
Supplementary Discussion

1. Validation of the computational approach

1.1. Comparison of computational pipelines in present and previous studies

The previous T2D metagenome studies of Qin et al.3 and Karlsson et al.4 each use subtly different 

bioinformatics analysis approaches. Karlsson et al. first determined taxonomic composition by 

aligning reads directly to 2382 reference genomes. Next, reads were additionally aligned to a novel 

gene catalog made from assembly of their novel samples merged with the previous MetaHIT gene 

catalog. Wherever abundant genes were correlated in abundance across subjects, the resulting 

groups were treated as metagenomic clusters (MGCs) identified from the data. These were then 

linked to known taxa where possible through BLAST searches. The resulting two representations of

taxonomy were used in the study as features for prediction of T2D status. Functional profiles were 

determined by assigning gene catalog members to the KEGG database through USEARCH searches

and then deriving KEGG pathway abundances based on the gene abundances. Qin et al. also created

a novel reference gene catalog based on their novel samples together with the previous MetaHIT 

gene catalog. About 21% of the genes in this catalog were assigned to a bacterial genus by BLAST 

sequence search in a reference gene catalog of 2890 bacterial genomes, 47% to KEGG orthologs 

and 61% to eggNOG orthologs. Analogously to the MGCs in Karlsson et al. correlated genes were 

grouped together as metagenomic linkage groups (MLGs) and the abundances of these groups were 

used to carry out the analysis. Thus, all three studies use separate but roughly similar methods for 

inferring groups of correlated genes from metagenomes directly – MGS, MGC, MLG, respectively. 
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Of these the MGSs/CAGs34 are the most recently published and we consider them most reliable. In 

order to make use of the MGSs, therefore, the analysis in the present study was constrained to use 

the most comprehensive gene catalog (from 620 MetaHIT samples) for which they were available. 

While this means that rare gene variants from Sweden or China may remain undetected in the 

current analysis, no presently publicly available gene catalog was derived from all three datasets. To 

avoid false conclusions based on this limitation, we therefore focused the present analysis on 

similarity rather than difference; searching for whatever signal of T2D pathology or medication 

instead might find robust support across these datasets. While we likely miss further markers and 

correlates of T2D or metformin treatment in this manner, it should not reduce the reliability of the 

markers we do detect and report. We anticipate future studies using further expanded gene catalog 

resources which might validate and extend our findings. However, we note that the average fraction 

of inserts mapped to genes in the presently chosen gene catalog (Supplementary Table S1) is very 

similar (89-91%) for all three datasets, suggesting that only minor contributors are missed.

On a level of functional profiles, the present analysis differs from the previous two in that it uses a 

database (GMMs) which extends and curates the otherwise often eukaryote-centric KEGG resource 

to better represent functional pathways in human gut microbes. Inferring pathway abundances from 

KEGG KO members, the approach in the two previous studies risks concluding presence of a 

pathway from the presence of a single abundant homolog of any of the pathway members or the 

presence of a pathway present only when genomes of several species are pooled, but not in any one 

genome individually. To avoid this, we instead adopted the present approach which draws on the 

MGS resource as a scaffold for possible pathway presence as described here and in the Methods. In 

short, functional profiles were determined by investigating each MGS/CAG for completeness of 

every pathway, then using the abundance of these units of correlated genes to determine the final 
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functional profiles. This approach may be slightly less sensitive and miss presence of rare 

functional pathways, but should more seldom falsely conclude presence or high abundance of a 

pathway, which meets our objective of finding a robust “core” signal of functional dysbiosis in 

T2D.

On a level of taxonomic composition, the recently introduced mOTU technology was chosen over 

the approaches of the two source studies (mapping reads directly to genomes, mapping called genes 

directly to reference genomes); it utilizes a set of marker genes curated and benchmarked to reliably 

occur in single copy across bacterial genomes as well as not to transfer horizontally, thereby making 

the method more accurate in quantifying taxonomic composition also for poorly characterized taxa 

with few or no sequenced genomes which we expected to be relevant in the context of the gut; 

mOTUs are further assigned to known taxa where possible using a database larger than used in 

either source study. While the MLGs, MGCs or MGSs each to some extent may capture 

uncharacterized taxa, they will involve a more diverse, as well as non-overlapping, collection of 

genes for each. For this reason, we chose to use the mOTUs rather than MGSs for taxonomic 

composition estimate, but the MGSs, rather than the mOTUs, for functional profile quantification. 

