units

are exposed to a momentary local temperature T

i`t

to construct a marginal distribution function‡

summarizing temperature exposure within industry i. Let the shape of this marginal distribution

function be described by g

i

(.) which is mean zero and can be shifted by the location parameter T̄

L⌧

,

defined as average temperature in country L during period ⌧ . Thus g
i

(T � T̄

L⌧

) looks like a histogram

of the temperatures that units U

i

are exposed to within a large region and interval of time. For

simplicity, here we assume g

i

(.) does not change in shape across countries or years, although the

location parameter T̄
L⌧

may change. In the real world, the shape of g
i

(.) may change based on changes

in the within-country and within-year distribution of temperatures that productive units are exposed

to.

We note that g
i

(.) has two important properties. First, for a single industry, the total quantity or

“mass” of productive units M
i

is the integral of g
i

(.) over all possible temperatures

M

i

=

Z
1

�1

g

i
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)dT =

Z

t2⌧

Z

`2L

U

i`t

d`dt. (5)

Second, the shape of g
i

(.) reflects the distribution of productive units across space and time such that

Z
x

�1

g

i

(T � T̄
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)dT =

Z

t2⌧

Z

`2L

U

i`t

1[T
`t

< x]d`dt (6)

for x 2 (�1,1).

We can now write total production at the aggregate level in terms of average temperature T̄

L⌧

,

‡Note that this marginal distribution is not a marginal probability distribution because the total number of units at
each temperature are not normalized by the total number of units. i.e. this marginal distribution is more analogous to
a histogram measuring frequencies rather than a histogram measuring probabilities.
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measured at the aggregate level, and g

i

(.)

Y (T̄
L⌧

) =
X

i

Y

i
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)
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which no longer requires we know detailed information on the spatial and temporal distribution of

U

i`t

. If the shape of g
i

(.) is relatively unchanged across periods ⌧ , then T̄

L⌧

is a su�cient statistic

for temperature exposure at the aggregate level. As shown in Figure 1, changing annual average

temperature T̄

L⌧

shifts the distribution of temperature exposure for individual micro-level units.

Essentially, we have changed variables by collapsing the joint spatial and temporal distribution

of temperatures and micro-level productive units into the marginal distribution g

i

(.) and a location

parameter T̄
L⌧

, which is a country’s annual average temperature.

A.2 Deriving Figure 1

Figure 1 depicts how the application of Equation 7 (i.e. Equation 1 in the main text) to previously

derived micro-level response functions generates a macro-level response. Prior work1–5 has shown that

basic units of the economy, such as crops and labor, have a response to momentary temperature that

is highly nonlinear and well-approximated by a piecewise-linear function similar to Figure 1d (recall

Figure 1a-c). In general, the productivity of basic units in the economy is either flat or slightly increas-

ing at lower temperatures, and then declines steeply with temperature above a critical temperature

threshold. These responses are the function f

i

(T ) in Equation 7. Thus, to develop a sense of how

macro-level responses to temperature should look, we assume the micro-level function f

i

(.) is piecewise

linear with kink at the critical instantaneous temperature T = T̃ :

f(T ) =

(
c1 + b1T if T < T̃

c2 + b2T if T � T̃

(8)

where where slope terms b1 and b2 and intercept terms c1 and c2 satisfy

c1 + b1T̃ = c2 + b2T̃

b1 > 0, b2 < 0, �b2 > b1. (9)

These conditions ensure f

i

(.) is continuous and non-di↵erentiable due to a “kink” at the critical

temperature T̃ , with a downward slope above T̃ that is steeper than the upward slope below T̃ . Figure

1d displays these properties.

For ease of comparability across countries and industries of di↵erent economic size, we normalize

total production in an industry by the the total mass of productive units M
i

and focus on Yi
Mi

. When

examining data, we implement an analogous normalization by focusing on GDP per capita§. We are

§The standard GDP per capita normalization does not account for capital, however we note that, at least in our
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interested in how aggregate productivity changes with each country’s average annual temperature, so

we di↵erentiate this normalized measure Yi
Mi

with respect to T̄

L⌧

while substituting from Equation 7
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#
(10)

where the final equality is simply separating the integral into a portion below the critical temperature

and a portion above the critical temperature. These integrals appear di�cult to di↵erentiate because

the shape of g
i

(.) is unknown, but a change of variables clarifies the derivative by making the shift

parameter T̄

L⌧

an argument of f
i

(.) instead. Define a new variable T

0 = T � T̄

L⌧

. We analogously

define T̃

0 such that T̃ = T̃

0 + T̄

L⌧

. Substituting T

0 and T̃

0 into Equation 10 and noting the linearity of

f

i

(.) within the range of each integral we have
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) + b2mi2(T̄L⌧

) (11)

where m

i

(T̄
L⌧

) is defined as the fraction of productive unit-hours exposed to T below T̃ for a given

national mean temperature T̄

L⌧

. Specifically,

m

i1(T̄L⌧

) =

R
T̃

0+T̄L⌧

�1

g

i

(T 0)dT 0

M

i

=

R
T̃

�1

g

i

(T � T̄

L⌧

)dT
R
1

�1

g

i

(T � T̄

L⌧

)dT

m

i2(T̄L⌧

) = 1�m

i1(T̄L⌧

)

and m1 and m2 are illustrated as two shaded masses in Figure 1e.

Thus, the country level aggregated response Yi
Mi

can be computed by integrating the weighted

average in Equation 11 with respect to average annual temperature T̄

L⌧

, where the weights m

i1 and

m

i2 are determined by the shape of the distribution of productive units g
i

(.) and its location relative

to the critical temperature T̃ . This integration is depicted in Figure 1f. The aggregated productivity

function recovered from this integration will be smooth if g
i

(.) is continuous and contains no point-

masses, even though there is a known sharp kink in the micro-level response function f

i

(.). The

distribution g

i

(.) “smoothes” over this kink, causing the the e↵ect of average warming (increasing

T̄

L⌧

) to be much less abrupt on the macro-economy than local and instantaneous warming is on micro-

level productive units. A broader distribution function g

i

(.), either caused by a wider dispersion of

simple model, capital-labor ratios are constant in equilibrium so this normalization would still be a valid approach to
comparing countries of di↵erent size.
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productive assets across space and/or longer periods of observation, will cause more smoothing.

A key characteristic of interest regarding the shape of Yi
Mi

is the temperature at which the peak

of the function is located. This turning point occurs at the temperature where the derivative of the

response is zero:

@

@T̄

L⌧

✓
Y

i

M

i

◆
= b1mi1(T̄L⌧

) + b2mi2(T̄L⌧

) = 0

which implies that the turning point temperature T̄

⇤

L⌧

has the property:

m

i2(T̄ ⇤

L⌧

)

m

i1(T̄ ⇤

L⌧

)
=

b1

�b2
< 1

where the inequality comes from the conditions in Equation 9. This implies

T̄

⇤

L⌧

< T̃

if g
i

(.) is roughly symmetric or negatively skewed.¶ Note that the greater the di↵erence between |b1|
and |b2|, the lower the temperature at which the peak occurs. Also, the greater the dispersion in g

i

(.),

the lower the value of T̄ ⇤

L⌧

.

For multiple sectors, total production Y

M

=
P

i

Yi
Mi

will be concave in annual average temperature

because it is the weighted sum of several concave functions of annual average temperature.

We note that this result reconciles a long-standing debate about whether degree days or seasonal

averages are better measures of exposure to climate change,10 since we have shown that the two

measures are closely related mathematically (and identical under certain assumptions). The kinked

micro-level response reported by degree day studies1,11 has a direct mapping (Equation 7) to the

seasonal average response that is smoother and roughly quadratic.10 The quality of fit may di↵er

between these two approaches depending on spatial and temporal autocorrelation of the outcome

variable within averaging periods and regions, as well as the extent to which g

i

(.) is actually the same

across di↵erent units of analysis. Nonetheless, at their core the two approaches are not fundamentally

di↵erent and may produce findings that are mutually consistent even though the temperature response

functions recovered by the two approaches di↵er.

A.3 Growth e↵ects

Is it plausible that temporary productivity losses caused by temperature can translate into endur-

ing productivity shocks? That is, could we expect that economic growth is a↵ected by temporary

productivity changes? The micro-level responses to temperature in prior analyses (discussed above)

generally characterize temporary changes in productivity. However, as discussed in detail below, our

main analysis estimates the nonlinear e↵ect of temperature on GDP per capita growth, in part be-

cause log GDP per capita is known to have a unit root and thus requires first di↵erencing for proper

inference.12 As detailed in Section C.2 below, this transformation of the dependent variable does not

¶This condition may not hold if gi(.) is strongly positively skewed, depending on the values b1 and b2.
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itself imply that output is depressed relative to trend in the long run; getting at this question requires

examining the cumulative e↵ect of lagged independent variables, which we implement in Section C.2.

(As stated in the main text and detailed in Section C.2, our results are somewhat ambiguous as to

whether the nonlinear e↵ect of temperature generates a permanent or temporary loss of output relative

to trend.) In this section we point out how, in a simple model, temporary productivity losses generated

through a mechanism like Equation 2 could generate growth e↵ects if savings rates do not change with

temperature to compensate and o↵set temporary productivity losses.

