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These supplementary informations give a brief overview of the theoretical calculations and
concepts used in the main text. In the first part the low-energy effective theories for two coupled
one-dimensional superfluids and their exact solution within the classical-field approximation are
discussed. In the second part, we first provide a general introduction to equal-time correlation
functions. We furthermore give explicit formulas for the experimentally measured correlation
functions and their decomposition into connected and disconnected parts, and discuss the con-
nection to periodic observables used in our previous publications. The last section discusses the
connection of the measured correlation functions and quasiparticle interactions.
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I. THEORETICAL MODELS

In the first section, we introduce the one-dimensional model of two tunnel-coupled superfluids
and discuss the derivation of the sine-Gordon Hamiltonian, proposed as a low-energy effective
theory for the relative degrees of freedom.Thereafter, in the second section, we discuss the exact
solution within the classical-field approximation, using the transfer matrix formalism.

A. Sine-Gordon model as effective low-energy theory for two tunnel-coupled superfluids

The quantum many-body system we study is an ultracold gas of 87Rb atoms in a double-well
(DW) potential on an atom chip as shown in Fig. 1 in the main paper. Each well is tightly
confined in the radial direction (ω⊥ � 2π × 1.4 kHz) and weakly confined along the longitudinal
direction (ωz � 2π×6.7Hz). Since both superfluids fulfill the condition of being one-dimensional
(1D), µ, kBT < �ω⊥, dynamics along the radial direction is frozen. However, tunneling through
the adjustable DW barrier couples the two superfluids. Integrating over the radial degrees of
freedom, reduces the problem to an effective 1D system described by the Hamiltonian

H =

2∑
j=1

∫
dz

[
�2

2m

∂ψ†
j

∂z

∂ψj

∂z
+

g1D
2

ψ†
jψ

†
jψjψj + U(z)ψ†

jψj − µψ†
jψj

]

− �J
∫

dz
[
ψ†
1ψ2 + ψ†

2ψ1

]
. (S1)

Here m is the atomic mass, g1D = 2�asω⊥ the 1D effective interaction strength, calculated
from the s-wave scattering length as and the frequency ω⊥ of the radial confinement. U(z) is
the trapping potential in the longitudinal direction, and µ the chemical potential. The field

operators fulfill the bosonic commutation relations [ψj(z), ψ
†
j′(z

′)] = δjj′δ(z−z′). For simplicity,

we consider in the following the homogenous case, U(z) ≡ 0. In order to derive a low-energy
effective theory we use the density-phase representation,

ψj(z) = exp[iθj(z)]
√
n1D + δρj(z) , (S2)

with the canonical commutators [δρj(z), θj′(z
′)] = i δjj′δ(z − z′). We define the symmetric

(subscript s) and anti-symmetric (subscript a) degrees of freedom as

δρs(z) = δρ1(z) + δρ2(z) , ϕs(z) =
1

2
[θ1(z) + θ2(z)] , (S3)

δρa(z) =
1

2
[δρ1(z)− δρ2(z)] , ϕa(z) = θ1(z)− θ2(z) . (S4)

Evidently these fields fulfil canonical commutation relations as well. Expanding the Hamiltonian
(S1) in powers of the density fluctuations δρj and phase gradients ∂zϕj to quadratic order leads
to

H = Hs[δρs, ϕs] +

∫
dz

[
�2

4mn1D

(
∂δρa
∂z

)2

+ g1Dδρa
2 +

�2n1D

4m

(
∂ϕa

∂z

)2

− 2�Jn1D cosϕa

]

+

∫
dz

[
�J
n1D

δρa(cosϕa)δρa − �J δρs cosϕa

]
, (S5)

where the Hamiltonian Hs depends only on the symmetric degrees of freedom. Note that, while
phase gradients are expected to be small for all values of J , the phase field ϕ itself needs to
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be considered non-perturbatively, leading to the full cosine potentials. The last term couples
the symmetric and antisymmetric degrees of freedom and is expected to be significant for, e.g.,
the non-linear relaxation of the system following a quantum-quench. In, or close to, thermal
equilibrium it is presumed that the couplings of density and phase fluctuations are negligible,
which leads to a complete decoupling of the symmetric and antisymmetric degrees of freedom.
The low-energy effective Hamiltonian describing the relative degrees of freedom takes the form

H =

∫
dz

[
�2

4mn1D

(
∂δρ

∂z

)2

+ gδρ2 +
�2n1D

4m

(
∂ϕ

∂z

)2

− 2�Jn1D cosϕ

]
, (S6)

where we introduced g = g1D + �J/n1D and omitted the subscript a, as we do in the following,
and in the main text. For J = 0, the Hamiltonian reduces to

