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1. Supplementary	Results

1.1	Reproducibility	of	group	average	multi-modal	data	

Expanding	on	the	striking	similarities	between	210P	and	210V	datasets	highlighted	
in	Main	Text	Figure	1,	Figure	1	shows	group	average	midthickness	surfaces,	FreeSurfer	sulc	
and	curvature	folding	measures,	myelin	maps,	and	cortical	thickness	maps	corrected	for	
surface	curvature.		All	of	these	measures	are	highly	reproducible	across	the	210P	and	210V	
group	averages	(see	legend	to	Figure	1).		Because	MSMAll	areal	feature-based	registration	
was	used	to	register	the	data	(using	myelin	maps,	resting	state	network	maps,	and	
visuotopic	maps,	see	Methods	section	on	image	preprocessing),	folding	features	that	are	
well	correlated	with	cortical	areas	remain	sharp,	whereas	folding	features	that	are	poorly	
correlated	with	cortical	areas	are	blurred	away.		This	results	in	sharp	folding	patterns	for	
the	central	sulcus,	calcarine	sulcus,	and	the	insula,	where	areal	boundaries	are	closely	
related	to	folds,	whereas	the	folding	patterns	are	blurred	out	in	more	cognitive	regions	
where	areas	and	folds	are	not	well	as	correlated	(see	Figure	7	below	for	a	side	by	side	
comparison	of	group	and	individual	folding	maps).		This	blurring	effect	on	folding	patterns	
in	many	cortical	regions	is	also	visible	in	the	group	average	midthickness	surfaces	of	Figure	
1. Fine	details	in	the	average	myelin	maps	and	thickness	maps	are	preserved	because	these
features	are	correlated	more	strongly	with	cortical	areas.
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Figure	1	|	HCP	group	average	architectural	and	folding	map	reproducibility.		Here	we	show	group	
average	left	midthickness	surfaces	in	Columns	1	and	2,	left	inflated	surfaces	in	Columns	3	and	4	and	left	flat	
maps	in	Column	5.		The	210P	group	averages	are	the	odd	rows	and	the	210V	group	averages	are	the	even	
rows.		The	top	two	rows	are	FreeSurfer	‘sulc’	(r=0.996),	the	next	two	are	FreeSurfer	‘curv’	(r=0.979),	the	next	
two	are	myelin	(r=0.998),	and	the	final	two	are	thickness	corrected	for	folding	effects	(r=0.994);	all	show	
extremely	high	cross-group	reproducibility	(both	hemispheres	were	used	in	computing	spatial	map	
correlation	coefficents).	Folding	patterns	(sulc	and	curv)	become	blurry	in	many	higher	association	regions	of	
cortex,	though	they	remain	sharp	in	primary	regions	such	as	the	central	sulcus,	calcarine	sulcus,	and	insula,	
indicating	that	these	regions	have	cortical	areas	that	are	well	correlated	with	folding	patterns.		Areal	feature-
based	surface	registration	also	preserves	fine	spatial	details	in	myelin	maps	and	thickness	maps	that	are	
consistent	across	groups.		An	example	is	the	reproducible	variation	in	the	myelin	maps	of	the	primary	
somatosensory	cortex,	which	appears	to	be	related	to	somatotopic	subdivisions	(see	Supplementary	
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Neuroanatomical	Results	#6,	where	these	variations	are	compared	with	functional	and	connectivity-based	
somatotopic	subdivisions).		Sulcal	folding	is	dark	and	gyral	folding	is	bright,	with	grey	in	between.		High	
myelin	and	thick	cortex	are	red,	low	myelin	and	thin	cortex	are	dark.		T1w/T2w	myelin	content	maps	are	a	
relative	measure	depicted	on	a	percentile	scale	that	indicates	which	cortical	areas	have	more	or	less	myelin.		
For	brevity,	we	refer	to	them	as	‘myelin	maps’	in	this	report	(as	in	previous	reports).			We	consider	them	akin	
to	an	in	vivo,	MRI-based	“myelin	stain,”	analogous	to	histological	myelin	stains	long	used	neuroanatomists	
rather	than	a	truly	quantitative	measure	of	intracortical	myelin	(Glasser	et	al.,	2014;	Glasser	and	Van	Essen,	
2011).		Data	at	http://balsa.wustl.edu/JpM6.	

Figure	2	shows	the	spatial	detail	and	quantitative	reproducibility	achievable	
without	using	spatial	smoothing	of	the	effect	size	(beta)	maps	for	three	example	task	fMRI	
contrasts	(highest	reproducibility,	median	reproducibility,	least	reproducible;	Z	statistic	
maps	are	similarly	reproducible).			Figure	3	shows	the	reproducibility	for	all	86	task	
contrasts,	both	for	all	grayordinates	and	for	just	surface	grayordinates.			

Figure	2	|	HCP	group	average	task	fMRI	reproducibility.		Images	are	scaled	from	beta	=+/-0.75.		The	odd	
rows	are	from	the	210P	dataset	whereas	the	even	rows	are	from	the	210V	dataset.		These	data	are	shown	on	
left	inflated	views	(Columns	1	and	2),	right	inflated	views	(Columns	3	and	4),	and	left	and	right	flat	maps	
(Columns	5	and	6,	respectively).		The	top	two	rows	are	the	task	fMRI	contrast	with	the	highest	reproducibility	
(Relational	vs	Baseline:	r=0.995),	the	middle	two	rows	are	the	task	fMRI	contrast	with	the	median	
reproducibility	(Language:	Story	vs	Baseline:	r=0.984),	and	the	last	two	rows	are	the	task	fMRI	contrast	with	
the	lowest	reproducibility	(Working	Memory/Categories:	Tool-Avg:	r=0.944)	that	is	not	a	known	outlier	(see	
Figure	3	legend).		See	(Robinson	et	al.,	2014)	for	a	comparison	of	the	sharpness	of	task	fMRI	maps	generated	
with	areal	feature-based	registration	versus	folding-based	registration.		Data	at	http://balsa.wustl.edu/Q94z.	
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Figure	3	|	HCP	group	average	task	fMRI	reproducibility	for	all	contrasts.			Here	we	show	box	and	whisker	
plots	demonstrating	the	reproducibility	of	all	86	task	contrasts	(47	unique,	39	sign	reversed)	determined	for	
all	grayordinates	(left)	or	surface	grayordinates	only	(right,	as	shown	in	Figure	2	and	whose	r-values	are	
mentioned	in	the	figure	legend).		The	bottom	outlier	(red	cross)	is	the	Gambling	Reward-Punishment	task	
contrast,	which	did	not	work	as	intended	by	the	HCP	and	has	very	low	information	content	in	individual	
subjects.		See	Figure	2	legend	for	corresponding	image	data.			