Let total productivity be smooth, twice di↵erentiable, and concave with respect to T̄ , as derived

above in Section A.1-A.2 (we drop the
iL⌧

subscripts here). If year-to-year changes in capital stocks

are modest, then we can apply Taylor’s theorem and linearize output with respect to total productive

units M , with local slope  (T̄ )�:

Y =  (T̄ )�M (12)

where @

2

@T̄

2 < 0. Thus, the temporary change in temperature a↵ects output similarly to a change in

total factor productivity, akin to the approach in Nordhaus and Boyer (2000)13.

Following seminal work by Solow (1956)14, we assume a fraction � of M depreciates each period

and a fraction s of output is saved and re-invested in augmenting M . The equation of motion for M

is then
@M

@t

= sY � �M

where M is measured in units of U , which recall accounts for both capital and labor contributions to

production. Substituting from Equation 12:

@M

@t

= s (T̄ )�M � �M

=
�
s (T̄ )� � �

�
| {z }
net growth if >0

M.

Thus the productive stock of a country M will grow on net if savings rates, average temperature, and

the initial stock M (which a↵ects �) allow investment to outpace depreciation.k

Importantly, if productivity is reduced in a given period due to temperature, this has an impact on

output in subsequent periods because it reduces investment in M . To see this, note that for a given

initial stock M

t�1 just prior to a temperature realization T̄

t�1, then output in the subsequent period

will be

Y

t

=  (T̄
t

)�M
t

=  (T̄
t

)� (M
t�1 +�M

t�1!t

)

=  (T̄
t

)�
�
M

t�1 + s (T̄
t�1)�Mt�1 � �M

t�1

�
. (13)

Di↵erentiating Equation 13 with respect to the prior year’s temperature T̄

t�1, we see that current

kHere we assume that the climate does not a↵ect depreciation, although recent evidence suggest this may be an
important direction for future work.15,16
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output is influenced by temperature changes in the prior year

@Y

t

@T̄

t�1
= s (T̄

t

)�2M
t�1

0

@@

@T̄

�����
T̄t�1

1

A (14)

because output is reduced through lowered reinvestment during a less productive prior period. Here, the

savings rate s is assumed fixed as in the standard Solow model, although relaxing this assumption might

alter this result. While e↵ects may diminish with time if savings compensate for productivity losses,⇤⇤

i.e. @s

@Y

< 0, empirically it has been found that individuals tend to prefer to smooth consumption

(1 � s)Y and allow savings to fluctuate in response to climate-related productivity shocks18–20, i.e.
@s

@Y

> 0. Nevertheless, it is possible that some amount of compensatory savings may occur in later

periods causing production to eventually return to trend.21 Whether this occurs is ultimately an

empirical question, which we consider in Section C.2 below.

B Data and methods

B.1 Data

Our main source of data on per capita GDP is the World Bank’s World Development Indicators22,

which cover the years 1960-2012 for all countries in the world, although data for only a subset of

years are available for some countries. To study e↵ects in agricultural and non-agricultural sectors,

we use World Bank data on value added for di↵erent sectors, also available for most countries over

the same period. As robustness we re-estimate our main results with income data from the Penn

World Tables version 8.023. Our source for temperature and precipitation data is the University of

Delaware reconstruction assembled by Matsuura and Willmot24, which contains 0.5 degree gridded

monthly average temperature and total precipitation data for all land areas over the period 1900-2010,

as interpolated from station data. We aggregate the 0.5 degree grid cell estimates to the country-year

level, weighting by population density in the year 2000 using data from the Gridded Population of the

World25. Our full dataset contains 6584 country-year observations between the years 1960-2010.

B.2 Empirical approach

Using a 51-year longitudinal sample of countries around the world, we take first di↵erences of the nat-

ural log of annual real (inflation-adjusted) gross domestic product per capita Y . These first di↵erences

(�Y ) can be interpreted as per-period growth rates in income. We deconvolve the factors that might

a↵ect these changes in income with a simple and general model:

�Y

it

= h(T
it

) + �1Pit

+ �2P
2
it

+ µ

i

+ ⌫

t

+ ✓

i

t+ ✓

i2t
2 + "

it

(15)

where countries are indexed by i and years by t. Note that these definitions, used through the remainder

of the SOM, di↵er from the definitions for i and t used in Sections A.1-A.3. All time-invariant factors

that influence countries’ average growth rates, such as history, culture or topography, are accounted

⇤⇤For a related model of non-savings adaptive compensation, see Dell et al (2009)17.
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for by the country-specific constant terms µ

i

(fixed e↵ects). Abrupt global events, such as shocks

to energy markets or global recessions, are captured by the year fixed e↵ects ⌫

t

. Gradual changes to

individual countries’ growth rates that may be driven by slowly changing factors within a country, such

as demographic shifts, trade liberalization, and evolving political institutions, are accounted for by the

flexible country-specific time trends ✓

i1t + ✓

i2t
2. Because our dependent variable is the derivative of

income, quadratic country-specific time trends permit growth rates to evolve nonlinearly over time,

allowing us to account for country-specific cubic polynomials in income levels (by integrating first

di↵erences).††

In this framework, each country is allowed its own level and nonlinear trend in growth, and the

impact of temperature on growth is identified from within-country deviations from this trend. Control-

ling for trends and convergence in incomes21 using country-specific trends outperforms auto-regressive

models26. We explicitly account for the e↵ect of precipitation P and precipitation-squared P

2 because

idiosyncratic changes in local annual temperatures tend to be correlated with changes in precipita-

tion27.

Importantly, our technique to controlling for both time-invariant and time-varying influences is

more reliable than only controlling for observed variables (e.g. regression on explicit covariates, such

as demographic or political variables) because it flexibly accounts for both observed and unobserved

controls, it is robust to mismeasurement of controls, and it allows these controls to di↵erentially

influence di↵erent countries28. For example, even without explicitly modeling the e↵ect of demographic

trends, our model accounts for the fact that nonlinear demographic trends may be di↵erent in di↵erent

countries, with measurement errors that di↵er between countries, and the e↵ect of demographic trends

on income may also di↵er across countries. Furthermore, because many traditional “control” variables

are themselves likely a↵ected by climatic events, including them may generate bias in our estimates of

interest, an issue known as “bad control”29. This issue is discussed in detail by ref [28].

Our focus is the potentially non-linear relationship between annual temperatures T

it

and income

growth described by h(T
it

). We begin by estimating h(T
it

) as a simple quadratic (i.e. h(T
it

) =

�1Tit

+�2T
2
it

), exploring more flexible functional forms such as higher order polynomials and restricted

cubic splines for robustness.

Although the motivating micro evidence presented in Figure 1a-c focuses on the e↵ect of tempera-

ture on the level of output, we explicitly model the e↵ect of temperature on growth because measures

of GDP within a country exhibit such high levels of serial correlation (⇢ = 0.999) that they are in-

distinguishable from a random walk, i.e. they have a unit root. Because unit root processes are

non-stationary, regressions using unit root outcomes often generate spurious results and traditional

test statistics fail.30 Accounting for country-specific trends in levels does not alleviate this concern.

First di↵erencing income, i.e. using growth as an outcome, is the standard approach in this context.31

After first di↵erencing and accounting for year e↵ects as well as country-specific quadratic trends in

growth, serial correlation in the outcome is much less problematic (⇢ = 0.125). Because some serial

correlation persists in the outcome, even after first di↵erencing, we non-parametrically adjust our stan-

dard error estimates to account for arbitrary patterns of autocorrelation between residuals within each

††Results look similar if we include only a linear time trend ✓it, but an F-test strongly rejects the null that the
country-specific quadratic time trends are jointly zero (p<0.01), and so we retain the quadratic trends in our main
specification.
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country.32

If temperature temporarily a↵ects productivity, as the micro evidence presented in Figure 1a-c

suggests, this will still appear as a change in the current growth rate as estimated in Equation 15.

It is also possible that temperature a↵ects the growth rate in economies that exhibit unit-root-like

behavior, such that these e↵ects permanently alter income trajectories. This could occur for (at least)

two important reasons. First, as discussed in section A.3, level e↵ects in one period can a↵ect output

in the next period by a↵ecting the growth rate of the capital stock, an e↵ect that could be amplified

if productive capital must be diverted to invest in costly adaptation measures33. Second, changes in

temperature could directly a↵ect the rate of technological change (the basis of growth in standard

economic growth models), for instance if warmer temperatures adversely a↵ect the cognition needed

for innovation.4,34

If temperature permanently a↵ects income through growth e↵ects, this has larger consequences for

the projected long run e↵ects of climate change, as small changes in annual growth rates cumulated

over a long period can have large e↵ects on total GDP and living standards15,34. Thus determining

the structure of this temperature e↵ect (growth vs. levels) is important for optimal policy.15 Following

ref [35], we introduce lagged independent variables to Equation 15 to examine this issue explicitly (see

Section C.2 below), finding evidence for a mixture of growth and level e↵ects consistent with prior

work. Notably, the qualitative nature of our mean climate projections do not change under these

alternative models, in large part because our mean estimates are consistent with a growth e↵ect that

permanently a↵ect income.