H=

∫
dz

[
�2

4mn1D

(
∂δρ

∂z

)2

+ gδρ2 +
�2n1D

4m

(
∂ϕ

∂z

)2]
. (S7)

On the other hand, for 〈cos(ϕ)〉 ≈ 1, i.e. for strong tunnel-coupling J , fluctuations of the phase
are tightly centered around zero, and the cosine in Eq. (S6) can be expanded to second order
leading to

H=

∫
dz

[
�2

4mn1D

(
∂δρ

∂z

)2

+ gδρ2 +
�2n1D

4m

(
∂ϕ

∂z

)2

+ �Jn1Dϕ
2

]
. (S8)

Both Hamiltonians, Eq. (S7) and Eq. (S8), are quadratic in the fields and can therefore be
diagonalized by a Bogoliubov transformation (see below). The system is described by non-

interacting quasi-particles with a gap proportional to
√
J . Note that this remains valid for

a non-vanishing external potential U(z), although the explicit form of the dispersion relation
changes.
At the low energies considered, density fluctuations are highly suppressed and hence one can

neglect the term involving the derivative of the relative density, thereby restricting the spectrum
to the phononic regime. For the uncoupled system, Eq. (S7), this leads to the Tomonaga-
Luttinger Hamiltonian, whereas Eq. (S6), valid for general couplings J , reduces to the sine-
Gordon Hamiltonian,

HSG =

∫
dz

[
gδρ2 +

�2n1D

4m

(
∂ϕ

∂z

)2

− 2�Jn1D cosϕ

]
. (S9)

At the classical level, the equations of motion derived from this Hamiltonian include solitonic
and breather solutions. The single soliton/anti-soliton solution is given by

ϕS(z) = 4 arctan

[
± exp

z − z0 − vSt

lJ
√

1− (vS/cs)2

]
, (S10)

where z0 is the position and vS the velocity of the soliton, and cs =
√
gn1D/m the speed of sound

(see, e.g. [11]). The width of the soliton is given by the length scale lJ =
√

�/4mJ . Motion

of the soliton leads to a contraction of this length scale by the ‘Lorentz’ factor
√
1− (vS/cs)2.

These topological defects represent a local phase-twist of 2π, connecting adjacent minima of the
cosine potential.
The sine-Gordon model represents an exactly-solvable field theory. The sine-Gordon Hamilto-

nian (S9) can be written in the re-scaled form

HSG =
1

2

∫
dz

[
Π2 + (∂zφ)

2 −∆cosβφ
]
, (S11)
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where we set � = kB = 1, rescaled time t → cst, and set cs = 1. Furthermore, we define the
conjugate momentum Π = β δρ, the rescaled phase field φ = ϕ/β, as well as the parameters

β =
√

2π/K and ∆ = 8Jm/β2. The Luttinger parameter K is, in the weakly interacting
regime (γ � 1), given by K ≈ π/

√
γ, where γ = mg/�2n1D, characterising the strength of the

interaction. For theoretical studies of the sine-Gordon model see e.g. [10, 37]. The parameters
applying to our experiment correspond to the weakly interacting regime, K � 1, typically
K = 63 . . . 73, and hence β2 = 0.1 . . . 0.086.

For completeness, we give a brief overview of the different regimes of the sine-Gordon model,
supposing β and ∆ as independent parameters. The spectrum of the Hamiltonian, Eq. (S11),
depends on the value of β. The system undergoes a Kosterlitz-Thouless transition at the critical
point β2 = 8π. For larger values, β2 > 8π, the cosine term becomes irrelevant and the system
reduces to the Luttinger-Liquid model. As was shown in [6] for β2 < 8π the sine-Gordon model
is equivalent to the zero-charge sector of the massive Thirring model, describing massive Dirac
fermions with local self-interaction. In this regime, the spectrum can be further divided into two
distinct sectors, separated by the Luther-Emery point, β2 = 4π, at which the model describes
non-interacting massive Dirac fermions. For 4π < β2 < 8π, the system is described by soliton
and anti-soliton excitations, whereas for 0 < β2 < 4π, the spectrum contains additional bound
states of (anti-)solitons, called breathers.