The	top	four	rows	of	Figure	4	show	the	spatial	patterns	of	two	different	resting	state	
network	maps	(RSNs)	from	a	d=137	ICA	decomposition	after	computation	of	the	individual	
subject	maps	using	weighted	regression	and	then	averaging	across	the	210P	group	and	the	
210V	group.		(Weighted	regression	produces	more	accurate	individual	subject	maps	than	
the	more	standard	dual	regression	approach,	see	Supplementary	Methods	#2.3.)		The	
bottom	four	rows	of	Figure	4	show	the	reproducibility	of	dense	functional	connectivity	
maps	for	two	different	seeds.		Figure	5	shows	the	reproducibility	of	all	the	non-artifactual	
RSNs	and	for	all	dense	functional	connectivity	maps.		Using	the	d=130	RSNs	computed	from	
the	210V	subjects	yielded	similar	reproducibility	numbers	(data	not	shown).		The	method	
for	choosing	the	ICA	dimensionalities	is	explained	in	Supplementary	Methods	#3.3.			
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Figure	4	|	HCP	group	average	resting-state	fMRI	reproducibility.		Here	we	show	the	reproducibility	of	
Resting	State	Networks	(RSNs,	ICA	d=137)	and	dense	Functional	Connectivity	maps.		The	odd	rows	are	the	
210P	dataset	and	the	even	rows	are	the	210V	dataset.		The	RSNs	were	produced	using	ICA	on	the	210P	
dataset	and	then	weighted	regression	of	the	group	spatial	maps	onto	the	individual	subject	dense	timeseries	
to	produce	individual	subject	spatial	maps	in	all	449	subjects.		The	individual	subject	maps	were	then	
separately	averaged	across	the	210P	and	210V	groups.		The	top	two	rows	show	the	left	lateralized	language	
network	and	the	next	two	rows	show	its	right	hemisphere	homologue,	both	scaled	between	beta=+/-0.2.			The	
next	two	rows	show	dense	functional	connectivity	(FC)	of	the	bilateral	task	negative	(default	mode)	network	
seeded	from	a	posterior	inferior	parietal	grayordinate	(green	arrow,	white	sphere	on	left	lateral	surface),	
which	has	strong	anti-correlation	with	the	task	positive	network.		The	last	two	rows	show	the	early	visual	
network	seeded	from	a	grayordinate	in	the	center	of	the	calcarine	sulcus	(purple	arrow,	white	sphere	on	left	
medial	surface),	which	shows	positive	correlation	with	the	entire	brain.		The	dense	FC	maps	are	scaled	from	
r=-0.8	to	0.8.		Data	at	http://balsa.wustl.edu/RkMg.	
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Figure	5	|	HCP	group	average	resting	state	fMRI	reproducibility	all	data.			Here	we	show	the	
reproducibility	of	the	210P	and	210V	subject	groups	of	resting	state	network	maps	(RSNs)	(d=137)	and	
dense	Functional	Connectivity	maps	(dFCs)	for	all	grayordinates	and	for	only	surface	grayordinates.		Group	
level	artifactual	components	(3)	are	not	included	(#RSNs=134)	for	either	measure	and	only	primarily	surface	
components	(#RSNs=77)	are	included	for	the	surface	only	measure.		See	Figure	4	legend	for	how	the	RSNs	
were	produced.		For	RSNs,	the	all	grayordinates	median	reproducibility	is	r=0.978	and	for	surface	only	it	is	
r=0.989.		For	dense	FC	maps,	the	all	grayordinates	median	reproducibility	is	r=0.973	and	for	surface	only	it	is	
r=0.989.		Dense	FC	maps	contain	a	considerable	number	of	outliers	(e.g.	seeds	in	low	CNR	grayordinates	in	
cortical	and	subcortical	susceptibility	regions.			For	dense	FC,	some	outliers	(red	pluses	more	than	2.7	
standard	deviations	below	the	median)	extend	below	r=0.7,	however	the	134	RSN	maps	contain	few	outliers	
(as	they	have	values	largely	close	to	zero	in	these	low	CNR	susceptibility	regions).		Some	of	the	dense	map	
outliers	may	reflect	the	very	large	number	of	samples	(over	4	billion)	in	a	dense	connectome.		See	Figure	4	for	
corresponding	image	data.			

1.2	Cross-validation	of	the	multi-modal	parcellation	

For	the	statistical	cross-validation,	the	210V	dataset	was	parcellated	using	the	210P-
derived	multi-modal	parcellation	(i.e.,	architectural	measures	and	fMRI	timeseries	for	each	
210V	subject	were	averaged	within	the	210P-defined	parcels	prior	to	functional	or	
connectivity-based	analyses).		We	then	computed	paired	t-tests	(for	significance)	and	effect	
sizes	(Cohen’s	d,	for	robustness)	across	all	subjects	for	each	pair	of	neighboring	areas	and	
for	all	266	distinct	feature	maps	within	the	four	independent	feature	categories:	cortical	
thickness,	myelin	content,	task	fMRI	contrast	map	betas,	and	full	correlation	functional	
connectivity	with	the	other	178	areas	(i.e.	excluding	the	diagonal)	(see	Supplementary	
Methods,	#7.2).		To	determine	whether	each	of	these	parcellated	feature	maps	was	indeed	
robustly	and	statistically	significantly	different	across	the	area	pair’s	border	in	individual	
subjects,	the	results	were	thresholded	at	a	Cohen’s	d>1	effect	size	threshold	and	a	
statistical	significance	threshold	of	p<9*10-8	(Bonferroni-corrected	for	both	hemispheres	
and	two	tails,	see	Methods	section	on	statistical	cross	validation).			

Figure	6	shows	results	displayed	at	each	of	the	1,050	borders	shared	by	a	pair	of	
areas	in	the	left	or	the	right	hemisphere.	Colors	in	the	top	row	indicate	that	205	areal	
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borders	are	robustly	and	statistically	significantly	different	across	all	four	feature	
categories	(red,	19.5%	of	border	pairs),	535	across	three	categories	(yellow,	51.0%),	268	
across	two	categories	(green,	25.5%),	and	40	across	one	category	(blue,	3.8%).		Only	two	
areal	borders	(black,	0.2%)	were	below	the	robust	effect	size	threshold	for	all	feature	
categories	(but	nonetheless	passed	the	statistical	significance	threshold	for	multiple	
categories,	see	Figure	6	legend).		Rows	2	-	5	show	which	areal	borders	passed	the	
thresholds	for	each	feature	category.		These	results	demonstrate	that	the	areas	of	the	multi-
modal	parcellation	differ	from	their	neighbors	across	multiple	modalities	in	an	
independent	group	of	subjects.			

Figure	6	|	Cross-validation	of	the	multi-modal	parcellation.		Here	we	show	the	results	of	paired	t-tests	
between	each	pair	of	neighboring	areas’	mean	values	across	subjects	in	the	210V	dataset	but	using	the	
borders	from	the	210P	parcellation.		These	tests	were	thresholded	at	Cohen’s	d>1	(abs(mean	paired	
difference)	/	standard	deviation	of	paired	differences)	and	p<9*10-8	for	both	hemispheres	(Bonferroni	
corrected	across	two	hemispheres,	two-tailed	significance	threshold,	see	Methods	section	on	statistical	cross	
validation)	to	identify	robust	and	statistically	significant	differences	across	each	border	pair.		Row	1	shows	
how	many	of	the	four	categories	of	features	(thickness,	myelin,	tfMRI,	rfMRI)	passed	these	thresholds	(Red=4,	
Orange=3,	Green=2,	Blue=1,	Black=0).		Rows	2	-	5	show	which	borders	passed	the	thresholds	(yellow=passed,	
black=not	passed)	respectively	for	thickness,	myelin,	any	task	fMRI	contrast,	and	any	difference	in	
connectivity	with	an	area	in	the	full	correlation	parcellated	connectome	(excluding	the	diagonal).		Two	
borders	do	not	pass	the	d>1	effect	size	threshold	for	any	category	but	still	pass	the	significance	threshold	for	
multiple	modalities	(Black	in	Row	1):	IFJa/IFSp	in	the	left	hemisphere	(myelin:	d=0.91,	p=3	*	10-29,	tfMRI	
most	different	contrast	LANGUAGE	Story-Math:	d=0.62,	p=2	*	10-16,	rfMRI	most	different	connectivity	with	
area	47m:	d=-0.85,	p=9	*	10-27)	and	9a/9p	in	the	right	hemisphere	(myelin:	d=-0.84,	p=4	*	10-26,	rfMRI	most	
different	connectivity	with	area	8Ad:	d=-0.56,	p=3	*	10-14).	Data	at	http://balsa.wustl.edu/W0N5.	
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1.3	Typical	and	atypical	areal	topologies	of	55b	and	its	neighbors	