As seen below, some of the taxonomic associations previously reported involve microbial strains 

which are not represented as distinct mOTUs, meaning they cannot in principle be replicated or can 

only be replicated at a broader level. In any such case assignment to a reference genome would 

occur at a level of sequence similarity higher than that used for mapping sequencing reads for the 

purpose of assessing taxonomic composition. Such assignments therefore imply a taxonomic 

specificity which is not borne out when using the reference database for mapping reads, suggesting 

greater specificity than the metagenomic data actually allows. For this reason, we consider the 

lower granularity of some mOTUs to be a benefit rather than a drawback, and to ensure we are on 
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the side of precision rather than recall, providing another motivation for the current approach rather 

than that of either source study.

1.2. Comparison of reanalysis to published results on SWE and CHN datasets

We applied our analysis pipeline (filtering and quality control, mapping of samples to mOTU 

marker genes, quantification of taxonomic composition, dataset-blocked test for significant 

differences in composition) to the data from the two earlier source studies we incorporate, to see to 

what extent previously reported associations are possible to replicate using the same samples. 

Comparing all T2D and ND CTRL samples, the results of this conceptual replication are shown in 

Supplementary Table S2. Out of 41 associations reported in the two studies, 22 achieved 

significance in the same direction also in the joint dataset, either with the taxon represented as a 

mOTU or otherwise significance being seen at the corresponding higher level or for multiple 

mOTUs of the same genus if it is not. For 7 previously seen associations the microbial feature is 

exactly represented but does not differ significantly between T2D and ND CTRL under the blocked 

test, in some cases reflecting signals that are unique to each dataset. Remaining discrepancies 

largely follow from these previous studies attempting to separately quantify taxa that do not 

correspond to distinct mOTUs (e.g. multiple strains of the same species with very high marker gene 

sequence identity to each other, or else taxa not present within the collection of gut microbiomes 

used to derive the mOTU marker genes). Reanalysis of the samples from each source study taken 

separately and compared with the originally reported findings from each show on average the same 

degree of replication, but with more (19/26) associations replicated from Qin et al. (2012)3

(Supplementary Table S2) than from Karlsson et al. (2013)4 (3/15). The latter is based on fewer 

samples, and many of the reported associations reference specific unique strains of Clostridium and 
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Lactobacillus which are too similar in sequence to be represented as different mOTUs, therefore 

making direct replication harder. All in all, therefore, while a majority of previously reported 

associations achieved significance here, not all did, and this follows from how the three studies 

delineate taxa differently. See above for discussion on why mOTUs and the set of curated universal 

single-copy marker genes were used here instead of e.g. mapping to reference genomes directly. 

1.3. Benchmarking of the metagenome meta-analysis pipeline using positive and negative 

simulated controls

Since the approach of integrating multiple datasets in the way used here is novel for metagenomic 

analysis, we evaluated the performance of the overall analysis pipeline under positive and negative 

control conditions as follows.

A negative control for a meta-analysis is done by applying the method to data where it is known no 

signal exists. To generate such data we randomly reshuffled sample labels within each source 

dataset, thereby eliminating any actual signal, and reran the T2D metformin+ vs T2D metformin- 

comparison analysis. No (spurious) significant differences resulted, demonstrating the meta-

analysis holds up with regards to negative controls.

A positive control for a meta-analysis is done by applying the method to data where it is known a 

signal does exist. We therefore added an artificial signal to the negative (shuffled) benchmark set by 

transforming Akkermansia abundances on a scale similar to that of the Escherichia metformin 

treatment effect as seen from the MHD dataset (metformin-treated samples roughly 150% as likely 

to have nonzero abundance, with a roughly threefold higher abundance where present). These 

results are shown in Extended Data Figure 1a. Across 100 randomizations, this artificial signal is 
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reliably detected at FDR scores comparable to those of the Escherichia signal from the main 

dataset.

Given these controls, we are confident that our approach is capable of detecting signals of a strength 

such as those reported, and that this capacity does not come at the price of any strongly increased 

risk of false positives resulting from the meta-analysis pipeline itself.