B. Exact results within the classical-field approximation

Within the classical-field approximation, correlation functions of the system at temperature
T can be calculated using the transfer-matrix formalism developed in [38, 39]. The harmonic
approximation (S8) for two tunnel-coupled superfluids has been analysed in [36]. In particular,
the Gaussian fluctuations of the phase along z have been shown to be describable by an Ornstein-
Uhlenbeck process.1 This enables the efficent sampling of the fields, directly from the equilibrium
distribution. Here we sketch the extension of these methods for the case of two coupled wave
guides described by Eq. (S1) beyond the harmonic approximation.
The system realized in our experiments is a special case of the model described by the (classical)

Hamiltonian

H =

∫
dz

[ M∑
j=1

(
�2

2m

∂ψ∗
j

dz

∂ψj

dz
− µψ∗

jψj

)
+ V (ψ∗

M , . . . , ψ∗
1 , ψ1, . . . , ψM )

]
, (S12)

for the M -component Bose field ψj(z), j = 1, . . . ,M , with an arbitrary local, but not necessarily

pairwise interaction potential V , conserving the total number of atoms, N =
∫
dz

∑M
j=1 ψ

∗
jψj (I.

Mazets, in preparation). Comparing with Eq. (S1) we get (M = 2)

V =
g

2

[
(ψ∗

1ψ1)
2 + (ψ∗

2ψ2)
2
]
− �J [ψ∗

1ψ2 + ψ2ψ
∗
1 ] , (S13)

and the chemical potential µ = gn1D − �J .
The transfer-matrix formalism [38, 39] yields the following expressions for the thermal average

and correlation function of operators O(z):

〈O(z1)〉 =
∑
n

〈0|O(z1)|0〉, (S14)

〈O(z1)O(z2)〉 =
∑
n

〈0|O(z2)|n〉〈n|O(z1)|0〉e−(κn−κ0)(z2−z1) (z2 ≥ z1), (S15)

1 Note that we deal with stochastic processes evolving in space, along z, but not in time.
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where the matrix elements with respect to the eigenstates |n〉 of the transfer operator K̂ (see
below), with eigenvalues κn, are defined as:

〈n′|O(z)|n〉 =
∫ ∞

0

dr1 r1

∫ ∞

0

dr2 r2

∫ 2π

0

dθ2

∫ 2π

0

dθ2 Ψ
∗
n′O(z)Ψn . (S16)

Here, we introduced the density r2j , and the phase θj is defined, in analogy to the previous dis-
cussion, via Re(ψj) = rj cos θj and Im(ψj) = rj sin θj . The observables O(z) = O(r1, θ1, r2, θ2)|z
can be arbitrary functions of the classical field provided the integrals exist. The eigenvalues κn

and orthonormal eigenfunctions Ψn = Ψn(r1, θ1, r2, θ2) are given by the Hamiltonian-like her-

mitian operator K̂ that arises in the transfer matrix formalism [38, 39]. For our system of two
tunnel-coupled superfluids we have

K̂ = K̂s
1 + K̂s

2 +
�J
kBT

(r21 + r22)−
2�J
kBT

r1r2 cos(θ1 − θ2), (S17)

where

K̂s
j = −D

(
1

rj

∂

∂rj
rj

∂

∂rj
+

1

r2j

∂2

∂θ2j

)
+

g

2kBT
r2j (r

2
j − 2n1D) (S18)

is the auxiliary operator for a single superfluid, and D = mkBT/(2�2). The equilibrium distri-
bution of the real classical variables is determined by the ground (lowest-eigenvalue) state of the

operator K̂ [38, 39], via

Weq(r1, θ1, r2, θ2) = |Ψ0(r1, θ1, r2, θ2)|2 . (S19)

It is possible to construct a Fokker-Planck equation for the classical probability distribution
W (r1, θ1, r2, θ2; z) that describes the same stochastic process as the transfer-matrix formalism:

∂

∂z
W =

2Nf∑
j=1

[
D

∂2

∂q2j
W +

∂

∂qj
(AqjW )

]
. (S20)

To shorten the notation, the variables Re(Ψ1,2) and Im(Ψ1,2) are renamed as qj (j = 1, 2, 3, 4).
The stationarity condition of the equilibrium solution ∂zWeq = 0 determines the drift coefficients
Aqj , for which we obtain from Eq. (S20):

Aqj ≡ Aqj (q1, q2, q3, q4) = −D
∂

∂qj
lnWeq = −2D

∂

∂qj
ln |Ψ0| . (S21)