Although	area	55b	is	a	notably	well	defined	cortical	area	(see	Main	Text	Figure	2),	it	
also	exhibits	a	striking	degree	of	individual	variability	in	location	and	shape,	even	after	
MSMAll	areal-feature-based	surface	registration.		A	substantial	minority	of	subjects	have	
topologically	incompatible	organizations	of	55b	and	surrounding	areas	and	areal	features.		
These	atypical	topologies	include	spatial	shifts,	in	which	55b	is	shifted	relative	to	nearby	
areas	and	features,	and	splits	of	55b,	in	which	55b	is	bisected	by	another	area.		Figure	7	
illustrates	spatial	shifts	in	area	55b	relative	to	another	major	nearby	feature,	the	upper	
limb	somatosensory-motor	subregion.		Fig.	7a-e	show	the	group	average	areal	features	and	
pattern,	in	which	55b	is	strongly	connected	with	the	language	network	(RSN	in	column	1,	
task	in	column	3),	is	located	between	more	heavily	myelinated	areas	FEF,	PEF,	and	4	
(column	2),	and	is	elongated	along	an	axis	that	points	towards	the	postero-infero-lateral	tip	
of	the	upper	limb	subregion	of	the	somato-motor	strip	(RSN	in	column	4).		Fig.	7f-j	show	a	
typical	individual	subject	whose	areal	features	closely	match	those	of	the	group	average.		
Fig.	7k-t	show	two	subjects	with	an	atypical	organization	in	and	around	area	55b.		Instead	
of	55b’s	long	axis	pointing	ventrally,	in	both	subjects	it	is	tilted	up	towards	the	supero-
anterior	portion	of	the	upper	limb	region,	actually	contacting	it	at	the	white	sphere	
(columns	1	and	4).		Although	MSMAll	attempts	to	align	all	of	these	areal	features,	the	much	
larger	upper	limb	region	“wins,”	and	hence	area	55b	remains	misaligned	with	the	group	
average.		Because	the	patterns	are	topologically	incompatible,	MSMAll	would	generate	
large	distortions	in	this	region	if	the	regularization	penalty	were	relaxed.		Column	5	shows	
the	corresponding	folding	maps	for	the	group	average	and	individual	subjects,	which	show	
both	substantial	variability	and	relatively	poor	correlation	between	areal	boundaries	and	
folding	patterns	in	the	region	anterior	to	the	central	sulcus.			
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Figure	7	|	Atypical	shifts	of	area	55b.		Here	we	show	examples	of	one	type	of	topological	incompatibility	
between	the	typical	layout	of	areal	features	near	area	55b	and	a	minority	of	subjects	with	an	alternative	
‘shifted’	layout.		The	first	row	shows	the	group	average	areal	features:	a,	a	d=40	RSN	map	corresponding	to	
parts	of	the	language	network,	b,	a	myelin	map,	c,	a	LANGUAGE	Story-Baseline	task	contrast	beta	map,	d,	a	
d=40	RSN	map	corresponding	to	the	upper	limb	somatosensory-motor	topographic	subregion,	and,	e,	a	mean	
curvature	map	illustrating	the	folding	pattern.		The	group	delineation	of	area	55b	is	a	white	or	black	line.		f-j	
show	these	maps	in	a	typical	individual	subject.		k-o	show	an	atypical	subject	whose	55b	areal	features	are	
shifted	relative	to	the	typical	pattern.		p-t	show	a	second	atypical	subject	with	a	very	similar	pattern.		In	both	
cases,	the	posterior	portion	of	area	55b	is	located	near	the	white	sphere	instead	of	lying	within	the	group	
delineated	area	55b.		Data	at	http://balsa.wustl.edu/Q2LV.	

Besides	the	atypical	shifted	pattern	just	illustrated,	area	55b	and	adjoining	areas	
FEF	and	PEF	show	an	additional	atypical	pattern.		Typically,	FEF	and	PEF	are	two	
moderately	heavily	myelinated	areas	that	share	very	similar	functional	activation	and	
connectivity	patterns,	but	are	split	by	lightly	myelinated	area	55b,	which	has	very	different	
functional	activation	and	connectivity	patterns.		In	a	minority	of	subjects,	however,	it	is	55b	
that	is	split,	and	FEF	and	PEF	merge	so	that	they	are	spatially	adjoining.		Figure	8	shows	
examples	of	this	alternative	topology.		Fig.	8a-e	show	the	group	average	areal	features	and	
pattern,	in	which	55b	is	strongly	connected	with	the	language	network	and	is	located	
between	more	heavily	myelinated	areas	FEF,	PEF,	and	4.		Also	FEF	and	PEF	are	connected	
with	the	dorsal	visual	stream	(RSN	in	column	4).		Fig.	8f-j	show	a	typical	individual	subject	
whose	areal	features	closely	match	those	of	the	group	average.		Fig.	8k-t	show	two	subjects	
having	the	split	55b,	joined	FEF	and	PEF	pattern.		Importantly,	the	gap	within	the	expected	
location	of	55b	in	columns	1	and	3	(Fig.	8k,	8p,	8m,	&	8r),	indicating	a	lack	of	association	
(connectivity	and	function)	with	the	language	network,	aligns	with	the	region	of	increased	
connectivity	with	the	dorsal	stream	visual	cortex	(column	4,	Fig.	8n	&	8s)	and	with	elevated	
myelin	content	(column	2,	Fig.	8l	&	8q).		The	multi-modal	nature	of	these	individual	
differences	argues	strongly	against	attributing	these	findings	simply	to	“noise	in	the	data”;	
instead,	the	evidence	indicates	genuine	individual	differences	in	the	topology	of	cortical	
functional	and	structural	organization.		As	with	the	shifted	patterns,	the	folding	patterns	in	
and	near	55b,	FEF,	and	PEF	are	both	variable	across	subjects	and	variable	in	their	
relationship	to	areal	features.			

The	neuroanatomists’	survey	of	the	left	hemisphere	of	the	210P	group	of	subjects	
using	these	multi-modal	areal	features	revealed	that	~89%	(n=186)	have	the	typical	
topology,	~4%	(n=9)	have	the	shifted	topology,	~6%	(n=12)	have	the	split	topology,	and	
~1%	(n=3)	have	some	other	topology.		While	the	canonical	parcellation	is	best	defined	on	
the	basis	of	the	typical	topology,	it	is	highly	desirable	to	map	the	alternative	areal	
topologies	as	well	as	possible	so	that	functional	or	connectivity-based	measures	are	
comparing	the	same	areas	across	subjects.	This	is	a	major	reason	for	using	an	areal	
classifier	to	delineate	individual	subject	parcellations	instead	of	simply	imposing	an	atlas	
parcellation	on	the	data.		No	topology	preserving	registration	algorithm	can	bring	these	
atypical	subjects	into	precise	alignment	with	an	atlas	parcellation.		We	found	that	area	55b	
is	a	notable	hotspot	of	variability	in	areal	topology	(that	is	correlated	with	a	hotspot	in	
areal	distortion	from	the	MSMAll	registration).		Such	variability	in	areal	topologies	will	
likely	occur	in	varying	degrees	throughout	the	cortex,	however.		Presumably,	as	one	
examines	finer	levels	of	the	neural	hierarchy	(e.g.	within-area	modularity),	analogous	kinds	
of	spatially	incompatible	topologies	will	be	increasingly	prevalent.		To	take	an	extreme,	it	is	
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presumably	not	possible	to	register	brains	at	the	level	of	individual	neurons	or	even	
cortical	columns	in	a	topology	preserving	way.			

Figure	8	|	Atypical	splits	of	area	55b.			Here	we	show	examples	of	a	second	type	of	topological	
incompatibility	between	the	typical	layout	of	areal	features	near	area	55b	and	a	minority	of	subjects	with	
alternative	‘split’	layouts.		Row	1	shows	the	group	average	areal	features:	a,	a	d=40	RSN	map	corresponding	
to	parts	of	the	language	network,	b,	a	myelin	map,	c,	a	LANGUAGE	Story-Baseline	task	contrast	beta	map,	d,	a	
d=40	RSN	map	corresponding	to	the	dorsal	visual	stream,	and,	e,	a	mean	curvature	map	illustrating	the	
folding	pattern.		The	group	delineation	of	areas	55b,	FEF,	and	PEF	are	white	or	black	lines.		f-j	show	these	
maps	in	a	typical	individual	subject.		k-o	show	an	atypical	subject	whose	area	55b	is	split	and	FEF	and	PEF	are	
joined.		p-t	show	a	second	atypical	subject	with	a	similar	pattern.		In	both	cases	the	split	of	55b	is	visible	in	
multiple	independent	areal	features.		Data	at	http://balsa.wustl.edu/Wrn2.	

1.4	Automated	individual	subject	multi-modal	parcellations	

The	differing	areal	topologies	of	55b	and	its	neighbors	not	only	demonstrate	the	
need	for	individual	subject	parcellation	(as	opposed	to	atlas-based	parcellation)	but	also	
serve	as	an	excellent	test	case	to	evaluate	critically	whether	an	individual	subject	
parcellation	method	is	performing	as	desired.		Figure	9	shows	parcellation	results	for	three	
example	subjects,	with	Fig.	9a-j	showing	a	typical	55b	subject,	Fig.	9k-t	showing	a	shifted	
55b	subject,	and	Fig.	9u-dd	showing	a	split	55b	subject.		The	classifier	output	from	the	
typical	subject	shows	areas	PEF	(column	3),	55b	(column	4),	and	FEF	(column	5)	in	roughly	
the	same	places	as	in	the	group	average	(i.e.	this	subject	has	been	well	aligned	with	the	
areal-feature-based	registration).		In	the	shifted	55b	subject,	FEF	and	55b	have	swapped	
places,	and	PEF	extends	into	the	region	normally	classified	as	55b.		Despite	the	atypical	
topology,	the	classifier	was	able	to	identify	all	three	areas	in	their	atypical	locations	based	
on	their	multi-modal	areal	fingerprints.		In	the	split	55b	subject,	the	classifier	indicates	that	
55b	is	divided	into	two	pieces,	whereas	FEF	and	PEF	adjoin	one	another.	Examples	like	this	
motivated	us	not	to	enforce	a	strict	spatial	contiguity	criterion	on	the	individual	subject	
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parcellations.		Instead,	these	split-area	cases	argue	that	it	is	possible	for	some	areas	to	be	
spatially	non-contiguous	in	some	individuals,	even	if	they	are	contiguous	in	most	
individuals.		That	the	classifier	was	able	to	identify	these	atypical	cases	indicates	that	it	is	
performing	as	desired,	identifying	cortical	areas	in	many	individuals	even	when	their	areal	
topology	differs	from	the	group	average.			