It is often wrongly claimed that the empirical approach in Equation 15, by using variation in

annual temperatures over time, implicitly assumes that economies cannot adapt. In a model with

country fixed e↵ects and a linear temperature term, it is true that all identifying variation comes from

within-country variation in temperature over time (what is commonly considered “weather”), variation

that is potentially hard for economic agents to anticipate and adapt to. However, in a fixed-e↵ects

model with higher-order temperature terms, both within-country and cross-country variation are used

to identify the e↵ects of temperature. Countries with higher average temperature are permitted to

have a di↵erent response to within-country temperature changes. Thus, using both these sources of

variation implicitly allows for more historical adaptation to longer-run climate, although the short-run

changes in temperature that a↵ect output remain unanticipated. In our projections that utilize these

estimates, as a given country warms to a new average temperature, the e↵ect of additional warming

is allowed to change in a way that reflects how other countries have been observed to respond at that

temperature. For an extended treatment of this important methodological issue, see ref [36], and for a

clear short treatment see the SOM of ref [37].

To more clearly demonstrate how the global nonlinear response is identified, Figure ED1 shows

how individual response functions for selected countries at di↵erent points in the global temperature

distribution are aggregated in the global analysis to construct the global non-linear response function.

Variation within individual countries identifies the local derivative of h(T
i

) in the neighborhood of each

country’s average temperature. The integral of these locally estimated derivatives is our estimate for

h(T ).

A critical assumption of this approach is that there exists a global function h(.) on which all
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countries lie. We test this assumption by examining subsamples of the data in the main text (Figure

2) and find no evidence that h(.) is dramatically di↵erent across various subsamples. Additional

comparisons across subsamples are presented below.

Another approach to examining whether h(.) is globally generalizable is to ask whether local slope

described by a single country (as depicted in Figure ED1) appears to not lie tangent to the global

estimate for h(.). We test for this in Figure ED1h by estimating the local marginal e↵ect @Yi
@Ti

for each

country’s linear time series (the local slope). We do this by running a growth regression separately for

each country:

Y

it

= ↵

i

+ �

i

T

it

+ �

i

P

it

+ ✓

i

t+ ✓

i2t
2 + "

it

(16)

and plotting the estimated �

i

’s (with confidence intervals) as a function of each country’s mean tem-

perature. We then compare these estimated marginal e↵ects, on which we impose no functional form

with respect to a country’s average temperature, with the derivative of the global response function

estimated by Equation 15 shown by the black line. As expected, individual country-specific marginal

e↵ect estimates from Equation 16 are noisy because each uses less than 1% of our data, but they exhibit

a clear downward sloping relationship with temperature (indicating a nonlinear and concave h(.)) and

only in 9% of cases (15 out of 166) does the marginal e↵ect of the global response lie outside of the

95% confidence interval for a country’s estimated �

i

. (Notably roughly half of the cases for which this

occurs are major oil-producing countries.) This is fully consistent with our estimated sampling error

and provides no evidence against the hypothesis that a global h(.) describes a generalizable response.

A third and related approach to understanding whether the non-linear response observed in Figure

2a is globally generalizable, or whether it is just a composite e↵ect of a negative and linear response in

poor, hot countries and no response in rich, cooler countries, is to allow temperature to enter linearly

in the regression and then to interact it with both country average temperature as well as country

average income. That is, h(.) would be reformulated in the following way:

h(T
it

) = �1Tit

+ �2(Tit

· T̄
i

) + �3(Tit

· Ȳ
i

) (17)

where T̄

i

and Ȳ

i

are the average temperature and (log) average GDP/capita in country i, respectively.

In the absence of the third term (the interaction with country average income), a non-linear and concave

temperature response similar to Figure 2a would be indicated by �1 > 0 and �2 < 0. However, if this

di↵erential response was actually being driven by income – and in particular by the fact that poor

countries respond di↵erently to temperature and that hot countries tend to be poor – then the inclusion

of the �3(Tit

· Ȳ
i

) term should mean that �2 = 0, with �1 < 0 and �3 > 0 (that is, negative e↵ects of

temperature at low income levels that attenuate as incomes rise).

Results of re-estimating our main specification but substituting the interactions in Equation 17

for the quadratic are shown in Figure ED1h and Table S1 (with precipitation deviations similarly

interacted with country-average precipitation and country-average GDP per capita). We again find

strong evidence of a global non-linear temperature response, with �1 > 0 and �2 < 0 as expected

and each statistically significant (as shown in first two rows of Table S1), and we find strong evidence

that this non-linear response is driven by average temperature rather than di↵erences in income:

introducing the temperature-income interaction does not change how the temperature response varies
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with average temperature. The estimated coe�cients on the temperature-income interaction are very

small, providing further evidence that the non-linearity we describe is due to di↵erences in average

temperature rather than income.

Figure ED1h plots the estimated marginal e↵ect of temperature at di↵erent points in the distribu-

tion of average temperatures, as estimated from regressions with and without the temperature-income

interaction included. In both cases, positive marginal e↵ects at low temperatures and negative marginal

e↵ects at higher temperatures indicate a globally non-linear response, with point estimates nearly iden-

tical whether or not the temperature-income interaction is included (albeit marginally noisier at lower

temperatures when income is included).

Supplementary Table S1: Regression estimates corresponding to Equation 17. All models
include precipitation and precipitation interacted with average precipitation, country fixed e↵ects,
quadratic country time trends, and year fixed e↵ects as indicated in the bottom row, with errors
clustered at the country level. Temperature is measured in �C , with T̄

i

representing the average
temperature in country i over the period. Columns 2-3 include temperature and precipitation inter-
acted with country average GDP/capita over the study period (Ȳ

i

), and column 4 temperature and
precipitation interacted with country-average GDP/capita in logs. In both cases we de-mean the in-
come measure such that the temperature e↵ects in the first two rows of the table can be interpreted
as the e↵ect evaluated at global average income. Column 3 is the same as Column 2 but substitutes
continent-by-year fixed e↵ects for the year fixed e↵ects. The marginal e↵ects plotted in Figure ED1i
correspond to the coe�cient estimates in the first two rows of columns 1 and 2. Asterisks indicate
statistical significance at the 1% ⇤⇤⇤,5% ⇤⇤, and 10% ⇤ levels.

(1) (2) (3) (4)
Tit 0.0126⇤⇤⇤ 0.0121⇤⇤ 0.0129⇤⇤ 0.0119⇤

(0.0037) (0.0060) (0.0059) (0.0071)

Tit ⇤ T̄i -0.0010⇤⇤⇤ -0.0009⇤⇤⇤ -0.0009⇤⇤⇤ -0.0009⇤⇤

(0.0002) (0.0003) (0.0003) (0.0004)

Tit ⇤ Ȳi 0.0000 0.0001
(0.0002) (0.0002)

Tit ⇤ log(Ȳi) 0.0003
(0.0022)

Observations 6584 6584 6584 6584
R squared 0.285 0.286 0.367 0.286
Fixed e↵ects year year cont-by-year year

C Robustness and generalizability of the main result

C.1 Robustness to model specification, samples, and sources of data

Our main result that the response of growth to temperature is nonlinear and concave with an optimum

near 13�C. Here we show that this result is robust to data sample, model specification, and source of

data.

Alternative samples Table ED1 provides our benchmark regression estimates of Equation 15 (col-

umn 1) and shows how these estimates changes under alternative samples. In column 2 we restrict
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the sample to countries with at least 20 years of growth data (as in ref[35]), in column 3 we drop

oil-rich countries (defined as countries where at least 20% of GDP comes from oil; these countries

tend to be both rich and hot), in column 4 we drop the US and China from the sample. Removing

oil countries has limited impact on the estimated response of total GDP and agricultural GDP, but

it alters the estimated e↵ect of temperature on non-agricultural GDP such that the response to high

temperatures is substantially steeper (⇠40%). This suggests that oil-production is likely less sensitive

to temperature than other non-agricultural components of these economies.

Specifying controls Columns 4-10 of Table ED1 demonstrate our main result is robust across

models that use alternative set of controls, relative to our benchmark model. Column 5 replaces year

fixed e↵ects with more flexible continent-by-year fixed e↵ects (to account for continent-specific shocks

in a given year that could be correlated with both temperature and growth, such as ENSO38). Column

6 is the same but drops country-specific trends from the model. Column 7 is the benchmark model but

drops year fixed e↵ects entirely. Columns 8-10 are the benchmark model plus 1, 3, and 5 lags of the

dependent variable (growth) in the model, as is sometimes done in the macroeconomic literature to

account for potential time-varying omitted variables, such as partially durable capital investments39,40.

Data source Column 11 estimates our benchmark model using growth data from the Penn World

Tables41 instead of the World Bank’s World Development Indicators.