The last step is to realise, that the Focker-Planck equation is equivalent to a stochastic process
described by an Ito equation [16]

dqj = −Aqj dz +
√
2DdXz , (S22)

where dXz is a random term obeying Gaussian statistics with zero mean, 〈dXz〉 = 0, and
variance, 〈dX2

z 〉 = dz. Fast sampling of the fields from the full classical equilibrium probability
distribution is possible using Eq. (S21) and Eq. (S22), after finding only the ground state Ψ0

of the auxiliary operator (S17) instead of the whole spectrum as Eq. (S15) requires. Note that
the transfer-matrix formalism provides results for the correlation statistics of the unbound phase
difference in the limit dominated by thermal fluctuations. This allows us to analyse continuous,
unbound phase differences ∆ϕ. Arbitrary correlation functions can therefore easily be calculated
by averaging over independently sampled field configurations.
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In the limit of vanishing tunnel coupling J , we obtain Aϕ ≡ 0, i.e., the relative phase is
described by a diffusion process. In the opposite limit of strong tunnel coupling, we recover
the results of Ref. [36]. The sine-Gordon Hamiltonian, Eq. (S9), relevant for intermediate J ,

is described by the auxiliary operator K̂ given in Eq. (S17), neglecting the non-linear coupling
between fluctuations of the relative phase ϕ = θ1 − θ2 and the densities r21,2. In this approxima-
tion, the symmetric phase and the densities are determined by the usual Gaussian diffusion and
Ornstein-Uhlenbeck processes, respectively. The relative phase needs to be calculated by means
of the anharmonic model (S22), Ψ0 being the lowest-eigenvalue solution of the corresponding
Mathieu equation [34].
We compared the results of the direct calculations of the 4th moment, using Eq. (S16) af-

ter diagonalising K̂, to correlation functions obtained by averaging independently sampled field
configurations and found perfect agreement. To explain the experimental observations we con-
sider the latter approach, as it allows to incorporate the finite imaging resolution (see Methods).
We furthermore compared the analytical results for the homogenous system to simulations of
the stochastic Gross-Pitaevskii equation for harmonically trapped tunnel-coupled superfluids.
Thereby, we found good agreement of the correlation functions in the central part of the cloud,
for the range of experimental parameters.

II. CORRELATION FUNCTIONS

In this part, we first give a general introduction to equal-time correlation functions, their role
in quantum field theory, and their connection to the interaction properties of the system. We
further give explicit expressions for the correlation functions used in the experiment and their
decomposition into connected and disconnected parts. Thereafter, we discuss their relation to
commonly used periodic correlation functions, explaining in detail as to why they are, in general,
not suitable to study the interaction properties of our system. In the last section we discuss,
how a perturbative approach to the sine-Gordon model readily reveals the connection between
equal-time correlation functions of the phase field and N -body quasiparticle interactions.

A. Equal-time correlation functions and their relevance in (quantum) field theory

For a quantum many-body system which is described in terms of a Heisenberg field operator
O(t, x), all physical information is contained in correlation functions like

〈O(t1, x1)O(t2, x2) · · · O(tN , xN )〉 ≡ Tr
{
ρD T̂ O(t1, x1)O(t2, x2) · · · O(tN , xN )

}
, (S23)

where we consider, for the moment, a real scalar field with a single component. Here ρD denotes
the density operator specifying the system at a given time, and the trace is taken over the time-
ordered product of field operators as indicated by the time-ordering operator T̂ . For instance,
the 2nd-order function

G(2)(t1, x1; t2, x2) ≡ 〈O(t1, x1)O(t2, x2)〉 (S24)

quantifies the correlation between the point x1 at time t1 and the point x2 at time t2. In the
following we assume a vanishing field expectation value, 〈O(t, x)〉 = 0, as well as vanishing
correlations G(N) for odd-integer N . In this case, for a non-zero 4th-order correlation

G(4)(t1, x1; t2, x2; t3, x3; t4, x4) ≡ 〈O(t1, x1)O(t2, x2)O(t3, x3)O(t4, x4)〉 , (S25)
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one can identify the following contributions:

G(4)(t1, x1; t2, x2; t3, x3; t4, x4) = G(4)
con(t1, x1; t2, x2; t3, x3; t4, x4)

+ G(2)(t1, x1; t2, x2)G
(2)(t3, x3; t4, x4)

+ G(2)(t1, x1; t3, x3)G
(2)(t2, x2; t4, x4)

+ G(2)(t1, x1; t4, x4)G
(2)(t2, x2; t3, x3) . (S26)

Here, the connected 4th-order correlation, G
(4)
con, is obtained from the full correlation by subtract-

ing products of 2nd-order correlations. In this way, the redundant information that is contained
in disconnected lower-order correlations is being eliminated. For any higher N th-order correla-
tions, with N ≥ 6, a similar decomposition into connected and disconnected parts exists, the

latter involving products of G(2), G
(4)
con, . . ., G

(N−2)
con that are correspondingly defined. Knowing

all connected correlation functions is equivalent to knowing all full correlation functions and
therefore sufficient for recovering all information about the system.
If the density operator ρD describes thermal equilibrium, then the correlation functions become

time-translation invariant. In this case, employing a Fourier transformation with respect to times,
one can represent the N th-order correlation (S23) as