Figure	9	|	Areal	classification	of	typical	and	atypical	areas	55b.		Here	we	show	classification	of	areas	PEF,	
55b,	and	FEF	in	three	example	individual	subjects	with	typical,	shifted,	and	split	55b	areal	topologies	
respectively	(group	parcels	are	black	or	white	outlines).		a,	k,	&	u	show	the	individual	subject	myelin	maps.		
b,	l,	&	v	show	the	individual	subject	language	resting-state	network	maps	(d=40).		f,	p,	&	z	show	the	
individual	subject	folding	maps.		g,	q,	aa	show	the	individual	subject	dorsal	stream	visual	network	maps	
(d=40).		c,	d,	e,	m,	n,	o,	w,	x,	&	y	show	the	raw	classifier	output	likelihood	maps	(scaled	0-1	black	to	yellow)	
for	PEF,	55b,	and	FEF	from	left	to	right.		h,	I,	j,	r,	s,	t,	bb,	cc,	&	dd	show	the	final	parcels	after	combining	
across	classifiers	for	PEF,	55b,	and	FEF.			For	all	subjects,	the	areal	classifier	is	able	to	identify	area	55b	
sensibly.		Data	at	http://balsa.wustl.edu/QxB9.	
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Another	key	indicator	of	the	robustness	of	our	classification	method	(and	of	the	
quality	of	the	HCP	data	and	analysis)	comes	from	evaluating	the	reproducibility	of	results	
across	repeat	scans	of	individual	HCP	test-retest	subjects.		Figure	10	shows	results	from	
three	subjects	who	were	scanned	through	the	full	HCP	protocol	twice	and	processed	
through	completely	separate	runs	of	the	HCP’s	processing	pipelines.		Rows	1	and	2	show	
test-retest	results	for	a	subject	with	a	typical	55b	topology,	rows	3	and	4	show	results	for	a	
split-topology	subject,	and	rows	5	and	6	show	results	for	a	shifted-topology	subject.		
Columns	1	–	3	indicate	a	high	degree	of	reproducibility	for	cortical	folding	(column	1,	
correlations	for	cases	1/2/3	are	r=0.88/0.84/0.83),	cortical	myelin	(column	2,	correlations	
for	cases	1/2/3	are	r=0.91/0.88/0.87),	and	RSN	maps	(column	3,	correlations	for	the	
illustrated	d=40	RSN	maps	for	cases	1/2/3	are	r=0.64/0.62/0.5).	As	shown	in	columns	4	
and	5,	the	classifier	was	able	to	delineate	and	identify	area	55b	in	a	consistent	location	in	
all	three	cases	(correlation	coefficients	for	the	final	parcels	shown	in	cases	1/2/3	are	
r=0.87/0.79/0.82).	Thus,	while	not	as	high	as	the	group	map	correlations,	the	individual	
subject	maps	are	reasonably	reproducible.			

Figure	10	|	Reproducible	areal	classification	of	typical	and	atypical	areas	55b.			Here	we	show	individual	
subject	curvature	maps	(column	1),	myelin	maps	(column	2),	d=40	RSN	maps	of	the	language	network	
(column	3),	classifier	raw	probability	maps	(column	4),	and	final	parcel	maps	(column	5)	of	subjects	scanned	
and	analyzed	through	the	HCP	protocol	and	software	pipelines	twice.		The	group	55b	definition	is	shown	in	a	

WWW.NATURE.COM/NATURE | 12

SUPPLEMENTARY INFORMATIONRESEARCHdoi:10.1038/nature18933



	

black	or	white	outline.		Rows	1	and	2	show	a	subject	with	a	typical	55b	topology,	rows	3	and	4	show	a	split	
55b	topology,	and	rows	5	and	6	show	a	shifted	topology.		Data	at	http://balsa.wustl.edu/WPPn.		

Figure	11	shows	the	group	parcellation	and	compares	it	with	parcellations	from	a	
different	set	of	three	HCP	test-retest	subjects.		The	first	row	shows	the	group	parcellation,	
which	serves	as	the	reference	for	rows	2-6	(reproducibility	scores	are	correlation	or	Dice	
coefficients	of	the	parcellations	represented	as	180	binary	ROIs).		Results	are	shown	in	row	
2	for	the	subject	with	the	highest	overall	parcellation	reproducibility	(r=0.79,	Dice=0.75),	
row	3	for	the	subject	with	the	median	overall	parcellation	reproducibility	(r=0.77,	
Dice=0.72),	and	row	4	for	the	subject	with	the	lowest	overall	parcellation	reproducibility	
(r=0.73,	Dice=0.65),	with	individual-subject	parcel	boundaries	shown	in	blue	(test),	red	
(retest),	and	purple	(overlap)	and	group-average	boundaries	underlaid	in	black.		Inspection	
of	these	maps	reveals	numerous	examples	in	which	deviation	of	an	individual	area	
boundary	from	the	group	mean	is	similar	in	both	test	and	retest	data	but	also	examples	of	
differences	(likely	errors).		Rows	5	and	6	show	the	mean	reproducibility	of	each	area	across	
the	27	test-retest	subjects	for	the	correlation	and	Dice	measures.		Larger	areas	tend	to	have	
higher	reproducibility	than	smaller	areas.		While	not	as	high	as	the	group	MPM	
reproducibility,	the	individual	MPMs	are	reasonably	reproducible.		A	topic	for	future	study	
will	be	elucidating	what	causes	differences	across	runs	(see	discussion	below,	#2.2-2.3).			

Figure	11	|	Individual	subject	parcellation	reproducibility.		Here	we	show	the	group	parcellation	in	
comparison	with	three	individuals’	parcellations	(who	were	each	scanned	twice).		Row	1	shows	the	group	
parcellation	(black	outlines).		Row	2	is	the	individual	having	the	highest	parcellation	reproducibility	(blue	
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outlines	are	‘test’	individual	areal	boundaries	and	red	outlines	are	‘retest’	areal	boundaries	with	purple	as	
overlap	and	group	boundaries	as	an	underlay	of	black	outlines).		Row	3	is	a	second	individual,	who	had	the	
median	parcellation	reproducibility.		Row	4	is	a	third	individual,	who	had	the	lowest	parcellation	
reproducibility.		Rows	5	and	6	show	the	mean	parcel	reproducibility	for	each	area	across	all	27	subjects	that	
were	scanned	and	analyzed	twice	for	both	the	correlation	and	Dice	measures	(the	full	range	is	r=0.93,	r=0.44,	
Dice=0.93.	Dice=0.41).		Data	at	http://balsa.wustl.edu/W72X.	

1.5	Variability	in	surface	areas	across	group	cortical	areas	and	in	individual	subjects	

The	availability	of	individual-subject	parcellations	in	which	a	large	majority	of	areas	
were	identified	in	a	large	majority	of	individuals	enabled	interesting	initial	analyses	of	the	
sizes	of	cortical	areas	in	the	group	average	and	variability	in	areal	sizes	across	individuals.		
In	individuals	from	the	210P	group,	the	average	size	(i.e.	surface	area)	of	each	cortical	
parcel	spans	a	26-fold	range.		V1	is	the	largest	area	(3292	mm2	and	3229	mm2	in	the	left	
and	right	hemispheres);	nearly	80%	of	areas	(142/180)	are	substantially	smaller	and	
within	a	four-fold	range	(150	–	600	mm2,	averaged	across	hemispheres).	Across	
individuals,	V1	is	the	least	variable,	with	a	total	range	slightly	exceeding	2-fold,	and	a	full-
width	at	half	maximum	(FWHM)	of	32%	of	the	mean	on	the	left	and	30%	on	the	right.		
Other	areas	larger	than	500	mm2	have	variability	with	FWHM	between	40%	and	80%	of	
the	mean,	while	areas	smaller	than	500	mm2	are	generally	more	variable	(mostly	with	
FWHM	50%	-	120%	of	the	mean,	in	all	cases	excluding	areas	that	were	not	identified	in	a	
given	individual).			These	values	represent	the	upper	range	of	possible	‘true’	anatomical	
variability,	given	known	methodological	variability	from	subjects	who	had	repeat	scanning	
sessions.		These	data	are	amenable	to	future	analyses	of	how	individual	variability	in	areal	
sizes	correlates	with	behavioral	and	other	phenotypic	characteristics.		