2. Initial analysis of the joint dataset

2.1. Metagenomic, ecological and demographic comparisons of the three cohorts

Integrating the two previously published sets of T2D metagenomes3,4 (with the Danish MetaHIT 

diabetes samples) proved challenging. Phenotypically we observed significant differences between 

the three study samples. The SWE samples comprise only postmenopausal women and the CHN 

T2D patients were younger than MHD and SWE patients. BMI was higher in MHD samples than in 

SWE or CHN samples (Extended Data Figure 2a). For clinically relevant markers, we found 

glycated haemoglobin A1c (HbA1c), reflecting long-term blood glucose levels, to be lowest in 

MHD T2D and highest in SWE ND CTRL samples (p<2x10-16). Fasting plasma glucose levels were 

highest in CHN T2D patients and lowest in CHN ND CTRL, compared to corresponding SWE & 

MHD samples (p=5.6x10-4). Based on these clinical metadata, the cohorts are clearly disjoint 

(Supplementary Table S2).

On a microbiome level, the composition of samples from these cohorts was also very different: 

various ecological indices (Shannon diversity, richness, chao1 and evenness as measured on gene 
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level) were lowest in the Chinese samples and highest in the SWE samples (all indices KW p=0 for 

equivalent distributions). Using a multivariate PERMANOVA test (105 randomizations), all cohorts 

were significantly (p<1x10-5) different from each other, as shown in a PCoA of Bray-Curtis 

divergence between samples (Extended Data Figure 2b). Further, beta diversity was significantly 

different between cohorts (p=1.6x10-17), CHN samples being more dispersed than MHD samples 

(p=3x10-8) and MHD samples more dispersed than SWE samples (p=4.7x10-7). The compositional 

differences were largely driven by an increase in Bacteroides (p=2.2x10--73) and Proteobacteria 

(p=3.9x10-46) in CHN samples, while Firmicutes (p=1x10-79), Actinobacteria (1.3x10-37), 

Verrucomicrobia (p=3.5x10-45), and Euryarcheaota (p=7.7x10-28) were increased in SWE samples 

with MHD samples being intermediate (Supplementary Table S2). 

2.2. Technical variability between datasets

While all cohorts were sequenced using the Illumina platform, technological artifacts such as the 

specifics of microbial DNA extraction, stool sample collection and handling likely contribute to 

these differences, but it cannot be ruled out that geographical separation and disjoint participant 

demographics (see above) underlie some of these between cohort differences.

We recognize that extraction protocols may influence the recovered gut microbiome composition, 

as there is variation between different kits/methods in how they target different bacterial groups. 

However, we note that this variation has been reported to consistently be below the inter-individual 

variation47 including studies of direct reextraction of the same 11 samples using both the Chinese 

and the MetaHIT protocol26. Furthermore, the greatest difference seems to come down to the lysis 

method of choice. As repeatedly reported54-56, beat beating is crucial for recovering high amounts of 
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DNA and a correct gram-positive quantification. In this context, we note that alongside the 

MetaHIT protocol, both the Swedish and the Chinese protocol use beat beating, at comparable 

duration and using exactly the same 0.1 mm zirconium-silica beads. Both protocols then use an 

isopropanol precipitation for recovering the DNA. Here, the Swedish protocol differs by 

subsequently using a QIAamp DNA stool mini kit column for purifying DNA. We cannot exclude 

that this may introduce a bias, but have no reason to expect such an effect. We therefore estimate 

that extraction protocol differences are unlikely to explain the bulk of dataset differences. Even 

where they do play a part, our statistical approach which controls for source dataset in each test is 

specifically intended to prevent any such factors from affecting the conclusions drawn when 

comparing cases/controls or treated/untreated samples.

Beyond protocol and differences in individual host demographics (age, sex, BMI, fraction of 

controls versus cases...) we also have to consider the possibility of genuine geographic differences 

in the human microbiome. Diet is an obvious cause, but we cannot easily test its impact in the 

absence of diet data in the source studies. Another factor which may play a part is exposure to 

antibiotic compounds, which may shift microbiota towards taxa more prone to carry antibiotic 

resistance genes. Previous work (reviewed in Forslund et al. 201357) show an effect at the 

community level wherein exposure of patients or farm animals to antibiotics increases the carriage 

of such genes more generally in human communities. Furthermore, a previous survey57 including 