〈O(t1, x1) · · · O(tN , xN )〉 =
∫

dω1

2π
· · · dωN

2π
ei(ω1t1+···+ωN tN ) 2π δ(ω1 + · · ·+ ωN )

G(N)(ω1, . . . , ωN−1;x1, . . . , xN ) . (S27)

Here G(N)(ω1, . . . , ωN−1;x1, . . . , xN ) denotes the N th-order correlation amplitude with external
frequencies ωi at spatial points xi, for i = 1, . . . , N . Diagrammatically, they can be represented
as:

.. .

ω1, x1

ω2, x2

ωN – 1, xN – 1

ωN = –ω1 – ...–ωN – 1, xN

G (N)

For instance, the 4th-order amplitude G(4)(ω1, ω2, ω3;x1, x2, x3, x4) describes all possible quan-
tum processes with |ωi| injected (ωi > 0) or taken out (ωi < 0) at points xi for i = 1, 2, 3 such
that the total energy is conserved with −ω1 − ω2 − ω3 at x4. For two-body interactions and the
case of a real scalar field, this will involve standard scattering processes with Feynman diagrams
having two incoming and two outgoing lines, but also diagrams with one line in and three lines
out, the conjugate process (three in, one out), or even all lines in (or all lines out).
In this work, we measure equal-time correlation functions, where t = t1 = t2 = · · · = tN . From

the Fourier representation (S27) one observes that an N th-order equal-time correlation function
represents the sum over all the different processes with N external lines2

〈O(t, x1) · · · O(t, xN )〉 =
∫

dω1

2π
· · · dωN−1

2π
G(N)(ω1, . . . , ωN−1;x1, . . . , xN ) . (S28)

Measurements of equal-time correlation functions represent, therefore, a powerful tool to quantify
the combined effect of all possible quantum processes that contribute to an N th-order correlation
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— no matter how high the order of a process in terms of powers of Planck’s constant h may be,
or whether the contribution is of non-perturbative origin.

B. Experimental correlation functions and their decompositions

From the measured phase field ϕ(z) we determine equal-time N th-order correlation functions

G(N)(z, z′)=〈�ϕ(z1, z
′
1) . . .�ϕ(zN , z′N )〉 , (S29)

where �ϕ(zi, z
′
i) = ϕ(zi) − ϕ(z′i) are unambiguous phase differences of the unbound phase at

different spatial points zi, z
′
i, and we suppressed the common time label t to shorten the notation.

In our experiment, the first-order correlation function vanishes by symmetry, 〈�ϕ(zi, z
′
i)〉 = 0,

as well as all other correlation functions where N is an odd positive integer. While all infor-
mation is contained in the N th-order correlation functions, it is more enlightening to measure
connected correlations, since the redundant information of lower-order correlations is eliminated
as explained in the previous section. In the following we give explicit expressions for the decom-
position

G(N)(z, z′) = G(N)
con (z, z

′) +G
(N)
dis (z, z′) (S30)

of the experimental correlations defined in Eq. (S29). The general formula for the connected
part [32] is

G(N)
con (z, z

′) =
∑
π

(|π| − 1)! (−1)|π|−1
∏
B∈π

〈∏
i∈B

�ϕ(zi, z
′
i)

〉
. (S31)

Here, the sum runs over all possible partitions π of {1, . . . , N}, the first product runs over all
blocks B of the partition and the second product over all elements i of the block. Since, in our
system, all correlation functions where N is an odd positive integer vanish by symmetry, we get

G
(2)
con(z, z′) = G(2)(z, z′) and, e.g., for the 4th-order connected correlation function:

G(4)
con(z, z

′) = G(4)(z, z′)− 〈�ϕ(z1, z
′
1)�ϕ(z2, z

′
2)〉 〈�ϕ(z3, z

′
3)�ϕ(z4, z

′
4)〉

− 〈�ϕ(z1, z
′
1)�ϕ(z3, z

′
3)〉 〈�ϕ(z2, z

′
2)�ϕ(z4, z

′
4)〉

− 〈�ϕ(z1, z
′
1)�ϕ(z4, z

′
4)〉 〈�ϕ(z2, z

′
2)�ϕ(z3, z

′
3)〉 .