In all cases, the estimated coe�cients change little, remaining consistent in size and sign, and are

highly statistically significant across specifications. The estimated optimal temperature (bottom row)

varies slightly more because it is a nonlinear combination of two uncertain parameters (��1

2�2
); nonethe-

less, it always remains well below the 20-30�C range, as predicted by Figure 1. In general, lower

estimates for the optimum generate larger projected losses from climate change because a lower opti-

mum indicates that wealthier, cooler countries are more negatively a↵ected by warming. As quantified

below, this suggests that damage estimates using our baseline model are, if anything, conservative.

Specifying functional-form of the temperature response In our main text, we model the

e↵ect of temperature on growth using a quadratic polynomial in temperature (i.e. in Equation 15,

h(T ) = �1Tit

+ �2T
2
it

). We use this as our benchmark because it is the most parsimonious form that

accurately describes the dominant pattern in the data. Other researchers sometimes prefer restricted

cubic splines because of their statistical properties,1 but these models do not perform better in this

context and their analytical complexity makes it more di�cult for other researchers to utilize results of

that form (e.g. as in the exercise undertaken by ref. [15]). Figure ED1j-k uses a variety of increasingly

flexible functional forms to estimates the relationship between temperature and growth, using either

higher order polynomials (up to 7th order) or restricted cubic splines (up to 7 knots). The more flexible

functional forms give response functions extremely similar to our main estimate, suggesting that the

inverted-U shaped response function in our main specification is not an artifact of the parsimonious

2nd order polynomial.
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C.2 Growth versus level e↵ects

We test whether temperature is a↵ecting the growth or the level of per capita GDP. As discussed

above, the di↵erence has important implications for the dynamics of future climate change, as a given

e↵ect size in levels will have a much smaller e↵ect on the evolution of GDP over a long period than

the same e↵ect size on growth.15,35 To test for growth versus level e↵ects, we follow ref [35] and

estimate a distributed lag model and then add up e↵ects across years. If temperature a↵ects the level

of output but not its growth rate, then the contemporaneous and lagged e↵ects of temperature should

have opposite signs: the negative e↵ect of a hot year on output in that year would be followed by a

positive e↵ect the following year as the economy rebounds (see Extended Data Fig. ED2a). However,

if warmer-than-average temperatures a↵ect the growth rate of output, then lagged e↵ects should be

zero or could have the same sign if the e↵ects persist. Adding up the e↵ects across years thus allows for

a straightforward test of growth versus level e↵ects. If the sum of contemporaneous and lagged e↵ects

shrinks to zero as additional lags are added, then this indicates mainly level e↵ects; if the summed

e↵ects are indistinguishable from the contemporaneous e↵ect (or larger in absolute magnitude), this

suggest growth e↵ects; something in-between would suggest a combination of growth and level e↵ects.

Importantly, a finding of “only” level e↵ects could still imply a substantial negative impact of

climate change. As visualized by the black lines in Extended Data Fig. ED2a, a level e↵ect of a hot

year on historical production means that output returns to trend following the hot year, but the loss

of output pictured in the hot year is never recouped. If what happens in a historical hot year is then

predictive of what will happen as future temperatures warm, then future warming will similarly lead

to production losses that are not recouped – and these losses will increase over time as temperatures

warm. Nevertheless, it remains the case that a given level e↵ect will have a much smaller e↵ect on

long-run GDP than a same-sized e↵ect on the growth rate: a 1% per �C e↵ect on the level of output

will mean that an instantaneous increase in temperature of 1�C will lower output 100 years later by 1%,

whereas a 1% per �C e↵ect on the growth rate of output implies that an instantaneous 1�C increase

will lower output by about 62% 100 years later.34

Because we are estimating non-linear models, we calculate the marginal e↵ects for both the con-

temporaneous and lagged response functions at each point of the temperature support and add up

these marginal e↵ects over time.‡‡ The result from this procedure is an estimate for the cumulative

e↵ect on income from one degree of warming, as a function of a country’s initial temperature. Fig.

ED2b displays these results for models with up to 5 annual lags, and Table S2 provides corresponding

estimates in table form. While results become noisier as increasing numbers of lags are added, point

estimates indicate growth e↵ects at the hot end of the temperature distribution. At the cold end of the

temperature distribution, mean cumulative e↵ects reverse sign such that after 3 lags are accounted for,

we estimate that the incomes of cold countries are also negatively a↵ected by warming (with substan-

tial uncertainty in this estimate). This suggests that when the dynamic e↵ects of temperature over

time are factored in, hotter countries remain worse o↵ with additional warming, and cooler countries

might not benefit on net. Importantly, however, as more lags are included, uncertainty in the cumula-

tive e↵ect increases – which is expected because we are adding additional uncertain parameters. This

‡‡That is, in a model with one lag (and ignoring controls), Yit = �1Tit + �2T
2
it + �3Tit�1 + �4T

2
it�1, and the overall

marginal e↵ect on growth at some temperature T

⇤ is then �̂1 + 2�̂2(T ⇤) + �̂3 + 2�̂4(T ⇤).
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makes it increasingly di�cult to reject either the level or growth e↵ect hypotheses. Thus, while we can

can clearly demonstrate that there is a nonlinear e↵ect of temperature on economic production, we

cannot reject the hypothesis that this e↵ect is a true growth e↵ects nor can we reject the hypothesis

that it is a temporary level e↵ect.

To account for this uncertainty in our projections (below), we present results where we draw from

the full distribution of uncertain parameter estimates (heuristically, resampling from the confidence

intervals in Fig. ED2b), using both models with zero lags (“short run” models) and models with

five lags (“long run” models). As we show below, adding increasing numbers of lags tends to make

the impacts of projected future temperature increases substantially more uncertain as well as more

negative because marginal cumulative e↵ects become negative for cold countries once more lags are

included. This result is consistent with the findings in Dell, Jones, and Olken35, who also find that

point estimates on e↵ects of temperature on growth are positive for rich countries in the zero-lag

model, but turn negative when increasing numbers of temperature lags are added. Cumulative e↵ects

were imprecisely estimated in Dell et al., similarly to our results, and thus were not a focus of their

discussion, but are consistent with what we find here.

Supplementary Table S2: Marginal e↵ect of temperature on growth at di↵erent points in
the temperature distribution, based on regression models that include between zero and 5 lags of
temperature. For models with at least one lag, the reported estimated is the sum of the contempora-
neous and lagged e↵ects, evaluated at the indicated temperature. Numbers in parentheses provide the
standard error on each estimate. Estimates correspond to those shown visually in Figure ED2c.

Lags = 0 Lags = 1 Lags = 3 Lags = 5

5�C 0.0078 0.0042 -0.0051 -0.0047
(0.0029) (0.0044) (0.0073) (0.0067)

10�C 0.0030 0.0014 -0.0063 -0.0057
(0.0022) (0.0032) (0.0054) (0.0053)

15�C -0.0019 -0.0013 -0.0076 -0.0066
(0.0021) (0.0027) (0.0043) (0.0049)

20�C -0.0068 -0.0040 -0.0088 -0.0076
(0.0026) (0.0031) (0.0046) (0.0057)

25�C -0.0116 -0.0068 -0.0101 -0.0085
(0.0034) (0.0042) (0.0062) (0.0072)

30�C -0.0165 -0.0095 -0.0113 -0.0095
(0.0044) (0.0055) (0.0083) (0.0091)
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C.3 Studying heterogeneous responses

Figure ED1g maps the marginal e↵ect of +1�C warming, i.e. the predicted impact on the growth rate

for +1�C, as estimated using Equation 15. E↵ect sizes are large for both hot tropical countries and

cooler high latitude countries that are far from the temperature optimum. For instance, an additional

+1�C warming is predicted to increase growth rates by >0.5 percentage points in parts of northern

Europe, and to decrease growth by >1 percentage points in much of the tropics. A -1 percentage point

e↵ect means that a country growing at 2% per year in a “normal” temperature year would grow at 1%

per year if the temperature were +1�C hotter. Tropical countries exhibit the largest marginal e↵ect

based on our pooled response, but they are also poorer on average. As discussed above, this makes it

is less clear whether being poor or being hot makes the e↵ect of temperature larger in these countries.

If tropical countries have a larger marginal e↵ect of temperature because they are poor, rather than

because they are hot, then our pooled nonlinear model is likely misspecified. Pathbreaking work by

Dell et al (2012) suggested that being poor was the critical dimension of countries that determined

whether temperature had a large e↵ect on income. Thus, we follow Dell et al. and examine whether

being rich or poor alters the nonlinear relationship between temperature and growth, using the same

criteria to distinguish rich and poor. In a later section, we reconcile our findings with Dell et al.

To test for di↵erential responsiveness across rich and poor countries and across di↵erent sectors of

the economy in our data, we interact the temperature and precipitation variables in Equation 15 with

an indicator for whether a country’s purchasing-power-parity-adjusted (PPP) per capita income was

below the global median in 1980 (the first year that PPP data are available for most of our sample;

PPP incomes adjust for price di↵erences across countries, and are important for correctly comparing

income levels across countries). That is, with D

i

= 1 for a country with below-median PPP per capita

income in 1980 (and zero otherwise), then the function h(T
it

) in Equation 15 becomes:

h(T
it

) = �1Tit

+ �2T
2
it

+ �3(Tit

⇥D

i

) + �4(T
2
it

⇥D

i

) (18)

with �1 and �2 describing the response function for rich countries, and �3 and �4 describing adjustments

to these parameters that are only applicable to poor countries. If the response of rich and poor countries

are di↵erent in structure, than the adjustments �3 and/or �4 will be significantly di↵erent than zero.