1.6	Peeking	inside	the	areal	classifier	

We	can	“peek	inside	the	black	box”	to	examine	the	areal	fingerprints	learned	by	the	
classifier	and	ascertain	to	what	degree	it	used	the	multiple	modalities.		We	measured	how	
sensitive	the	classifier	is	to	changes	in	each	feature	map	for	each	area	as	an	indicator	of	the	
influence	that	each	feature	map	has	on	generating	the	classification	of	each	area	(see	
Methods	section	on	the	cortical	areal	classifier).		This	sensitivity	measure	is	positive	or	
negative	depending	on	whether	the	feature’s	value	is	larger	or	smaller	inside	the	area,	and	
its	absolute	magnitude	indicates	how	important	the	feature	is	to	the	area’s	classification	
relative	to	its	neighbors.			

This	sensitivity	measure	can	be	interrogated	in	multiple	ways,	as	illustrated	in	
Figure	12.		Fig.	12a-b	show	the	sensitivity	measure	at	a	‘dense’	(vertex-wise)	level	for	the	
demeaned	myelin	map	in	and	around	area	55b.		The	classifier	‘sees’	(Fig.	12b)	area	55b	as	
having	much	less	myelin	than	area	4	posteriorly,	slightly	less	myelin	than	FEF	(superiorly)	
and	PEF	(inferiorly),	and	slightly	more	myelin	than	areas	8Av	and	8C	anteriorly,	consistent	
with	the	pattern	in	the	myelin	map	(Fig.	12a).		We	summarized	this	sensitivity	measure	for	
each	area	across	all	of	its	borders	with	neighboring	areas	by	taking	the	maximum	absolute	
value	while	retaining	the	sign,	as	shown	in	the	parcellated	sensitivity	map	for	the	myelin	
feature	in	Fig.	12c.		Fig.	12d	shows	the	matrix	of	these	values	for	all	180	areas	in	the	left	
hemisphere	and	all	112	features.		Overall,	all	modalities	are	indeed	useful	for	delineating	
and	identifying	cortical	areas	with	the	fully	automated	approach,	just	as	with	the	semi-
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automated	neuroanatomical	approach.		Of	the	different	areal	properties,	architectural	
features	and	resting	state	connectivity	features	drove	the	classifier’s	choices	most	strongly.		
Resting	state	visuotopic	features	were	heavily	used	for	specific	areas	(particularly	early	
visual	areas),	but	as	expected	are	of	limited	value	elsewhere.		Task	fMRI	is	also	used,	but	
clearly	not	as	much	as	the	other	modalities	(it	has	few	yellows	and	cyans	indicating	high	
positive	or	negative	sensitivity	values).		One	possible	explanation	is	that	task	fMRI	maps	
are	noisier	than	other	feature	maps	and	the	information	they	do	contain	is	largely	
redundant	with	other	features	(e.g.	resting	state)	that	have	higher	contrast	to	noise	ratios	
in	individual	subjects.			

Figure	12	|	Signed	classifier	sensitivity	measures.		a,	shows	the	demeaned	group	average	myelin	map	
(what	the	classifier	operates	on)	with	area	55b	outlined	in	white.		b,	shows	the	sensitivity	measure	for	the	
myelin	map	and	area	55b	(only	measured	near	the	55b	border).		Note	that	the	measure	is	especially	negative	
for	the	55b/4	border	(posteriorly),	modestly	negative	for	the	55b/FEF	and	55b/PEF	borders	(superiorly	and	
inferiorly),	and	modestly	positive	for	the	anterior	border	of	55b	with	8Av	and	8C.		c,	shows	the	maximum	
absolute	value	(shown	with	sign)	of	each	area	for	the	myelin	map	feature,	indicating	that	myelin	is	useful	for	
defining	many,	but	by	no	means	all,	cortical	areas.		d,	shows	the	matrix	of	all	areas	and	all	features	(myelin	is	
outlined	white).		The	feature	categories	Architecture	(Arch.),	Function,	Connectivity,	Artifacts	(Art.),	and	
Topography	(Topo.)	are	labeled	along	the	top	of	the	matrix.		Data	at	http://balsa.wustl.edu/W60l.	

2. Supplementary	Discussion

2.1	Group	average	cortical	parcellation.		

The	180	cortical	areas	per	hemisphere	identified	in	this	study	are	likely	fewer	than	
the	actual	number,	because:	(i)	we	have	focused	on	particularly	robust	borders	(consistent	
across	at	least	two	measures	with	a	Cohen’s	effect	size	of	at	least	1	for	96%	of	borders),	so	
it	is	unlikely	that	parcels	were	split	too	finely;	and	(ii)	some	parcels	likely	could	be	split	
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more	finely,	as	our	parcellation	may	be	too	coarse	in	some	regions.		For	example,	in	
orbitofrontal	cortex	we	were	unable	to	replicate	known	architectonic	parcels	(Ongur	et	al.,	
2003),	likely	in	part	because	of	susceptibility	induced	fMRI	signal	loss	in	that	region.	We	
also	did	not	identify	as	many	retinotopic	areas	in	higher	visual	cortex	as	some	studies	have	
reported	(Abdollahi	et	al.,	2014;	Wandell	and	Winawer,	2015;	Wang	et	al.,	2005).	We	
identified	some	parcels	as	‘complexes’	because	we	could	not	identify	convincing	
subdivisions	of	a	region	that	was	previously	reported	to	have	a	finer-grained	parcellation.	
Hence,	180	areas	is	likely	a	lower	bound	on	the	actual	number	of	areas,	and	~200	per	
hemisphere	might	be	closer	to	reality	(though	of	course	there	will	be	finer	levels	of	
organization	than	cortical	areas;	see	also	point	(v)	in	#2.8	below).	

In	this	context,	we	hope	that	our	parcellation,	which	we	identify	as	HCP-MMP1.0	
(Human	Connectome	Project	Multi-Modal	Parcellation	v1.0),	serves	as	version	1.0	of	a	
progressively	improving	entity	(analogous	to	open	source	software	in	which	bugs	may	be	
fixed	and	new	features	implemented).		Refinements	to	our	cortical	parcellation	may	come	
from	multiple	sources:	(i)	additional	HCP	data	from	the	final	3T	release	(~1100	subjects	
with	MRI	data	to	be	released	in	~June,	2016)	and/or	the	7T	data	(~180	subjects	and	
including	retinotopy	and	movie	paradigms,	as	well	as	rfMRI	and	dMRI).	(ii)	HCP	
tractography	data,	which	may	provide	evidence	for	finer-grained	parcellation	in	some	
regions	(though	see	below	#2.5);	(iii)	higher	resolution	structural	and	fMRI	data	that	
enable	laminar-based	cortical	parcellation	of	myelin	maps	and	resting-state	networks;	(iv)	
customized	task	fMRI	experiments	with	high	quality	spatial	localization	that	focus	on	
particular	regions;	and	(v)	improved	data	acquisition,	such	as	whole	brain	spin	echo	fMRI	
at	high	field	that	would	ameliorate	regional	gradient	echo	fMRI	signal	loss.		It	will	be	
important	to	use	areal-feature-based	registration	and	de-drifting	in	future	studies	to	
maximize	the	accuracy	of	cross-study	comparisons,	including	with	this	parcellation.	