the SWE and CHN cohorts, as well as many of the MHD samples, showed higher carriage of 

antibiotic resistance genes in the Chinese metagenomes than the Swedish or Danish, matching 

correspondingly higher use of antibiotics in medicine and animal husbandry in China than in 

northern Europe. Reexamining those results (intermediate results from Forslund et al. 201357 

available on request) also show how the CHN samples are significantly shifted towards bacterial 
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taxa where antibiotic resistance gene carrying strains are known compared to the SWE and MHD 

samples, indicating that the taxonomic difference between the cohorts to a significant extent can be 

understood as a shift towards those bacteria which are more prone to antibiotic resistance. Notably, 

these include Escherichia, which may explain why no strong shift in this taxon is seen under 

metformin treatment in the CHN cohort – the healthy samples already have Escherichia levels 

comparable to those of metformin-treated SWE or MHD samples, something which then may be a 

consequence of the higher degree of antibiotic exposure at the population level.

Thus, despite all three cohorts stemming from shotgun sequencing-based quantitative 

metagenomics studies that focused on exploring the effect of T2D on the gut microbiome, from a 

medical perspective as well as from a microbiological perspective there were substantial differences 

between datasets that needed to be taken into account for any further statistical analysis. To address 

these issues, for the present study a methodology was chosen that explicitly models study source as 

a confounder in all applicable tests42.

2.3. Initial analysis of T2D microbiome signatures unstratified for treatment

Comparing gut microbial taxonomic and functional profiles between T2D (n = 199) and control (n 

= 554) metagenomic samples, we recover a majority of associations previously reported as 

significant3,4, also taking into account the novel Danish MetaHIT T2D samples (Supplementary 

Table S3). Metagenomes from all T2D patients regardless of medication status, when compared 

with non-diabetic samples (ND CTRL), show enrichment of the bacterial genus Lactobacillus and 

depletion of the newly characterized genus Intestinibacter15.  However, the inferred associations 

overlap only partly between the three cohorts, with 7 of 26 genus-level associations not supported 
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from multiple datasets (Supplementary Table S3). Significant demographic and microbial 

(functional, taxonomic and diversity-associated) differences exist between the study sets (see above 

Supplementary Discussion 2.1, Supplementary Table S2) which could contribute to this divergence. 

It is currently difficult to determine to what extent these reflect genuine geographic, ethnic or 

demographic microbiome differences, and to which extent they follow from the different sampling 

and DNA extraction protocols used in the studies (see above Supplementary Discussion 2.2). To 

account for this uncertainty, all statistical tests were explicitly blocked for study source as 

confounder42. 

3. Influence of diet and medication on the gut microbiome

3.1. Effects of medications taking statistical power into account

Testing the influence of various glucose-lowering drugs prescribed to T2D patients, we found that 

at genus level, therapy-attributable variability in our joint dataset could be largely explained from 

only metformin treatment status (no significant differences were found testing for compositional 

changes as a result of any of the other drugs taken by diabetic patients; see Supplementary Table S4, 

though smaller effects could have been missed due to lower statistical power for the other 

medications tracked). We therefore analyzed the detection power of the study using two different 

strategies. First, we replicated the analysis both for effects of metformin and for those of other 

tracked medications, but using a subset of samples generated by randomly selecting an equal, set 

number of cases and controls. This was repeated five times for each such sample count, and in each 

case, the number of bacterial genera found significantly different under different FDR thresholds 
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was counted. As the size of these subsampled datasets increase, two bacterial genera (Escherichia 

and Intestinibacter) were robustly found significantly different in abundance under metformin 

treatment, but with no such taxa for other treatments (Extended Data Figure 1b). Effects of the other 

tested drugs are therefore likely smaller than those of metformin. To explicitly test this conclusion, 

we first calculated standardised (Cohen's) effect sizes for the two bacterial genera impacted by 

metformin. We then used the G*Power application58 to compute the statistical power a WRS test 

would achieve for the other three treatments assuming the same effect sizes and a type I error rate of 

0.05, and with case/control numbers corresponding to each other treatment. The results are shown 

in Supplementary Table S4. An effect as strong as that of metformin on Intestinibacter would likely 

have been detected, given the expected power for the other three treatments ranged between 0.66 

and 0.9. In contrast, a relatively weaker effect such as that of metformin on Escherichia, would 

likely have been missed, as the expected power under those conditions was only 0.18-0.28.