If these adjustments are not distinguishable from zero, that indicates that the data cannot reject the

hypothesis that the response estimated for rich and poor countries are the same.

Table ED2 provides regression results when Equation 18 is substituted into Equation 15. Column

1 provides our benchmark model. We find that both the linear and quadratic e↵ects of temperature on

rich countries (�1, �2) are significantly di↵erent from zero and that adjustments to these parameters

for poor countries (�3, �4) are not significant. In columns 2-6 we alter our benchmark model by

changing the structure of non-parametric controls (similar to Table ED1). Our results are broadly

similar whether or not the year fixed e↵ects are allowed to di↵er between rich and poor countries§§

(column 2), whether or not the sample is restricted to countries with at least 20 observations (columns

§§For instance, splitting the sample and running separate panel regressions with year fixed e↵ects for both rich
countries and for poor countries implicitly allows the year fixed e↵ects to di↵er across country groupings. The pooled
model that interacts the climate variables with an indicator for whether a country is poor implicitly assumes common
year e↵ects across all countries unless these year fixed e↵ects are also interacted with the poor-country indicator. We
show in the table that results are similar in either case.
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3-4), and whether continent-by-year fixed e↵ects are included in addition to (column 5) or instead

of the country time trends (column 6). In all cases the response functions in both rich and poor

countries are concave, and in no case are the interaction terms significant, suggesting that we can

never reject that rich and poor countries have the same response function to temperature. In columns

2 and 4, statistical uncertainty increases so that estimated parameters for rich countries are no longer

significant, but point estimates in these models remain virtually unchanged and the resulting estimates

do not reject the benchmark model.¶¶ We note that the specification of time controls preferred by

Dell et al is the same as the model in column 6, which suggests the nonlinear e↵ect of temperature on

rich countries is highly statistically significant and not significantly di↵erent from the e↵ect in poor

countries.

A di↵erent but related question asks whether the slope of the response function h(T ) is itself statis-

tically di↵erent from zero at di↵erent temperatures. Testing marginal e↵ects at di↵erent temperatures

is di↵erent than testing for significant parameter estimates (e.g. �1 and �2) because our model is

nonlinear, so the derivative of h(T ) is itself a function of temperature and thus must be evaluated at

specific temperatures in order to have meaning. In our benchmark pooled model (Figure 2a in the

main text) the derivative of h(T ) is clearly di↵erent from zero at almost all points except near the

optimum, where the derivative is near zero. The estimated derivative of this function is displayed in

the “0 lags” panel of Figure ED2c. At low temperatures, warming has positive e↵ects on production,

while at high temperatures, warming has clear negative e↵ects.

When our data are broken into subsamples (e.g. rich and poor), statistical uncertainty increases

and so the estimated function h(T ) exhibits wider confidence intervals, such as in Figure 2b in the main

text. In these subsamples, we continue to find that structures in the response (such as the parameter

�2 describing the curvature) are statistically significant even though the function h(T ) does not always

separate from zero over the range of the data. In these cases, it is also interesting to inspect whether

the slope of h(T ) is significant at di↵erent temperatures for specific subsamples. Importantly, such

significance is not critical to our main result concerning the nonlinear structure of h(.)—for a quadratic

response there must regions of h(.) where the slope is zero and with any uncertainty, there will likely be

a wide range of temperatures with slopes indistinguishable from zero. Nonetheless, understanding the

uncertainty of marginal e↵ects is useful for understanding the extent to which rich and poor countries

respond similarly to temperature at specific temperatures, and our impact projections incorporate

these uncertainties.

Figure ED2 displays the estimated marginal e↵ect of temperature for total growth (panels d-e),

agricultural growth (g-h), and non-agricultural growth (j-k) for both rich and poor countries (these are

the derivatives of functions in Figure 2b, d, & e). For total growth, the marginal e↵ect on rich countries

at cold temperatures is significantly positive while it is significantly negative for poor countries at hot

temperatures. A similar pattern holds for agricultural and non-agricultural growth, with the exception

of non-agricultural growth in rich countries where high temperatures have a slightly clearer e↵ect than

cold temperatures. The structure of these uncertainties primarily reflects the distribution of rich and

poor countries: because there are many rich countries at cold temperature and many poor countries

at hot temperatures, the structure of h(.) is most precisely estimated in those respective regions of the

¶¶For a complete discussion of cross-model comparisons, see ref [42]
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support.

Figure ED2f, i, & l then tests for di↵erences between rich and poor countries in the slope of their

response functions at each point in the temperature distribution for our main sample and estimation

approach, corresponding to Figure 2b, d, & e. While point estimates suggest that richer countries have

a slightly flatter response function for overall GDP and non-agricultural GDP, and somewhat steeper

response function for agricultural GDP at higher temperatures (the latter consistent with the finding

that less-nutrient limited agricultural systems are actually more sensitive to changes in climate43), at

no point in the temperature distribution can we reject the hypothesis that rich and poor countries

have the same response function for any of these three outcomes.

The analysis above finds no evidence that rich and poor countries respond di↵erently to temper-

ature, although it also finds many temperatures for which the marginal e↵ect of temperature is not

statistically significant in a specific subsample. Interpreting these facts requires care, especially when

using pair-wise hypothesis tests. A common error is to dismiss a finding using pooled data as irrelevant

for a subsample if an identical estimate using just the subsample is not significant on its own. Such

logic is clearly flawed because for any sample of data, a real result will be rendered insignificant if

the sample is su�ciently reduced through subsampling. In our setting, we can not know for certain

whether rich and poor countries should be pooled or not because we cannot observe the true data

generating process and verify that it is in fact the same for rich and poor countries. As stated above,

we cannot reject the hypothesis that rich and poor respond identically, but we also cannot reject the

hypothesis that the marginal e↵ect of temperature is zero for many temperature values in both rich

and poor subsamples using standard critical values. This is particularly relevant for global estimates

of the impacts of climate change, where the e↵ect of hot temperature on rich countries are especially

influential.

We thus ask whether it is more likely that (A) rich countries (in their reduced subsample) have a

negative e↵ect at high temperatures (similar to poor countries) or (B) rich and poor countries have

di↵erent responses at high temperatures. To consider this, in Figure ED2m-u we plot the p-values for

the marginal e↵ects of temperature shown in panels d-l. These p-values represent an estimate of the

probability that we would recover an estimated marginal e↵ect as large in magnitude as the estimate

we actually recovered at a specific temperature, if the true marginal e↵ect were zero. We find that

for all three measures of production, it is more likely that (A) rich countries have negative marginal

e↵ects at high temperatures (p-values are smaller) than (B) rich countries have a di↵erent marginal

e↵ect than poor countries at high temperatures. Nevertheless, since we cannot rule out that rich and

poor countries respond di↵erently, or that rich countries do not respond at all, as described in Section

D we report impact projections account for the full range of possible responses for both rich and poor

countries.

To summarize our various findings on potential heterogeneity:

1. Assuming a single h(.) describes e↵ects for all countries, we find highly significant nonlinearity

in the response to temperature.

2. Considering rich countries alone, we find significant nonlinearity in the response to temperature.

3. Considering poor countries alone, we find significant nonlinearity in the response to temperature.
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4. We fail to reject the hypothesis that nonlinearity in the response of rich countries (considered

alone) mirrors the pooled estimate.

5. We fail to reject the hypothesis that nonlinearity in the response of poor countries (considered

alone) mirrors the pooled estimate.

6. We fail to reject the hypothesis that nonlinearity in the response of rich countries (considered

alone) mirrors nonlinearity in the response of poor countries (considered alone).

7. Assuming a single h(.) describes e↵ects for all countries, we find highly significant marginal e↵ects

of temperature at almost all temperatures.

8. We fail to reject the hypothesis that the marginal e↵ect of temperature for rich countries (con-

sidered alone) mirrors the pooled estimate.

9. We fail to reject the hypothesis that the marginal e↵ect of temperature for poor countries (con-

sidered alone) mirrors the pooled estimate.

10. We fail to reject the hypothesis that the marginal e↵ect of temperature for rich countries (con-

sidered alone) mirrors the marginal e↵ect of temperature for poor countries (considered alone).

11. We find highly significant marginal e↵ects of cold temperatures for rich countries (considered

alone) and marginally significant marginal e↵ects of hot temperatures for rich countries (consid-

ered alone).

12. We find highly significant marginal e↵ects of hot temperatures for poor countries (considered

alone).

13. We fail to reject at conventional confidence levels the hypothesis that the marginal e↵ect of high

temperature for rich countries (considered alone) is zero for temperature ranges where pooled

estimates are significantly non-zero (although this is unsurprising given the reduced sample and

temperature distribution of rich countries).