(S32)

In case of a Gaussian state, all connected parts of correlation functions (N > 2) vanish, i.e.

G
(N>2)
con (z, z′) ≡ 0. Hence, all correlation functions factorise and one recovers Wick’s theorem [3]

stating that, for a Gaussian state, all correlation functions with (N > 2) are determined by
second-order correlation functions. Explicitely, the Wick decomposition is given by

G
(N)
wick(z, z

′) =
∑
π2

[ ∏
B∈π2

〈
[ϕ(zB1

)− ϕ(z′B1
)][ϕ(zB2

)− ϕ(z′B2
)]
〉]

. (S33)

2 More precisely, equal-time correlation functions for bosonic fields measure the symmetrized (anti-commutator)
part of the time-ordered correlators (S23). For the real scalar field operator considered, this can be directly
observed from the definition of the time-ordering operator, as e.g. for the 2nd-order correlation:

〈T̂O(t1, x1)O(t2, x2)〉 = 〈O(t1, x1)O(t2, x2)〉Θ(t1 − t2) + 〈O(t2, x2)O(t1, x1)〉Θ(t2 − t1)

=
1

2
〈{O(t1, x1),O(t2, x2)}〉+

1

2
〈[O(t1, x1),O(t2, x2)]〉 sgn(t1 − t2) .

Here the step function is defined by Θ(t > 0) = 1 and Θ(t < 0) = 0 and the sign function is sgn(t) ≡
Θ(t) − Θ(−t). Since the equal-time commutator vanishes, [O(t, x1),O(t, x2)] = 0 for the real scalar field
operator, the symmetrized part is given by the anti-commutator {O(t1, x1),O(t2, x2)} ≡ O(t1, x1)O(t2, x2) +
O(t2, x2)O(t1, x1) at equal times t1 = t2.
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Here the sum runs over all possible partitions π2 of {1, . . . , N} into blocks of size 2. The product
again runs over all blocks B of the partition (see [32]).

The relevance of the connected part G
(N)
con can be quantified by the measure

M (N) =

∑
z

∣∣∣G(N)
con (z, 0)

∣∣∣
∑

z

∣∣G(N)(z, 0)
∣∣ (S34)

with M (N) ∈ [0, 1]. For a Gaussian state, M (N) ≡ 0 for all N > 2.
Choosing coordinates z1 = z2 = . . . = zN and z′1 = z′2 = . . . = z′N , the above formulas simplify

and the N th-order connected correlation function can be determined by the recursion formula

G(N)
con (z1, z

′
1) = G(N)(z1, z

′
1)−

N−1∑
m=1

(
N − 1

m− 1

)
G(m)

con (z1, z
′
1)G

(N−m)(z1, z
′
1) . (S35)

Specifically for the lowest orders we get

G(2)
con(z1, z

′
1) = 〈�ϕ2〉 ,

G(4)
con(z1, z

′
1) = 〈�ϕ4〉 − 3 〈�ϕ2〉2 ,

G(6)
con(z1, z

′
1) = 〈�ϕ6〉 − 15 〈�ϕ4〉 〈�ϕ2〉+ 30 〈�ϕ2〉3 , (S36)

with �ϕ = �ϕ(z1, z
′
1). For a Gaussian state, we get from Wick’s theorem

G(N)(z, z′1)
Gaussian

= 〈�ϕ2〉N/2(N − 1)!! , (S37)

where (. . . )!! is the double factorial. These simplified formulas will be helpful in the next section,
where we discuss the factorisation properties of commonly used periodic observables.

C. Connected versus periodic correlation functions

The periodic observables used in our previous experiments [21],

C(z, z′) ≈ 〈ei
∑

n �ϕ(zn,z
′
n)〉 , (S38)

are, by neglecting the density fluctuations (suppressed due to atomic repulsion), related to cor-
relations of the bosonic fields ψ1,2 via

C(z, z′) : = 〈ψ1(z1)ψ
†
2(z1)ψ

†
1(z

′
1)ψ2(z

′
1) . . . ψ1(zN )ψ†

2(zN )ψ†
1(z

′
N )ψ2(z

′
N )〉∑N

n=1

√
〈|ψ1(zn)|2〉〈|ψ2(zn)|2〉〈|ψ1(z′n)|2〉〈|ψ2(z′n)|2〉

. (S39)

These correlations are not suitable for the present analysis as even the second-order correlation
function C(z1, z′1) = 〈ei�ϕ(z1,z

′
1)〉 contains all higher cumulants of the phase. This can be directly

seen by expanding the expression log 〈eiλ�ϕ(z1,z
′
1)〉 (usually called the cumulant generating func-

tion) in powers of λ resulting in

log 〈eiλ�ϕ〉 = iλ 〈�ϕ〉 − λ2

2

{
〈�ϕ2〉 − 〈∆ϕ〉2

}
+

(iλ)3

3!