3.2. Analysing relative contributions of treatment, disease and cohort to overall taxonomic 

composition

To be able to quantify the relative effects if different factors affecting the gut microbiomes in the 

study, we measured Canberra distances between all T2D metformin+, T2D metformin- and ND 

CTRL samples. For each such pairwise distance we also determined whether the samples had the 

same treatment status (any drug vs no drugs), disease status (T2D vs control) or came from the 

same source dataset or not (and thereby same country or not). The distances were modeled using the 

R aov function, specifying a model encoding treatment, disease and country similarity separately 

and as pairwise and threeway interactions, as the predictor variables. The results are shown in 

Extended Data Table 1a. Broadly speaking, country of origin explains roughly 9% of intrasample 
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distances, treatment roughly 3%, and diabetes itself roughly 1%. The bulk of intrasample distances 

cannot be explained by any of these factors, but rather reflect individual variability or other 

uncontrolled-for factors.

3.3. Analysis of dietary data for a subset of the MetaHIT cohort

Diet is known to impact both diabetes development and the microbiome itself. We therefore 

investigated whether any clear trends can be seen between sample categories within the MHD 

cohort with regards to diet, such that they might mediate the microbiome signals we observe. Food 

frequency questionnaire data was possible to obtain for a subset of the MHD samples as described 

in the Methods, and was transformed into quantitative estimates of intake for a set of macronutrient 

and food categories. These estimates were compared between sample categories using general 

linear models, with results shown in Supplementary Table S16. No significant differences were 

found between T2D metformin+ and T2D metformin- samples. Comparing all T2D samples with 

ND CTRL samples reveal the T2D patients consume significantly less saccharose and milk 

products, but significantly more meat, where the first two likely correspond to compliance with 

dietary interventions in diabetes. It is conceivable that the increased meat consumption is associated 

with the observed decrease in butyrate-producing gut bacteria but no definite conclusions can be 

drawn from this very limited dataset. Likewise no conclusions can as yet be drawn on how much 

diet plays a role in the differences between the three source studies, in the absence of dietary data 

for non-MHD samples. 
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4. Species-level breakdown of taxonomic correlates of T2D and metformin treatment

The main manuscript discusses results achieved when grouping taxa together at the genus level. The

underlying mOTU resource further allows for species-level resolution in many cases, though novel 

or poorly characterized mOTUs may have only broad taxonomic identity assigned and therefore 

may be difficult to interpret, which was why they were not reported in the main manuscript. We 

repeated the univariate tests for contrasting groups of samples (FDR-adjusted KWT tests blocked 

for study source, FDR-adjusted WRS tests post-hoc for comparing sample subsets) on a mOTU 

level as well. Results of these tests are shown in Supplementary Table S9.

For the comparison of T2D metformin- with ND CTRL samples, e.g. analysis of the T2D-

associated microbiota in absence of metformin treatment, the genus-level signal is largely reflected 

at the mOTU level with representatives for each differentially abundant genus also seen 

significantly different in mOTU abundance. The Lactobacillus genus-level difference appears to be 

driven by L. amylovorus and L. salivarius, the Haemophilus difference by H. parainfluenzae, 

whereas mOTU-level resolution of the various butyrate producers include mOTUs for Roseburia 

and several poorly characterized groups. Beyond the signals also seen at the genus level, certain 

other taxa also emerge significantly different in abundance at the mOTU level, including strains of 

Faecalibacterium prausnitzii. For I. bartlettii as well as for eight uncharacterized mOTUs, there is a

significant difference both when comparing T2D metformin- with T2D metformin+ samples, and 

comparing T2D metformin- with ND CTRL samples, in eight cases consistent with a reduction or 

inversion of the T2D pattern upon metformin treatment. 

Comparing T2D metformin+ and T2D metformin- samples, the Intestinibacter and Escherichia 

signals stand out clearly, and are driven respectively by I. bartlettii and some closely related taxon, 
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and by Escherichia coli. Of remaining mOTUs affected by metformin, as stated many are 

uncharacterized at the genus level, and several of them show a significant and reverse trend when 

comparing T2D metformin+ with T2D metformin- samples. Our finding that microbial SCFA 

production in the small intestine may lead to improved glucose control may thus also involve some 

of these uncharacterized Firmicutes, most of whom are Clostridiales.