The	bilateral	symmetry	in	the	position,	size,	and	functional	connectivity	profile	of	
corresponding	areas	in	the	two	hemispheres	is	striking	(see	Main	Text	Figure	3).		The	
pattern	is	much	more	symmetric	than	those	reported	in	several	recent	fully	automated	
parcellations	based	only	on	resting-state	functional	connectivity	(Gordon	et	al.,	2014;	Shen	
et	al.,	2013;	Yeo	et	al.,	2011),	but	is	consistent	with	the	bilateral	symmetry	generally	
reported	in	observer-independent	postmortem	architectonic	parcellations	(e.g.	(Caspers	et	
al.,	2013)).	Nevertheless,	a	number	of	interesting	asymmetries	are	evident,	some	of	which	
are	described	in	the	Supplementary	Neuroanatomical	Results.	

2.2	Individual-subject	parcellations.		

Using	a	machine	learning	classifier,	we	successfully	identified	98%	of	areas	in	the	
210P	group	and	96.6%	of	areas	in	the	210V	group	that	was	not	used	to	generate	the	
parcellation.	An	important	feature	of	the	areal	classifier	is	its	ability	to	delineate	and	
identify	the	‘non-standard’	topology	of	some	areas	in	some	individuals.		Area	55b	was	a	
notable	hotspot	for	nonstandard	topologies	(indicated	by	higher	average	registration	
distortion	in	this	region),	including	shifts	in	the	local	order	of	areas	and	splitting	of	area	
55b	into	topologically	discontinuous	segments	separated	by	joined	areas	FEF	and	PEF.		
Topological	irregularities	are	evident	for	other	areas	as	well,	but	their	overall	pattern	and	
frequency,	as	well	as	the	heritability	of	such	patterns	have	yet	to	be	systematically	
examined.		It	also	is	intriguing	to	speculate	on	how	topological	irregularities	arise	during	
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development,	what	degree	of	heritability	they	show	(e.g.,	to	what	degree	are	atypical	
patterns	shared	by	monozygotic	twins),	and	whether	they	are	associated	with	behavioral	
or	other	phenotypic	correlates,	but	such	topics	are	outside	the	scope	of	this	study.			

Although	the	areal	classifier	detects	areas	at	a	high	rate,	it	does	not	detect	them	at	a	
rate	of	100%	across	all	subjects.		There	are	several	possible	causes	for	areas	not	detected	
by	the	classifier:	1)	Some	areas	may	neurobiologically	truly	not	exist	in	some	subjects.		2)	
Noise	or	artifacts	(e.g.	gradient	echo	fMRI	dropout	or	the	effects	from	large	veins)	may	
make	some	areas	undetectable	in	some	subjects	(particularly	smaller	areas,	areas	near	
dropout	regions,	and	areas	that	are	not	as	distinct	from	their	neighbors	as	are	better	
detected	areas).		3)	Nonstationarity	in	the	data	(particularly	in	rfMRI	scans,	see	#2.3)	may	
lead	to	some	areas	being	undetectable	(if	they	are	sufficiently	similar	to	a	neighbor	across	
the	available	data	to	not	be	separated	by	the	areal	classifier).		Better	understanding	the	
causes	of	undetected	areas	is	an	issue	for	future	work:	with	more	or	better	data,	these	
areas	might	be	detectable,	or	their	absence	might	persist,	suggesting	that	they	represent	
genuine	inter-subject	variability	like	the	atypical	areal	topologies.		For	now,	we	recommend	
that	these	areas	be	treated	as	having	zero	surface	area	for	morphometric	analyses	and	be	
controlled	for	using	covariates	of	no	interest	for	functional/connectivity	cross-subject	
designs	(i.e.	a	regressor	with	all	zeros	except	for	a	1	for	the	missing	area	in	each	subject	
that	is	missing	it).		Also,	the	group	parcellation	can	be	used	as	an	atlas	to	parcellate	(i.e.	
average	data	within	the	parcels)	individual-subject	data	based	on	the	individual	subject	to	
atlas	alignment	of	the	areal	feature-based	registration,	though	at	the	cost	of	reduced	
accuracy	for	atypical	topologies	that	cannot	be	aligned	using	a	topology	preserving	
registration.			

2.3	Aligning	and	parcellating	future	‘HCP-style’	datasets.			

In	addition	to	high	resolution	T1w	and	T2w,	the	HCP	acquired	one	hour	of	resting	
state	fMRI	data	and	one	hour	of	task	fMRI	data	(total	across	all	tasks),	which	were	used	to	
derive	the	original	semi-automated	parcellation	and	for	areal	classification.		MSMAll	areal-
feature-based	alignment	was	driven	solely	by	the	resting	state	fMRI	data	and	the	T1w/T2w	
myelin	maps.		We	tested	the	areal	classification	without	the	task	fMRI	data,	finding	that	it	
detected	areas	at	almost	the	same	rate	(96.4%	vs	96.6%	for	the	210V	data).		Future	work	is	
needed	to	determine	the	minimum	amount	and	type	of	fMRI	data	required	for	successful	
application	of	MSMAll	and	the	areal	classifier,	but	we	can	make	several	reasonable	
predictions:	1)	It	is	likely	that	what	will	prove	most	important	is	the	total	amount	of	
available	fMRI	data	that	has	been	cleaned	using	data-driven	methods	such	as	ICA+FIX	
(Griffanti	et	al.,	2014;	Salimi-Khorshidi	et	al.,	2014)	and	then	combined	across	runs.		
Whether	the	data	is	resting	state	fMRI,	task	fMRI,	or	movie	fMRI	is	likely	to	be	less	
important	(for	example,	HCP	resting	state	and	task	fMRI	data,	when	analyzed	similarly,	are	
reported	to	produce	similar	results,	(Cole	et	al.,	2014).		2)	The	minimum	amount	of	fMRI	
data	needed	to	produce	accurate	MSMAll	registrations	and	areal	classifications	is	not	yet	
known.	Two	considerations	drive	the	need	for	more	fMRI	data.		The	first	is	that	more	fMRI	
data	will	improve	the	quality	of	connectivity	estimates	relative	to	unstructured	(i.e.	
Gaussian)	noise.		The	second	is	that	fMRI	data	contain	substantial	nonstationarities,	and	
thus	connectivity	estimates	from	a	limited	amount	of	time	may	not	reflect	the	true	average	
connectivity	estimates,	(irrespective	of	the	effects	of	unstructured	noise).		This	is	expected	
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because	the	connectivity	is	thought	to	reflect	what	is	going	on	in	a	person’s	brain	at	a	given	
time,	and	shorter	time	windows	are	more	likely	to	be	different	from	a	large	average	time	
window.		The	first	consideration	is	amenable	to	improvement	using	better	scanners	(e.g.	
higher	field	strength),	better	head	coils,	and	better	pulse	sequences	(spin	echo	might	help	
with	dropout	or	large	veins),	but	the	second	will	be	an	intrinsic	limitation	of	this	kind	of	
functional	imaging,	requiring	that	enough	minutes	of	fMRI	data	are	acquired.		Perhaps	this	
issue	could	be	improved	by	using	a	more	controlled	experimental	setting	(e.g.	a	naturalistic	
movie	that	both	holds	the	subject’s	attention	and	covers	a	wide	range	of	stimuli).		In	
general,	optimizing	the	quality	of	the	individual	subject	multi-modal	parcellations	
(increasing	the	areal	detection	rate	and	the	test-retest	reproducibility	of	the	parcellations)	
is	an	important	subject	for	follow	up	work,	enabled	by	what	has	been	presented	here.			

Altogether,	we	anticipate	that	the	methods	described	here	will	work	for	the	‘HCP-
style’	data	acquisition	recommendations	being	used	in	forthcoming	NIH-funded	projects	on	
the	Lifespan	Connectome	and	on	Connectomes	Related	to	Human	Disease	even	though	
these	projects	will	acquire	less	data	per	subject	(see	also	Glasser	et	al.,	2016).		This	will	
likely	include	~30	min	of	multiband	rfMRI	data	and	another	~20	min	of	multiband	tfMRI	
data.		These	datasets	can	likely	be	cleaned	and	combined	to	enable	identification	of	RSNs	
using	close	to	the	1	hour	of	rfMRI	data	used	in	this	study	for	MSMAll	alignment	and	the	
areal	classifier.		Other	topics	for	future	work	include	investigating	how	poor	subject	
compliance	(subject	motion,	subject	going	to	sleep	in	the	scanner,	etc.)	affects	these	
methods.		We	strongly	recommend	the	use	of	a	method	such	as	ICA+FIX	(Griffanti	et	al.,	
2014;	Salimi-Khorshidi	et	al.,	2014)	in	order	to	remove	spatially	specific	structured	noise.		
The	methods	presented	here	for	alignment	and	individual	subject	parcellation	will	not	
otherwise	be	affected	by	global	signal	differences	(because	they	rely	on	multiple	regression	
to	generate	resting	state	network	maps,	which	represent	partial	betas	more	akin	to	partial	
correlation	than	full	correlation).		Thus,	decisions	to	use	or	not	use	global	signal	regression	
or	partial	correlation	can	be	postponed	until	one	has	generated	parcellated	timeseries.		
Ideally,	however,	one	would	eliminate	the	artifactual,	likely	physiologically	induced	
(Golestani	et	al.,	2015)	global	noise	while	retaining	the	genuine	global	neural	signal	and	
hopefully	move	the	field	past	the	divisive	debate	about	global	signal	regression	(see	Glasser	
et	al.,	2016).		Low	spatial	(>2.6	mm,	the	mean	thickness	of	cortex)	and	temporal	resolution	
(>1	s	TR)	data	may	not	give	as	good	results	as	the	2	mm,	0.72	s	data	used	in	this	study	
because	of	blurring	across	cortical	folds	and	worse	data	cleanup	with	slow	TR	data	
(Griffanti	et	al.,	2014;	Salimi-Khorshidi	et	al.,	2014).			