14. We fail to reject the hypothesis that the marginal e↵ect of low temperature for poor countries

(considered alone) is zero for temperature ranges where pooled estimates are significantly non-

zero (although this is unsurprising given the reduced sample and temperature distribution of

poor countries).

15. We find it is substantially more likely that (A) the marginal e↵ect of high temperatures on rich

countries is negative than (B) the marginal e↵ect of these temperatures on rich countries is

di↵erent from their marginal e↵ect on poor countries.

Taken together, these results provide limited evidence of heterogeneity between rich and poor country

responses, and strong evidence that assuming rich and poor countries are similar is more likely correct

than assuming zero marginal e↵ect in cases where subsamples do not return significant e↵ects when

considered alone. Again, as in Figure ED1i, di↵erential responses to temperature appear driven more

by underlying di↵erences in average temperature than underlying di↵erences in average again.
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Nevertheless, there is suggestive but statistically insignificant evidence that the aggregate rich-

country response function may be flatter than the poor-country response function, and so in con-

structing the impact projections under climate change (described below), we estimate impacts under

both a pooled model where response functions across countries are assumed to be the same, as well as

using the interacted model where rich and poor countries are allowed to respond di↵erently to future

changes in climate based on the di↵erential response functions shown here. Notably, in all of these

projections, we account for the full range of statistical uncertainty in the estimated structure of h(.).

C.4 Comparison with Dell Jones Olken 2012

Seminal earlier work by Dell, Jones, and Olken35 (hereafter DJO) focused on the linear relationship

between growth and temperature fluctuations, finding strong negative e↵ects of warmer temperatures

on growth in poor countries but not in rich countries. There is a prima facie case for DJO’s results

being consistent with ours: with most poor countries on the downward slope of the response function

but rich countries distributed almost symmetrically around the optimum, a linear regression for the

e↵ect of temperature would recover a steep negative in poor countries but ambiguous (and closer to

zero) slope for rich countries. Thus a globally concave response function is consistent with DJO’s result

describing a steep negative linear response in poor countries and a flatter average linear response in

rich countries.

Here we explore in more detail di↵erences between our results and DJO. Other than di↵erences in

the specified functional form of the temperature-growth relationship, there are other modest di↵erences

between DJO and our analysis:

• Di↵erences in sample: DJO data sample ended in 2003 and used earlier versions of the World

Bank and University of Delaware data, both of which we have updated through 2010. Older

versions of World Bank data appear to have included growth data for earlier years for many

countries (e.g. for the 1950s); these are not included in the current World Bank database and

are thus omitted from our analysis.

• Di↵erences in specification of controls for time-varying omitted variables: DJO preferred specifi-

cation includes continent-year fixed e↵ects, whereas ours includes year fixed e↵ects and flexible

country time trends. Above we demonstrated that use of the DJO model recovered our main

result with exceptionally high levels of significance, although we use a model with country-

specific quadratic trends in growth because it provides a stationary time series, it accounts for

time-varying country-specific factors, and it performs better in terms of prediction26.

Continent-year FE have the advantage of controlling for continent-specific shocks that might be corre-

lated with both temperature and growth in a given year, but the disadvantage of potentially absorbing

important variation in temperature if temperature shocks are highly covariate within a continent44

(e.g. if a given year is hot in both Kenya and Tanzania). Our main specification, which uses year FE

and country trends, will allow a year that is hot in all countries in a given continent (e.g. due to ENSO

variation) to inform regression results. Inclusion of flexible country trends ensures that our estimates

are not confounded by gradual changes in economic growth rates, such as the relatively recent rapid

growth of China since the 1980’s, which might be spuriously correlated with recent warming.
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We explore how our and DJO’s results change under alternate time controls, but allowing for a

potentially nonlinear (here quadratic) functional form for temperature (again, DJO’s original specifi-

cation was linear). To make our results most comparable, we restrict our “base” sample to be countries

with at least 20 years of growth data, as in DJO, but results are similar if we use the full sample (recall

Table ED1). We then gradually vary our data/model to be more similar to the DJO data/model,

and visa versa. These various results are shown in Figure ED3a and Table S3. Estimated response

functions are similar between studies using the global sample: all estimated functions show a concave

relationship between growth and temperature, although as quantified in the bottom row of Table S3,

the estimated temperature optimum is uniformly lower in all alternative samples and specifications

relative to our baseline specification (shown in the 4th column). Nevertheless, the estimated quadratic

temperature response in DJO is estimated less precisely than in our updated data, particularly when

continent-year fixed e↵ects are included (columns 1 and 2 of Table S3). As explored in the last two

columns of the table, which restrict the sample to the countries and years that we can match between

our data and theirs, results become somewhat less precise as DJO’s earlier versions of the growth or

temperature data are substituted in for our growth or temperature data. If these data have improved

over time, and if our seven additional years of data from 2004-2010 are also measured with less error

(particularly relative to the data in the 1950s included in DJO but not included in the updated WDI

database), then this could explain why our estimates are somewhat more precise than DJOs.

In summary, the non-linear structure of the temperature/growth relationship is more apparent in

updated data. However, had DJO used our benchmark model which accounts for important country-

specific trends, nonlinear structure would have been apparent. Alternatively, had DJO used their

preferred model but had access to either the updated growth or temperature data (this was impossible

for them) they would have observed significant nonlinear structure. Finally, our main result is robust

to applying DJO’s preferred model to the updated datasets.

As described below, the projected impacts of climate change are somewhat less negative when using

our preferred specification and data as compared to projections that use a quadratic specification with

DJO’s time-varying controls and/or data (Figure ED3b). Projections that use DJO’s original linear

specification are less stable across specifications (changing sign depending on whether or not lags

are included), but as shown in Figure ED3c-d and discussed in the main text, their linear estimates

suggest much more positive (or less negative) impacts relative to comparable non-linear models –

indicating the critical importance of accounting for non-linearities in understanding the potential

economic implications of climate change.
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D Climate projections and their uncertainty

D.1 Building impact projections

To project the impacts of climate change, we use our historical response functions to generate projected

future changes in GDP under various warming scenarios, relative to a world in which temperatures

remained fixed at their 1980-2010 average. In particular, the evolution of GDP per capita in country

i in year t is given by:

GDPcap

it

= GDPcap

it�1 ⇥ (1 + ⌘

it

+ �

it

) (19)

The growth rate absent climate change is given by ⌘

it

, which we either take from the Shared Socioe-

conomic Pathways (SSPs) or fix to be the average growth rate over 1980-2010 (“base” scenario). The

SSPs are “reference pathways describing plausible alternative trends in the evolution of society and

ecosystems over a century timescale”45, and we focus on the two SSPs (SSP3 and SSP5) that are

most consistent with the high emissions needed to generate RCP8.5.⇤⇤⇤ In SSP3, “unmitigated emis-

sions are high due to moderate economic growth, a rapidly growing population, and slow technological

change in the energy sector”, while in SSP5, “In the absence of climate policies, energy demand is

high and most of this demand is met with carbon-based fuels. . . Nonetheless, economic development

is relatively rapid”.45 Both SSP scenarios specify country-specific trajectories for average income per

capita, using demographic models to account for population changes. As noted, in addition to these

two SSPs, we also consider a “baseline” scenario in which each country is assumed to grow in the future

at its observed average rate of growth during 1980-2010. In this baseline scenario, we use population

projections from the UN World Population Prospects46 to compute average income per capita.

The parameter �
it

is the predicted additional e↵ect of warming on growth in that year. Denote T̄

i

as the average temperature in country i between 1980-2010 (the base period), and T

+
it

as the projected

temperature in any year after 2010. For our estimated pooled historical response function h(T ),

�

it

= h(T+
it

)� h(T̄
i

) (20)

For the projections in which the future growth response to temperature is allowed to vary by income,

denote the rich-country response function as h
r

(.), the poor country response function as h
p

(.), and y

⇤

as the income level above which countries’ responses are described with h

r

(.) rather than h

p

(.) (which

we set to the median GDP/cap in the historical period, as in our estimation). Then �

it

is calculated

as:

�

it

=

(
h

r

(T+
it

)� h

r

(T̄
i

) for GDPcap

it�1 > y

⇤

h

p

(T+
it

)� h

p

(T̄
i

) for GDPcap

it�1  y

⇤

(21)

Based on Equation 18 above, h
r

(T
it

) = �1Tit

+ �2T
2
it

and h

p

(T
it

) = (�1 + �3)Tit

+ (�2 + �4)T 2
it

.