5. T1D control analysis

5.1. Characterization of the adult T1D microbiome

Notably a recent study of children at risk for T1D showed a reduction in microbial diversity just 

prior to onset59, the present findings then suggest that it does not necessarily remain in adults under 

long-term blood glucose lowering through insulin and lifestyle  interventions.  The T1D samples 

were distinguishable with high ROC-AUC values from both 277 MHD healthy and 75 MHD T2D 

samples using an SVM classifier (Supplementary Table S6). With or without adjusting for 

community richness differences (using both a regression model and selective subsampling), T1D 

samples were enriched (Wilcoxon  rank-sum  test FDR < 0.1) for several taxa including 

Methanobrevibacter and Ruminococcus (Supplementary Table S11).
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5.2. Microbiome–based classification of type 1 diabetes and type 2 diabetes from controls, the 

latter without stratification on metformin treatment

Type 1 diabetes (T1D) classification from controls performed poorly using bacterial family 

abundances as features and we achieved a ROC-AUC (Area Under (Receiver Operating) Curve 

metric) of around 60% using CAGs34 as input data. We also evaluated bacterial genus and family 

level taxonomic abundance matrices as predictive features. Using family level community 

composition as input, predictors performed no better than random; using genus-level taxonomic 

data as input the classifier reached ~79% ROC-AUC including 13 genera as features 

(Supplementary Table S8). Listed in order of descending importance for the classifier, these were: 

Methanobrevibacter, Odoribacter, Faecalibacterium, Oscillibacter, Ruminococcaceae, Dorea, 

Collinsella, Bifidobacterium, Erysipelotrichaceae, Coprococcus, Oscillospiraceae, Dialister, 

Sutterellaceae. This set is largely overlapping with bacterial genera found significantly different 

between T1D and ND CTRL samples (Supplementary Table S10). On mOTU level, the prediction 

was similar: 77% ROC-AUC was achieved using 22 mOTUs as features and 75% using 8 mOTUs. 

Here, Methanobrevibacter OTU’s were not important in the prediction (rank 97), but more so an 

unclassified Faecalibacterium (SpecI Cluster1577), a Bacteroides (SpecI Cluster1104) and a 

Lachnospiraceae (SpecI Cluster1608).

T2D classifications performed more poorly. A good separation was achieved between T2D 

metformin+ and T2D metformin- samples (ROC-AUC at 75-90% on the three datasets using 

Intestinibacter only), but not between ND CTRL and T2D metformin-, where the best classification 

with ROC-AUC at 64-84% across datasets  was achieved by including 63 MGS (Supplementary 

Table S8).
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6. Independent replication of metformin-associated gut microbial composition changes

To validate our finding of an association between metformin and particular changes in gut microbial

composition, specifically an increase in Escherichia and a decrease in Intestinibacter carriage, in a 

fourth cohort (see Methods), we selected a set of 30 T2D patients from an ongoing study, 21 of 

which were treated with metformin, extracted DNA from frozen faecal samples as for the MHD 

samples, then carried out 16S amplicon sequencing taxonomic profiling (see Methods) and 

assigning a taxonomy against the SILVA 119 rRNA database39. Two OTUs that were classified as 

Escherichia/Shigella and unknown Intestinibacter, respectively, were then searched against the 

NCBI rRNA database40 which is more complete with respect to Intestinibacter rRNA; we found >= 

99% identity match over the whole sequence to I. bartlettii and Escherichia/Shigella 16S rRNA. 

Testing specifically for the two signals concluded that under metformin treatment, both a depletion 

of Intestinibacter and an enrichment of Escherichia are significant (MWU test, Extended Data 

Table 1b, Extended Data Figure 1c), though Intestinibacter was at the detection threshold, which 

could suggest a poor primer amplification.