{
〈�ϕ3〉 − 3 〈�ϕ〉 〈�ϕ2〉+ 2 〈�ϕ〉3

}

− λ4

4!

{
〈�ϕ〉4 − 4 〈�ϕ〉 〈�ϕ3〉 − 3 〈�ϕ2〉2 + 12 〈�ϕ2〉 〈�ϕ〉2 − 6 〈�ϕ〉4

}
+O(λ5)

= exp

[ ∞∑
m=1

(−λ)m

(2m)!
G(2m)

con (z1, z
′
1)

]
, (S40)
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where, again, �ϕ = �ϕ(z1, z
′
1). For λ = 1 one recovers the second-order correlation function

C(z1, z′1) = exp

[ ∞∑
m=1

(−1)m

(2m)!
G(2m)

con (z1, z
′
1)

]
. (S41)

This shows that it is experimentally not possible to extract the individual connected correlation

functions G
(N)
con , i.e. information about N -particle interactions (see the following section), from

the periodic correlations (S38). In case of Gaussian fluctuations of the phase, Eq. (S41) reduces
to

C(z1, z′1) = exp

[
−1

2
〈[ϕ(z1)− ϕ(z′1)]〉

2
]
, (S42)

with the correct factorisation, e.g. for the 4th-order correlation function, given by

C(z1, z2, z′1, z′2) =
C(z1, z′1)C(z2, z′2)C(z′1, z2)C(z′2, z1))

C(z1, z2)C(z′1, z′2)
. (S43)

This form of the factorisation, determined from Gaussian fluctuations of the phase, is due to the
periodicity and the resulting restricted (finite) domain of these correlation functions.

D. Relation to quasiparticle interactions

In this section, we give a brief explanation as to how higher-order connected correlation func-
tions are related to quasiparticle interactions, i.e. fully connected diagrams. Be aware that we
do not anticipate to solve the problem using perturbation theory in any way, and hence do
not concern ourselves with the inevitable problems of divergencies occurring in the perturba-
tive expansion, and their solutions using well-established field-theoretical tools as resummation,
renormalisation, and summation of divergent series. For details of the presented methods see
any book on (statistical) field theory, e.g. [3].
In thermal equilibrium the equal-time correlation functions defined in Eq. (S29) are, due to

the linearity of the trace, determined by correlations of the form

〈 N∏
i=1

ϕ(zi)
〉
≡ Z−1Tr

[
e−βH

N∏
i=1

ϕ(zi)
]
, (S44)

where Z = Tr[e−βH ] is the partition function, and the trace is defined as Tr[. . . ] =
∑

n〈n| . . . |n〉,
with |n〉 being a complete, orthonormal basis of the Hilbert space. While being exact this
equation is in general not solvable without further approximations. First, we will approximate the
system through its low-energy effective theory, discussed in Sect. I A, and therefore determined
by the sine-Gordon Hamiltonian (S9). Expanding the cosine we write HSG as

H =

∫
dz :

[
gδρ2 +

�2n1D

4m

(
∂ϕ

∂z

)2

+ �J̃n1Dϕ
2

]
: −

∫
dz :

[
2�J̃n1D

∞∑
n=2

(−1)n

(2n)!
ϕ2n

]
:

= H0 + V , (S45)

where we split the Hamiltonian into a free part H0, quadratic in the fields, and an interaction
part V = V4 + V6 + . . . , containing all higher-order terms. We wrote the Hamiltonian in its
normal-ordered form (where all creation operators are to the left, denoted by : :) which leads to
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a multiplicative renormalisation of the coupling J → J̃ , and we dropped an irrelevant constant
(see e.g. Ref. [6]).
Diagonalisation of the quadratic Hamiltonian H0 defines the quasi-particle basis through the

Bogoliubov expansion

B(z) =
∑
k

[
uk(z) bk + v∗k(z) b

†
k

]
(S46)

of the quadrature field B(z) = ϕ(z)
√
n1D/2 − iδρ(z)/

√
2n1D. The mode functions (uk, vk) are

eigenmodes of the Bogoliubov operator with eigenvalues εk. They ensure cancellation of all non-
diagonal quadratic terms in the Hamiltonian and are normalized as

∫
dz[|uk(z)|2−|vk(z)|2] = 1.