We assume a linear increase in temperature between 2010 (the end of the base period) and the

RCP8.5 projected country-specific temperature in 2100, such that for any year t > 2010 and a projected

⇤⇤⇤SSP data were downloaded from https://secure.iiasa.ac.at/web-apps/ene/SspDb/dsd?Action=htmlpage&page=

about on Feb 10th, 2015. The available data provide projected growth rates at 5-year intervals at the country level, and
we linearly interpolate within each 5-year interval to calculate the annual projected growth rates. The SSP also provide
growth projections generated by three di↵erent research groups; we focus on the projections from the OECD group, as
they were the only ones to project growth rates at the country level.
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country-specific warming of �T

i

by 2100 (where �T

i

is the change between 2010 and 2100), T+
it

=

�T

i

⇥ t�2010
2100�2010 + T̄

i

. So for example if �T

i

= +4.3�C (which is the population-weighted global change

in average temperature projected in RCP8.5), then in 2011 T

+
i2011 = 1

90 ⇤4.3+ T̄

i

= 0.048�C+ T̄

i

. With

no warming, T+
it

= T̄

i

and �

it

= 0. Our estimates of country-specific warming �T

i

are the ensemble

mean projected warming for RCP8.5 for each country across all global climate models contributing to

CMIP5, calculated by taking a population-weighted average of each climate model grid cell covering

a country.††† Projected changes in temperature to 2100 across our sample countries range from 2.7�C

to 5.8�C .

We do not know how economic production responds to temperatures that have never been observed

historically. Thus, when countries warm beyond the highest observed temperatures in the historical

data, we have two options: either we extrapolate the function h(.) beyond the support of historically

observed data, or we assume that productivity is equal to the boundary value for all observations

beyond the boundary of the support, i.e. h(T ) = h(T
max

) for all T > T

max

. We opt for the latter

approach because we view it as more conservative, since extrapolation of h(.) causes income to fall

even more rapidly at higher temperatures. We cap T

+
it

at 30�C, which is the upper bound of the

annual average temperatures observed in our sample period. Thus for any year where projected

warming will increase average temperatures in a given country beyond 30�C, we fix the e↵ect of

that year of additional warming at � = h(30) � h(T̄ ). This may cause us to understate losses in

countries that eventually exceed 30�C if the “true” response function continues to fall o↵ steeply

beyond 30�C, so our projected impacts in the hottest countries are likely conservative. Nevertheless,

for most countries in the sample, substantial warming (e.g. +4�C) takes them out of their own historical

range of temperature exposure but leaves them well within the observed global distribution of historical

temperatures, meaning that we would not be extrapolating out of sample for these countries in any

case.

To aggregate national average incomes to global average income, we calculate Gross World Product

(GWP) each future year t:

GWP

t

=
X

i

!

it

⇥GDPcap

it

(22)

where !
it

is country i’s projected population in year t. This calculation is done separately for warming

scenarios and the counterfactual scenario with no warming. As above, country-specific population

projections are taken either from the SSPs or from the UN World Population Prospects, consistent

with whichever population was used to compute the national projections. Comparing changes in GWP

for the warming scenarios to changes in our counterfactual no-warming scenario then gives us projected

global losses (or gains) under climate change, an estimate which can then be compared to “damage

functions” currently being used by Integrated Assessment Models (IAMs).47

The choice of underlying socioeconomic scenario can a↵ect our estimate of global impacts by altering

how impacts are weighted across countries. A country that is projected to grow quickly in either income

or population in a given scenario (i.e. where ⌘

it

or !
it

are large) will receive higher relative weight in

the estimate for global average income loss (in %) than a country predicted to grow more slowly. Thus

di↵erences across scenarios in these assumed underlying growth rates could shape estimates of GWP

t

,

†††Data were downloaded from http://climexp.knmi.nl/plot_atlas_form.py on March 2, 2015.
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motivating our inclusion of multiple plausible socio-economic scenarios.

Regional projections are constructed similarly, where for region R,

GDP

Rt

=
X

i2R

!

it

⇥GDPcap

it

(23)

We define nine regions based largely on UN designations‡‡‡, with “Sub-Saharan Africa” containing

UN designations East Africa, Middle Africa, Southern Africa, and Western Africa; “Latin America”

containing UN subregions Caribbean, South America, and Central America; “Middle East/North

Africa” containing Northern Africa and Western Asia; “Central and East Asia” containing Central

Asia and Eastern Asia; “Europe” containing Eastern Europe, Northern Europe, Southern Europe, and

Western Europe; and “Oceania” containing Australia and New Zealand, Melanesia, Micronesia, and

Polynesia.

To quantify uncertainty in these projections, we block bootstrap the historical response function

(1000 times, sampling countries with replacement to account for autocorrelation) and apply the above

procedure to each bootstrap. We use the resulting distribution of estimates to characterize projection

uncertainty for a given set of assumptions about future temperature change and baseline economic and

population growth rates (as just described). In Fig. 4, Fig. 5a, and Figs ED4-ED5, projections are

then “visually-weighted”48 to illustrate distribution of projections in each future year. This is done

by calculating, for each future year 2011-2099, the probability that a given level of impact is observed

in the set of 1000 bootstrap runs. The plot is then shaded such that darker areas represent values for

which projected impacts were more common. Probabilities are made to sum to one in each year, such

that the total “ink” is held constant across each vertical slice (year), and so appears more “spread

out” when projections show less agreement.

D.2 Projected impacts and robustness to alternative specifications

To understand the sensitivity of our impact projections to assumptions, we explore how projections

change when (i) the temperature response function is estimated using di↵erent assumptions and (ii)

we adopt di↵erent assumptions regarding the future evolution of population and economic activity in

the absence of climate change.

We first alter whether the projection accounts for lagged weather e↵ects and whether rich and poor

countries are assumed to have di↵erent responses (although the data do not reject the assumption

that the pooled response is representative, as discussed above). To do this, we generate four separate

estimates:

1. “Pooled SR”: assumes a common response across rich and poor countries to temperature changes,

and growth in a given year is only a↵ected by temperature in that year (hence “SR” for “short

run”). This is the benchmark estimate presented in Figure 2a of the main text.

2. “Pooled LR”: assumes a common response across rich and poor countries to temperature changes,

but growth in a given year can be a↵ected by temperature in that year and the previous 5 years

(hence “LR” for “long run”). Marginal e↵ects from this model were shown in Figure ED2c.

‡‡‡As viewed here http://unstats.un.org/unsd/methods/m49/m49regin.htm on Feb 20th 2015
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3. “Di↵erentiated SR”: allows rich and poor countries to respond di↵erently to temperature changes,

and growth in a given year is only a↵ected by temperature in that year. This is the estimate

presented in Figure 2b of the main text. If poor countries grow such that their income surpasses

the threshold income used to separate rich and poor countries, they “graduate” to exhibiting the

rich country temperature response, as in Equation 21.

4. “Di↵erentiated LR”: allows rich and poor countries to respond di↵erently to temperature changes

and for poor countries to “graduate” to the rich country response, but growth in a given year

can be a↵ected by temperature in that year and the previous 5 years

Fig. 4b shows global projected impacts using each of these historical response functions under a

common underlying socioeconomic scenario (SSP5). Analogous regional estimates (with uncertainty)

are shown in Fig. ED5, with the black line in each plot representing the “best guess” of projected

impacts (i.e. using our point estimates) and the red shaded area the 5-95% confidence interval, with

the color intensity again indicating the likelihood of the projection estimate falling at a given value in

a given year.

In models that account for lagged e↵ects or that estimate rich and poor responses separately,

projections become more uncertain. This is both because the estimated rich-country response function

is slightly flatter than the pooled response function, which slightly alters estimated damages in regions

such as North America, but also because the estimated poor-country response function peaks a few

degrees �C warmer than the pooled response function, which serves to slightly lower the damages in

poor countries as well. However, due to more uncertainty in the income-specific response functions,

caused by splitting the sample (in the di↵erentiated model) and accounting for additional uncertain

parameters (in the LR model), overall projection uncertainty under these models is larger than under

the pooled SR model.

Another important di↵erence is that for LR models, the mean projection is substantially negative for

all regions because cold rich regions (e.g. Europe) exhibit net negative impacts in models that allow the

growth e↵ects of a single hot year to persist over multiple years. The reason for this is shown in Figure

ED2c: as additional lags of temperature are allowed to a↵ect growth in a given year, hotter countries

remain worse o↵ with additional warming, and cooler countries no longer unambiguously benefit,

with point estimates of marginal e↵ects being negative across the entire temperature distribution.

This means that evaluating the impacts of future warming using the “long-run” historical response

functions makes economic impacts more negative for countries that are initially cold.

We next consider whether our global projections are sensitive to these modeling assumption while

also examining their sensitivity to assumptions about the baseline economic trajectory of countries.

The three socioeconomic scenarios we evaluate are:

1. “base”: absent climate change, countries per capita incomes grow every year in the future at the

rate they grew on average between 1980-2010. Estimates of future country-level populations are

taken from UN projections.46

2. SSP3: A “shared socio-economic pathway” with generally slower income growth and less long-

run convergence in income levels between poor and rich countries. Under this scenario, the
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population-weighted global average growth rate without climate change is 1.2% in 2050 and

1.1% in 2090.

3. SSP5: A “shared socio-economic pathway” with generally higher income growth and faster long-

run convergence in income levels between poor and rich countries. Under this scenario, the

population-weighted global average growth rate without climate change is 3.6% in 2050 and

2.3% in 2090.

Figure ED4 displays mean projections and uncertainty for the estimated global response under RCP8.5

due to our three di↵erent possible underlying growth scenarios and four di↵erent response functions.