7. A potential role of Escherichia enrichment in metformin adverse effects

Several functional modules, both under SEED60 or the GMM system, were significantly enriched

for in T2D metformin+ compared to T2D metformin- samples, and the increased abundance of

these gene modules could largely be traced to higher  Escherichia abundance. This was indirectly

demonstrated  by  removing  all  contributions  to  the  functional  profiles  from  putative

Enterobacteriaceae genes, which eliminated significant differences between groups (Supplementary

Table  S15). Thus,  the  observed  symptoms  of  gastrointestinal  distress  may  derive  from  the
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Escherichia-associated  increase  in  lipopolysaccharide  synthesis  potential61,  or  the corresponding

increase for 14 SEED virulence  subterms (including virulence  regulators,  adhesion and biofilm

formation  genes,  antibiotic  resistance  genes  and  fimbriae),  as  well  as  from enhanced  sulfate

metabolism  potential  (Supplementary  Table  S14).  Increased  genetic  potential  for  hydrogen

production will not only contribute to further enhancement of hydrogen sulfide production, but also

to bloating, a clinically well-known side effect of metformin treatment62. Further, intestinal bile acid

absorption is reduced in metformin-treated patients; this might cause an increased availability of

sulfate from conjugated bile steroids, leading to increased sulfate reduction63.  Sulphur metabolism

in itself is associated with intestinal bloating and discomfort64.
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Supplementary table legends

Supplementary Table S1 – Samples used in study. “Sample subsets” tab lists diabetes and 

metformin treatment status for all 784 samples where this is available. “Phenotypes” tab lists body 

mass index, fasting plasma glucose, fasting serum insulin, and Hba1c for all samples in the MHD, 

SWE and CHN datasets. To convert mU/l to pmol/l for insulin levels a factor of 6.0 was used. To 

convert HbA1c levels from % (DCTT) to mmol/mol (IFCC) the following formula was applied 

((HbA1c % - 2.15)*10.929). “Sequencing statistics” tabs show metagenome sample sizes and 

measurements, including QC measures, for all samples in the three study sets.

Supplementary Table S2 – Significant differences in taxonomic composition (genus and phylum 

level, KWT) and gene richness indices (KWT) for T2D patients between the three geographically 

separated datasets used in the study. Question mark notation in a taxon description indicates a novel 

taxon at that hierarchical level, e.g. “Bacteria; Firmicutes;?;?;?;?” indicates a currently 

uncharacterized Firmicutes. A post-hoc test was used to determine between-subset significances, 

where “=” refers to n.s. differences and “>”, “>>” and “>>>” refer to p-values < 0.05, 0.01 and 

0.001, respectively. the “Metadata” tab summarizes some metadata differences between the three 

country datasets (data are shown as median and interquartile range).

Supplementary Table S3 – Significant (WRS P-values, and BH FDR-corrected Q-values blocked 

for country, taking significance at FDR < 0.1, these cells are shaded in yellow) differences in 

taxonomic (genus, family and mOTU level) and functional (GMMs and KEGG modules) 

composition between T2D (n=199) and ND CTRL (n=554) samples disregarding medication status. 

These results are compared in subsequent sub-tables with those reported in the source studies (with 
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red/green shading noting enrichment/depletion in T2D), either using only each set of source study 

samples separately or the full set of samples, with tests blocked for study source.

Supplementary Table S4 – Investigating the influence of medications including statin, insulin and 

blood pressure lowering drugs on gut microbial genus abundance, tested for T2D samples. No 

significant differences (WRS P-values, and BH FDR-corrected Q-values blocked by source country, 

taking significance at FDR < 0.1) were found between treated and untreated T2D patients. Blocking 

also for metformin treatment yielded no further significant differences. The power calculations sub-

table shows post-hoc calculations of effective statistical power of a WRS test in detecting 

taxonomic changes with effect sizes comparable to those found under metformin treatment, at a 

type I error rate of 0.05 and with sample sizes instead equivalent to those of the other medications 

tracked.

Supplementary Table S5 – Multivariate significant differences in taxonomic composition between 

sample subsets. FDR values shown were determined using a betadisper test between T2D 

metformin- (n=106), T2D metformin+ (n=93) and ND CTRL (n=554) samples with 104 repetitions, 

blocked for country effect on different taxonomic levels, using Canberra distances. 

Supplementary Table S6 – Performance of robust recursive feature elimination support vector 

machine (rRFE-SVM) predictors built to separate sample subsets based on diabetes and metformin 

treatment status. The table shows cross-validated ROC-AUC classifier performance using a selected 

feature subset for their separation of A) T2D metformin- (n=106), T2D metformin+ (n=93) or ND 

CTRL (n=554) states and B) MHD T1D (n=31) from MHD ND CTRL (n=277) samples. 