Finally, the quadratic Hamiltonian takes the form

H0 =
∑
k

εkb
†
kbk , (S47)

describing non-interacting quasiparticles. The mode expansion of the fields is given by

δρ(z) =
∑
k

δρk(z) bk + δρ∗k(z) b
†
k (S48)

ϕ(z) =
∑
k

ϕk(z) bk + ϕ∗
k(z) b

†
k , (S49)

where δρk(z) = [uk(z)+vk(z)]
√
n1D and ϕk(z) = [uk(z)−vk(z)]/(2i

√
n1D). In the limiting cases

of zero or very strong tunnel coupling the interaction potential V vanishes, for the latter due to
smallness of the fluctuations ϕ. Inserting the mode expansion into Eq. (S44), a direct calculation
of the trace in the quasiparticle Fock basis leads to the observed factorisation of correlations, as
expected for a free theory. This can easily be generalised to arbitrary order by use of Wick’s
theorem for thermal states. Factorisation of equal-time phase correlation functions according to
Wick’s theorem, as was determined in the experiment for the uncoupled and the strongly coupled
system, therefore shows the absence of quasiparticle interactions in the theory. Note that this is
by far not a trivial result, even for vanishing coupling J , as we neglected an infinite number of
higher order terms by replacing the full Hamiltonian H by the low-energy effective model HSG.
In case of a non-vanishing interaction potential V the equations become increasingly more

complicated due to the non-vanishing commutator [H0, V ]. In thermal equilibrium, the corre-
lation functions of the phase can be calculated in perturbation theory in the imaginary-time
(Matsubara) formalism. One defines the time-ordered correlation functions in imaginary time τ
(Matsubara Green’s functions)

〈T̂ϕH(τ1, z1) . . . ϕH(τN , zN )〉 ≡
Tr

[
e−βH0 T̂ U(β, 0)ϕI(τ1, z1) . . . ϕI(τN , zN )

]

Tr
[
e−βH0 U(β, 0)

] , (S50)

where ϕH(τ, z) = eτHϕ(z)e−τH are the Heisenberg field operators in imaginary time τ , and
ϕI(τ, z) = eτH0ϕ(z)e−τH0 are the fields in the interaction picture (denoted by the subscript I),
evolving in imaginary time with the free Hamiltonian H0. The time evolution operator U(β, 0)
fulfills

∂τU(τ, 0) = −VI(τ)U(τ, 0) . (S51)

It can be written as the Dyson series

U(τ, τ ′) = T̂ e−
∫ τ
τ′ dτ

′′VI(τ
′′) =

∞∑
n=0

(−1)n

n!

∫ τ

τ ′
dτ1 . . .

∫ τ

τ ′
dτn T̂ VI(τ1) . . . VI(τn) , (S52)
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which allows to express the correlation functions (S50), up to any order in VI , as a diagrammatic
expansion in Feynman diagrams. The sine-Gordon Hamiltonian, Eq. (S9), represents a scalar
field theory with an infinite number of polynomial interaction terms. Standard results of quantum
field theory allow to distinguish between three distinct types of diagrams. First, all diagrams
in which the fields of the interaction potential V are contracted among themselves and are
otherwise disconnected (vacuum diagrams). These vacuum diagrams are exactly canceled by
the denominator in Eq. (S50) to all orders in the perturbative expansion. Second, all diagrams
which are not fully connected only contribute to the disconnected part of the correlation function,
and can be factorised into full, lower-order correlation functions. Third, the fully connected
diagrams describe genuine N -body quasiparticle interactions and constitute the connected part
of the correlation function.
Note that the above time-ordered imaginary-time correlation functions are only related to

physical observables for equal times τ1 = · · · = τN , for which they coincide with the experi-
mentally measured correlation functions.3 However, the Matsubara Green’s functions may be
analytically continued to the real-time axis to determine the physically relevant retarded Green’s
functions. This continuation immediately allows to infer the effect of N -particle interactions in
the theory. As explained in Sect. IIA, the N th-order equal-time connected correlation function
represents the sum over all these fully connected processes with N external lines. Since the
experimentally measured phase fields are linear in the quasiparticle creation/annihilation opera-
tors, N th-order correlation functions are a direct measure for the combined effect of the N -body
quasiparticle interaction (to all orders in the coupling). This is in contrast to the periodic ob-
servables, discussed in the previous section, which sum over all possible quasiparticle interactions
(for all values of N). Measurements of higher-order correlation functions therefore allow for a di-
rect comparison to highly non-trivial field-theoretical calculations, and give valuable information
about the convergence of the perturbative expansion, the validity of non-perturbative theoretical
methods, and the summation of divergent series.
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