2.4	Circularity	Considerations.			

One	potential	concern	regarding	areal-feature-based	alignment	is	whether	it	
introduces	circularity	into	the	analyses.		Two	points	are	worth	raising	in	this	context:	1)	
Previous	analysis	of	folding	patterns,	cortical	thickness,	or	volume-based	morphometric	
analyses	are	susceptible	to	a	similar	criticism	(given	that	folding-based	surface	registration	
or	T1w	image	intensities	in	a	volume	registration	are	used	to	drive	the	alignment	in	these	
cases).		2)	We	previously	showed	that	areal-feature-based	alignment	using	myelin	maps	
and	resting	state	network	maps	produces	higher	cross-subject	statistics	for	an	independent	
areal	feature	(task	fMRI)	that	was	not	used	to	drive	the	registration,	relative	to	alignment	
using	folding-based	registration	(Robinson	et	al.,	2014).		Also,	our	implementation	of	the	
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MSMAll	areal	feature-based	registration	includes	relatively	strong	regularization,	
generating	substantially	less	distortion	than	standard	folding-based	methods	(e.g.	
FreeSurfer,	see	Methods	section	on	image	preprocessing),	and	making	it	less	likely	that	the	
registration	would	convert	random	noise	into	imputed	areal	features.			

2.5	Diffusion	imaging	and	tractography.		

For	technical	reasons,	we	did	not	use	diffusion	imaging	and	tractography	data	as	a	
source	of	information	for	our	parcellation,	even	though	tractography	has	been	used	in	
other	studies	to	distinguish	between	gray	matter	parcels	based	on	‘connectional	contrast’	
(Behrens	and	Johansen-Berg,	2005;	Jbabdi	and	Behrens,	2013).		A	primary	reason	was	that	
tractography	is	susceptible	to	folding-related	biases,	including	a	tendency	for	streamlines	
to	terminate	preferentially	on	gyral	crowns	and	to	avoid	sulcal	fundi	(Reveley	et	al.,	2015;	
Van	Essen	et	al.,	2014).		Given	such	biases,	gradients	in	tractography	connectivity	may	tend	
to	correlate	more	with	folding	patterns	for	artifactual	rather	than	neurobiological	reasons.		
Understanding	and	improving	the	performance	of	tractography,	especially	near	the	
gray/white	border	as	fibers	exit	and	enter	the	gray	matter,	is	a	topic	of	on-going	work	(e.g.,	
(Canales-Rodríguez	et	al.,	2015)).		The	ability	to	confirm	consensus	multi-modal	borders	
using	more	advanced	tractography	algorithms	will	be	a	good	test	of	how	well	these	
algorithms	perform	in	individuals	and	group	averages.		One	automated	way	of	doing	this	
would	be	to	include	tractography	features	from	the	210P	and	29T	datasets	in	a	classifier	
training	and	see	if	the	tractography	behaved	more	like	the	resting	state	connectivity	or	
more	like	the	task	fMRI	in	an	analysis	like	Figure	12	(i.e.	does	the	areal	classifier	make	use	
of	the	tractography?).		Should	this	be	successful,	tractography	may	aid	in	identifying	new	
boundaries	as	well.	In	any	event,	the	current	HCP	parcellation	provides	a	neuroanatomical	
framework	that	will	enable	quantitative	comparisons	of	parcellated	connectomes	based	on	
tractography	with	those	based	on	functional	connectivity,	at	the	level	of	individual	subjects	
as	well	as	group	averages.	

2.6	Integration	with	other	parcellations.		

Substantial	work	remains	in	order	to	integrate	our	parcellation	with	information	
currently	only	available	from	post	mortem	histological	methods,	such	as	cytoarchitecture,	
laminar	myeloarchitecture,	and	transmitter-receptor	architecture	(e.g.,	(Caspers	et	al.,	
2013;	Zilles	et	al.,	2015)).		Simply	bringing	histological	data	into	register	with	MRI	data	and	
into	traditional	MRI	standard	spaces	has	been	a	highly	challenging	but	very	successful	
methodological	undertaking	(Caspers	et	al.,	2013).		That	said,	it	will	be	critical	to	apply	the	
same	sorts	of	spatial	localization	approaches	to	such	histological	data	as	was	used	for	the	in	
vivo	data	in	this	study	to	enable	precise	neuroanatomical	comparisons	between	post-
mortem	and	in	vivo	data.	Early	steps	in	this	direction	(Fischl	et	al.,	2008)	proved	beneficial	
both	in	the	present	study	and	in	previous	work	(Glasser	and	Van	Essen,	2011).			

2.7	Subcortical	and	cerebellar	parcellation.		

Many	of	the	methods	and	approaches	used	in	the	present	study	could	be	readily	
extended	to	subcortical	grey	matter.		This	will	be	of	particular	interest	for	the	HCP	7T	data,	
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as	the	fMRI	data	have	markedly	higher	CNR	at	7T	relative	to	the	3T	scans	and	higher	
resolution	at	1.6	mm	vs	2	mm.		Future	higher	resolution	versions	of	the	CIFTI	
grayordinates	space	may	enable	parcellation	of	additional	subcortical	structures	(e.g.	the	
claustrum).			

It	will	also	be	of	interest	to	use	HCP	data	to	parcellate	the	cerebellum,	along	the	lines	
of	a	previous	RSN-based	cerebellar	segmentation	(Buckner	et	al.,	2011),	but	using	the	
rfMRI	and	tfMRI	data	from	the	HCP	3T	and/or	7T	scans.		Ideally,	such	analyses	would	be	
done	using	cerebellar	surface	reconstructions	of	individual	subjects,	and	then	mapped	to	a	
group	average	cerebellar	atlas	surface.		However,	because	cerebellar	cortex	is	much	thinner	
than	cerebral	neocortex,	this	is	not	yet	feasible	using	existing	segmentation	algorithms,	
even	though	the	high-resolution	(0.7	mm)	HCP	T1w	and	T2w	scans	reveal	many	details	of	
cerebellar	folding.		Nonetheless,	a	volume-based	HCP	cerebellar	parcellation	followed	by	
mapping	to	an	existing	cerebellar	surface-based	atlas	(Van	Essen,	2002)	would	represent	a	
considerable	advance.	