Supplementary Table S7 – Performance of robust recursive feature elimination support vector 

machine (rRFE-SVM) predictors built to separate sample subsets based on diabetes status ignoring 
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metformin treatment status. The table shows ROC-AUC classifier performance (%) when training 

the classifier on each country data subset, then testing the resulting classifier on the same or on each 

of the two other countries. Number of features used by each classifier is also shown, as is the set of 

features used.

Supplementary Table S8 – Bacterial genera tested for significantly (study source adjusted WRS P-

values, and BH FDR-corrected Q-values, taking significance at FDR < 0.1, these cells are shaded in 

yellow) different abundance between T2D metformin- (n=106) and ND CTRL (n=554) samples. All 

tests were corrected for study source. Question mark notation in a taxon description indicates a 

novel taxon at that hierarchical level, e.g. “Bacteria; Firmicutes;?;?;?;?” indicates a currently 

uncharacterized Firmicutes.

Supplementary Table S9 – Bacterial species (mOTU taxonomic entities) tested for significantly 

(study source adjusted WRS P-values, and BH FDR-corrected Q-values, taking significance at FDR 

< 0.1, these cells are shaded in yellow) different abundance between T2D metformin- (n=106) and 

ND CTRL (n=554) samples, and between T2D metformin+ (n=93) and T2D metformin- (n=106) 

samples. All tests were corrected for study source.

Supplementary Table S10 – Bacterial functional modules (GMM and SEED modules, 

respectively) tested for significantly (study source adjusted WRS P-values, and BH FDR-corrected 

Q-values, taking significance at FDR < 0.1, these cells are shaded in yellow) different abundance

between T2D metformin- (n=106) and ND CTRL (n=554) samples. All tests were corrected for 

study source.

Supplementary Table S11 – Bacterial genera that were significantly (WRS P-values, and BH 

FDR-corrected Q-values, taking significance at FDR < 0.1) different in abundance between T1D 
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(n=31) and MHD ND CTRL (n=277) samples. Question mark notation in a taxon description 

indicates a novel taxon at that hierarchical level, e.g. “Bacteria; Firmicutes;?;?;?;?” indicates a 

currently uncharacterized Firmicutes. 

Supplementary Table S12 – Clinical markers and taxonomic diversity indices tested for significant 

differences between sample sets based on metformin treatment or diabetes status. Shown are 

median values and standard deviations for subsets under comparison, WRS P-values, and BH FDR-

corrected Q-values, taking significance at FDR < 0.1.

Supplementary Table S13 – Two bacterial genera which were significantly different between T2D 

metformin+ (n=106) and T2D metformin- (n=93) samples (Escherichia and Intestinibacter) were 

retested with a WRS-test (taking significance at FDR < 0.1) correcting for the following potential 

confounders: BMI, gender, fasting plasma glucose and fasting serum insulin. All tests were 

corrected for study source.

Supplementary Table S14 – Bacterial functional modules (GMM and SEED modules, 

respectively) tested for significantly (study source adjusted WRS P-values, and BH FDR-corrected 

Q-values, taking significance at FDR < 0.1, these cells are shaded in yellow) different abundance

between T2D metformin+ (n=93) and T2D metformin- (n=106) samples. All tests were corrected 

for study source.

Supplementary Table S15 – Bacterial functional modules (GMM and SEED modules, 

respectively) tested for significantly (study source adjusted WRS P-values, and BH FDR-corrected 

Q-values, taking significance at FDR < 0.1) different abundance between T2D metformin+ (n=93)

and T2D metformin- (n=106) samples while excluding contributions from Enterobacteriaceae (see 

Methods). All tests were adjusted for study source.
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Supplementary Table S16 – Analysis of dietary differences in Danish MHD individuals between

T2D metformin- (n=16), T2D metformin+ (n=50) samples, and between T2D (either metformin

status, n=66) and ND CTRL (n=194) samples; Beta-values are estimated  using  a general linear

model also incorporating age, sex and energy intake. Fat, carbohydrate and protein energy intake

tests were adjusted for age and sex only. The following dietary components were log-transformed in

order to approximate a normal distribution: Energy intake, total fat intake, carbohydrate intake,

saccharose, milk, cheese, vegetables, potatoes, poultry, egg and protein-rich food.
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