Table ED3 provides the corresponding point estimates and percentiles in the distribution of responses

for each scenario.

Similar to the regional projections, mean estimates are uniformly more negative under the LR

response functions that allow temperature to have persistent e↵ects on growth. Also similar to the

regional projections, estimates are more uncertain – but slightly less negative – when we use the

response functions that allow rich and poor countries to respond di↵erently to warming. The underlying

socioeconomic scenario that is assumed has little impact on projected changes to GWP.

To understand whether the nonlinear response to temperature is important for determining the

projected impact of climate change, we compare our results to estimated impacts obtained using

coe�cients from the linear specification in Dell et al 2012 (DJO). The published version of Dell et al

2012 does not contain impact projections, and so we construct them for this purpose; note that these

are distinct from the impact projections shown in Figure ED3b, which apply a quadratic functional

form to DJO’s data and/or model. As described in Section C.4, DJO estimate the linear e↵ect of

temperature on growth, allowing this e↵ect to di↵er across rich and poor countries. They find large

negative e↵ects of temperature on historical growth rates in poor countries (⇠ -1% per �C or larger)

and smaller e↵ects in rich countries, with point estimates in rich countries ranging from slightly positive

(+0.26% per �C ) in the zero-lag model to slightly negative (-0.19% per �C ) in the 5-lag model, with

neither estimate statistically distinguishable from zero.

Using our projection approach, we combine these coe�cients from the linear DJO model (drawn

from their Table 4) with projected temperature changes to estimate regional and global impacts.

Results are shown in Figure ED3c-d, and di↵er from the main impact projections in this study in two

main ways. First, the sign of the projected impact using DJO coe�cients changes whether one considers

the zero-lag or 5-lag model, consistent with the changing sign on the rich-country coe�cient. This is in

contrast to our estimates, which remain negative in either model. Second, projected regional impacts

using DJO coe�cients also di↵er in sign across models, and for most regions remain substantially less

negative using DJO coe�cients even in the model with 5 lags. This occurs both because our estimated

marginal e↵ects at high temperatures are more negative than the poor-country linear e↵ect in the DJO

5-lag model, but also because as countries “graduate” to rich-country status over time, the marginal

e↵ect of temperature in DJO reduces by about 80%. Thus, properly accounting for the nonlinear

response to temperature has profound impact on the projected economic impact of climate change.

Rather than all countries having a sensitivity that declines over time as they become richer, most

countries have a sensitivity that increases over time because they become hotter on average. If the

nonlinear e↵ect of temperature is not accounted for, then the negative correlation between modern-day
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income and average temperature across countries dramatically confounds projections.

Panels d, h, l, &p in Figure ED4 shows projected impacts by 2100 under RCP8.5 by each country’s

baseline income quintile. Di↵erent panels display projections based on the di↵erent historical response

functions. The “pooled response, SR e↵ect” panel is the same as Fig. 5c in the main text. Echoing

the global results, impacts are more uniformly negative across the income distribution when increasing

numbers of temperature lags are included. This is because the estimated marginal e↵ect of temperature

becomes slightly negative even at cold temperatures in the multi-lag historical models where growth

e↵ects are allowed to persist, meaning that even rich countries are on average worse o↵ even with

small amounts of warming. Utilizing a response function that is di↵erentiated between rich and poor

countries has little e↵ect because these two subsamples both behave similarly to the pooled estimate.

D.3 Constructing the damage function

We estimate a global “damage function” by projecting economic impacts as a function of future changes

in global mean temperature. To construct this function, we repeat the projection exercise described

above but under alternate amounts of warming in 2100.47 To match integrated assessment model

(IAM) estimates, temperature changes are calculated “relative to pre-industrial” rather than relative

to the present day, as in our above runs. To convert changes in global mean temperature to country-

specific estimates needed for our impact calculations, we linearly scale country-specific changes �T

i

(CMIP5 ensemble mean under RCP8.5) with global mean temperature, correcting for warming that

has already occurred.

Specifically, let �T

rcp8.5 be the global average temperature change for RCP8.5 and let �T

i

be the

individual country projected temperature changes (as described above). Our scaling factor is then

�

i

= �T

i

/�T

rcp8.5. For most countries, �
i

> 1 because land surfaces tend to warm more than the

oceans, which have substantial weight in the global averages. Then for an arbitrary global mean

temperature increase relative to pre-industrial �T̄

s, country-specific temperature changes between

2010-2100 for that scenario are estimated as:

�T

s

i

= �

i

(�T̄

s � 0.8) (24)

where 0.8�C is the average warming between “pre-industrial” and present day. We then construct our

damage function beginning at +0.8�C relative to pre-industrial (which means a global mean tempera-

ture increase of +0�C by 2100 relative to today, i.e. no additional warming beyond what has already

occured). Thus +1�C for the damage function shown in Fig. 5d thus corresponds to +0.2�C warming

by 2100 relative to today, +2�C in Fig. 5d corresponds to +1.2�C , etc. Projections are then calculated

as above, with assumed linear warming between present day and 2100, and the warming increment for

each country in a given year t applied to the level of per capita GDP in the previous year to derive

the GDP per capita in that country in year t.

D.4 Shape of the damage function

Why are our estimates of global losses roughly linear in temperature rather than quadratic or expo-

nential as previously theorized? As mentioned in the main text, approximate linearity results from
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the broad distribution of initial country temperatures along di↵erent parts of a smooth response func-

tion, causing the average derivative of the productivity function to change little as countries warm, at

least across the projected temperature changes we consider here. The intuition that global economic

damages are highly nonlinear because micro-level responses to temperature are highly nonlinear is not

correct.

In several cases, the damage function appears curved, but in such a way that marginal damages

decline with additional warming. This contrasts even more starkly with the intuition that damages

should increase dramatically with warming,§§§ so it is worth being clear why this occurs in our analysis.

The declining marginal damages in our projections occurs because (i) temperature appears to alter

the growth rate of countries, and (ii) cumulative loss of a lowered growth rate increases with the size

of the growth penalty, but at a declining rate. Thus, additional warming that leads to a net reduction

in global growth rates will generate losses at a declining rate.

To see this, and using the notation from above, a country’s per capita income in year t is:

GDPcap

it

= GDPcap

it�1 ⇥ (1 + ⌘

it

+ �

it

)

where ⌘

it

is again the assumed growth rate absent climate change and �

it

is the additional impact of

warming in that year. So starting from initial conditions in 2010, the income of a country integrates

to

GDPcap

i⇣

= GDPcap

i,2010 ⇥ e

(⌘i+�i)⇣

at time ⇣, where we imagine that ⌘

it

and �

it

are fixed across time at ⌘

i

and �

i

for simplicity. The

percent loss in income, relative to a counterfactual no-climate-change scenario where �

i

= 0 for all t is

%�GDPcap

i⇣

=
GDPcap

i,2010 ⇥ e

⌘i⇣ �GDPcap

i,2010 ⇥ e

(⌘i+�i)⇣

GDPcap

i,2010 ⇥ e

⌘i⇣

= 1� e

�i⇣ (25)

Thus the separation between a climate change income trajectory and a baseline trajectory increases

like an exponential function of �
i

, the growth rate penalty imposed by climate change. Because most

countries are hotter than the estimated optimum, the � imposed by warming is negative for most of

the global economy. With greater warming, � becomes increasingly negative. Figure ED6e plots e

�⇣

for a range of �. The di↵erence 1 � e

�i⇣ increases as � becomes more negative (i.e. warming), but

at a declining rate. Thus the compounding e↵ect of a negative exponential causes the total economic

damage projected from warming to increase with warming, but at a declining rate.

D.5 Damage function uncertainty

Figure ED6a shows how the estimated damage function changes when the assumed underlying growth

scenario changes and when the assumed structure of h(.) changes (using the variations described

above). Overall, the underlying response function represents a larger source of uncertainty than the

§§§Importantly, many researchers argue that damages increase nonlinearly with warming because large-scale irreversible
environmental changes might occur that lead to dramatic losses. These e↵ects are not captured by our analysis, and so
our results should not be interpreted as overturning this specific intuition.
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underlying socioeconomic scenario. Generally, the LR response functions that allowed for persistent

e↵ects of one-year warming suggest more negative responses than response functions only allowing for

warming in a given year to a↵ect growth in that year, and response functions that allow rich and poor

countries to respond di↵erently to future warming (as in Figure 2b) show somewhat smaller losses.

All damage functions are negative throughout the range of considered temperature increases, and are

either roughly linear in temperature or show slight diminishing e↵ects. To compare our estimates

to those from integrated assessment models, Figure ED6b-d then shows the ratio of IAM-estimated

damages from three leading IAMs (DICE, FUND, PAGE) to damages estimated in this study under

these same sources of uncertainty. At levels of warming below 2�C, our estimates are at least 3 times

higher than IAM estimates, typically 5-20 times higher, and sometimes up to 100x higher. At higher

levels of warming, our estimates are again at least 2.5 times larger than the highest IAM estimate and

typically are much larger.
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