2.8	Sub-parcels	and	internal	areal	heterogeneity.		

In	general,	a	brain	parcel	is	a	region	that	has	greater	commonality	of	features	within	
the	parcel	than	with	neighboring	parcels	(and	this	is	explicitly	what	the	areal	classifier	
learns	as	a	multi-modal	areal	fingerprint).		However,	within-parcel	heterogeneity	is	
profoundly	important	for	understanding	detailed	aspects	of	brain	circuitry	and	function.		
Internal	heterogeneity	extends	across	multiple	levels,	including	within-area	modularity	
and	columnar	organization	all	the	way	down	to	cellular	and	subcellular	levels,	but	the	
heterogeneity	accessible	to	the	noninvasive	3T	HCP	neuroimaging	data	studied	here	is	
much	coarser.		We	identified	several	types	of	within-parcel	heterogeneity.	(i)	The	
somatosensory-motor	strip	contains	five	well-defined	sub-regions,	representing	the	lower	
limb,	trunk,	upper	limb,	face,	and	(surprisingly)	a	small	patch	of	motor	cortex	likely	
representing	muscles	that	control	squinting	of	eyes	(Meier	et	al.,	2008),	among	other	
things.		(ii)	Within	visual	cortex,	we	demonstrated	orderly	gradients	in	the	visuotopic	maps	
of	polar	angle	and	eccentricity,	which	were	made	using	resting	state	data.		Our	results	are	
analogous	to	previous	reports	of	visuotopy	based	on	resting	state	fMRI	(Gravel	et	al.,	2014;	
Heinzle	et	al.,	2011)	but	they	benefitted	from	a	number	of	analysis	methods	introduced	
here	(see	Supplementary	Methods).	(iii)	Analogous	orderly	topographic	gradients	were	
evident	in	several	higher	cognitive	regions	–	e.g.,	language-related	areas	55b,	PSL,	and	SFL	
(see	Supplementary	Neuroanatomical	Results	#15	Figure	18)	though	their	functional	
significance	is	currently	unknown.		(iv)	Many	areas	in	our	parcellation	showed	internal	
heterogeneity	in	one	or	more	features,	including	task-fMRI,	which	were	modest	in	
magnitude	and/or	not	consistent	across	multiple	modalities.	The	reproducibility	across	
independent	datasets	(see	Figures	1-5	above)	suggests	that	these	heterogeneities	mostly	
represent	neurobiologically	interesting	variation,	though	some	may	reflect	task-induced	
‘artifacts’	(e.g.	button	box	pressing,	activation	of	only	part	of	the	visual	field,	etc).		(v)	
Finally,	although	the	topographic	organization	of	early	visual,	somatosensory-motor,	and	
auditory	regions	is	reasonably	well	understood,	we	know	much	less	about	such	
organization	in	higher	cognitive	regions.		One	major	impediment	to	this	understanding	in	
humans	has	been	the	use	of	brain	imaging	analysis	methods	that	blur	the	fine	details	of	
functional	and	structural	organization,	obscuring	such	topographic	patterns.		Another	is	
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that	many	of	the	higher	cognitive	regions	in	question	have	expanded	dramatically	in	
humans	relative	to	the	intensively	and	invasively	studied	macaque	monkey	(Van	Essen	and	
Dierker,	2007).		These	regions	also	have	dramatically	differing	patterns	of	structural	
connectivity	(Rilling	et	al.,	2008),	and	thus	are	likely	very	different	from	putatively	
homologous	regions	in	monkeys.		Because	the	topographic	organization	of	early	
somatosensory-motor	cortex	is	well	understood,	we	were	able	to	separate	which	gradients	
defined	topographically	organized	cortical	areas	(4,	3a,	3b,	1,	and	2)	from	topographic	
subregions	(F,	E,	UL,	T,	LL)	as	described	in	Supplementary	Neuroanatomical	Results	#6.		
However,	in	higher	cognitive	regions,	we	don’t	have	the	benefit	of	such	prior	knowledge.		
Thus,	future	versions	of	the	human	multi-modal	parcellation	may	be	revised	to	classify	
some	of	the	subdivisions	reported	here	as	subareas	rather	than	areas	as	new	information	
becomes	available	and	the	topographic	organization	of	human	cerebral	cortex	becomes	
better	understood.			

Additional	topics	of	interest	include	analyses	of	the	patterns	of	interhemispheric	
symmetry	and	asymmetry,	and	specific	aspects	of	functional	specialization	(e.g.,	degree	of	
segregation	vs	partial	overlap	for	regions	activated	by	faces,	body	parts,	tools,	and	places).	
Some	of	these	are	covered	in	the	Supplementary	Neuroanatomical	Results.	Others	can	be	
examined	in	detail	by	downloading	and	analyzing	the	datasets	associated	with	this	study	
(see	below	#2.10).	

2.9	Analysis	strategies	and	cross	study	comparisons.		

We	have	made	significant	efforts	to	enable	other	investigators	to	compare	their	data	
as	precisely	as	possible	with	our	parcellation	though	extensive	releases	of	software	tools	
that	enable	dramatically	improved	spatial	localization:	the	CIFTI	grayordinates	
neuroimaging	analysis	framework	(Glasser	et	al.,	2013),	areal-feature-based	surface	
registration	with	MSM	(Robinson	et	al.,	2014),	group	average	registration	drift	removal	
during	template	generation	(Abdollahi	et	al.,	2014),	and	an	extensive	datasharing	effort	
described	below.		

In	general,	neuroimaging	studies	that	are	mainly	interested	in	what	brain	areas	are	
activated/connected/different	in	some	way	will	likely	benefit	from	parcellated	analyses	
due	to	their	increased	statistical	sensitivity	and	power.		Additionally,	the	trained	classifier	
will	hopefully	enable	identification	of	these	cortical	areas	in	individuals	from	future	studies	
imaged	with	high	quality	“HCP-style”	data	acquisition	and	analysis	strategies,	such	as	the	
forthcoming	Lifespan	Connectome	or	Connectomes	Related	to	Human	Disease	projects,	
which	meet	the	minimal	requirements	of	the	HCP	Preprocessing	Pipelines,	the	MSMAll	
registration	pipeline,	and	the	individual	subject	areal	classifier	(i.e.	high	spatial	and	
temporal	resolution	T1w,	T2w,	fMRI,	and	spin	echo	b0	fieldmap	(Glasser	et	al.,	2013;	
2016)).			

2.10	Sharing	data	via	the	BALSA	database.			

The	ConnectomeDB	database	(Hodge	et	al.,	2015;	Marcus	et	al.,	2013);	
https://db.humanconnectome.org)	provides	a	user-friendly	source	for	accessing	
unprocessed,	minimally	preprocessed,	and	subject-wise	extensively	analyzed	HCP	datasets.		
However,	ConnectomeDB	is	not	designed	for	sharing	group	average	data	or	results	from	
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neuroimaging	studies	such	as	this	study.		For	this	purpose,	we	designed	and	recently	
implemented	the	BALSA	(Brain	Analysis	Library	of	Spatial	maps	and	Atlases)	database	
(Van	Essen	et	al.,	2016)	(http://balsa.wustl.edu).		BALSA	is	organized	around	scene	files	
that	provide	all	of	the	information	needed	to	upload,	download,	and	visualize	in	
Connectome	Workbench	the	neuroanatomical	illustrations	associated	with	this	study.		In	
essence,	each	scene	in	a	scene	file	includes	detailed	information	about	the	files	used	to	
generate	the	display	of	each	of	the	figure	panels.		This	includes	the	specific	geometric	
configurations,	overlays	of	different	data	types,	labels	and	annotations	used	in	each	figure	
panel	(generally,	a	separate	‘tab’	in	the	‘tile	tabs’	display	enabled	in	wb_view,	the	
Connectome	Workbench	visualization	software	platform).		The	process	of	uploading	a	
scene	file	to	BALSA	imports	all	of	the	data	files	needed	to	regenerate	its	constituent	scenes	
and	includes	the	directory	structures	needed	for	successful	scene	visualization	upon	
downloading.		In	addition	to	providing	the	scenes	for	each	figure	in	this	study,	there	will	be	
additional	reference	data	related	to	this	study	available	in	BALSA	in	the	future.			

Users	accessing	BALSA	can	navigate	to	the	available	datasets	associated	with	the	
current	study	and	inspect	previews	of	each	scene	in	each	of	the	available	scene	files	(one	
for	each	of	the	Main	Text	(https://balsa.wustl.edu/sceneFile/show/lLMz),	Supplementary	
Results	and	Discussion	(https://balsa.wustl.edu/sceneFile/show/X59l),	Supplementary	
Methods	(https://balsa.wustl.edu/sceneFile/show/PrGD),	and	Supplementary	
Neuroanatomical	Results	(https://balsa.wustl.edu/sceneFile/show/D4zL)).		Also,	we	have	
provided	a	Study	Dataset	(https://balsa.wustl.edu/sceneFile/show/L731)	that	includes	
the	group	average	data	and	gradients	used	to	generate	the	parcellation,	the	original	semi-
automated	parcellation,	the	210P	and	210V	probabilistic	areas,	and	the	210P	and	210V	
group	MPMs.		Once	analysis	is	completed	on	the	full	~1100	subject	HCP	dataset,	a	
Reference	Dataset	will	be	provided	on	the	BALSA	database.		Users	can	download	the	data	
after	obtaining	a	BALSA	user	account	and	agreeing	electronically	to	HCP	Open	Access	Data	
Use	Terms.		
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