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ABSTRACT12

We provide additional details in support of “On a Higgs optimization problem with quantum annealing”13

1 The quantum annealer approach to the Higgs optimization problem14

Our problem, toward which we apply quantum annealing for machine learning (QAML), is that of constructing a15

binary classifier that can detect the “signal” of the decay of a Higgs boson into two photons in a “background” of noise16

from other Standard Model processes. The classifiers are trained on a set of simulated collision events (synthetic17

data sets) where the signal sample contains events with a Higgs boson and the background sample contains a18

cocktail of background physics processes that mimic Higgs events. The classification is achieved by exploiting deep19

correlations in various physical properties of the signal and background events. Classifiers such as boosted decision20

trees [e.g., XGBoost (XGB)], or deep neural networks (DNN) have seen great success in many other contexts, from21

speech and image recognition,1 to marketing, finance and manufacturing.2 In the high energy physics context there22

are challenges and limitations of these techniques often related to the level of agreement between the synthetic and23

observed data. Supervised learning requires an accurately labeled training data set, and the simulation procedure24

requires calculations of the matrix elements of the physics processes of interest,3 modeling of the hadronization of25

colored particles? and simulation of the interaction of the final state particles with the detector.4 The complexity26

of the end-to-end simulation operation is encapsulated in the uncertainties associated with the level of agreement27

with the observations.28

The binary classifier proposed and studied in this work, is trained with a “quantum annealing for machine29

learning” (QAML) algorithm5,6 and takes the form of a linear neural network (LNN) that relies on explicitly30

linearized correlations. This reduces sensitivity to errors in the model of the detector, and due to the binary31

weights it guards against overtraining. In this model it is simple to control and correct the correlations between32

the kinematical observables in the Monte Carlo simulations. Additionally the model provides a straightforward33

interpretation of the criteria used to classify the events. This comes at the price of a provably NP-hard training34

problem, with a training time that grows exponentially with the number of variables. This is a price sometimes35

worth paying in return for robustness in the presence of label noise, a fact that has become increasingly recognized36

in the machine learning community.7–937

Heuristic optimization techniques such as classical simulated annealing (SA)10,11 and quantum annealing (QA)12,1338

may reduce the training time sufficiently to solve problems of practical interest with this linear model. QA and39

the closely related quantum adiabatic algorithm,14 hold the potential for significant improvements in performance40

over classical techniques, though the delineation of the improvement boundary remains an active area of research.1541

Here we use both QA and SA to train a classifier and examine its performance compared to traditional methods.42

To implement QA we use a programmable quantum annealer16 built by D-Wave Systems Inc.,17,18 the D-Wave43

Two X (DW) model housed at the University of Southern California’s Information Sciences Institute, comprising44

1098 superconducting flux qubits. Such QA devices have been employed to study, e.g., graph isomorphism,1945

1

Bayesian network structure,20 operational planning,21 DNNs,22 quantum Boltzmann machines,23–25 and tree cover46

detection in aerial imagery.26 Both the quantumness27–31 and speedup32–35 in these devices are intensely scrutinized47

topics of ongoing research.48

2 DNN and XGB optimization procedure49

We benchmark the performance of QAML against DNN and XGB.50

We train a DNN using Keras36 with the Theano backend,37 a standard tool in deep learning and increasingly51

popular in high energy physics. Our network has two fully connected hidden layers with 1000 nodes each. The52

model is optimized using the Adam algorithm38 with a learning rate of 0.001 and a mini-batch size of 10. We53

find that network performance is not affected by small changes in the number of nodes or the initial guesses for54

the weights. The model hyperparameters, regularization terms, and optimization parameters for our deep neural55

net are selected using the Spearmint Bayesian optimization software.39,40 Early stopping is used (with patience56

parameter 10) to avoid overtraining and have sufficient generalization.57

We also train an ensemble of boosted decision trees using XGB41 with a maximum depth of 10, a learning rate58

of 0.3, and L2-regularization parameter λ = 2000.59

To train and optimize XGB, we use 100 rounds of training and start with the default choices for the various60

parameters. We evaluate values of the learning rate61

η ∈ {0.001,0.002,0.003,0.005,0.008,0.01,0.02,0.03,0.05,0.08,0.1,0.2,0.3,0.5,0.8} at tree depths of 5, 8, 10, 12, 15,62

and 20. Some of these parameters give small improvements in AUC over the defaults at value of the L2-regularization63

parameter λ = 1. Far larger improvements are found when λ is increased. Hence we hold the other parameters64

fixed and evaluate λ ∈ {5,10,20,50,100,200,500,1000,1500,1800,2000,2200,2500}, finding the approximate opti-65

mum AUC on the test set at 2000. Testing again, the tree depth and η are found to have minimal effect on the66

AUC (significantly smaller than the error), and η = 0.3 and tree depth 10 are chosen as the approximate optimum.67

We note that the DNN and XGB settings are selected so as to prevent overtraining.68

3 Mapping weak classifier selection to the Ising problem69

In this section we closely follow Ref. [6], with slight changes of notation. Let V be the event space, consisting of70

vectors {⃗x} that are either signal or background. We define a weak classifier ci(⃗x) : V �→R, i = 1, . . .N, as classifying71

event x⃗ as signal (background) if ci(⃗x) > 0 (ci(⃗x) < 0). We normalize each weak classifier so that |ci| ≤ 1/N. We72

introduce a binary weights vector w⃗ ∈ {0,1}N and construct a strong classifier Rw⃗(⃗x) = ∑i wici(⃗x) ∈ [−∥w⃗∥/N,∥w⃗∥/N].73

The event x⃗ is correspondingly classified as signal (background) if Rw⃗(⃗x) > 0 (Rw⃗(⃗x) < 0). The weights w⃗ are to be74

determined; they are the target of the solution of the Ising problem.75

Let T = {x⃗τ ,yτ} denote a given set of training events, where x⃗τ is an event vector collecting the values of each
of the variables we use, and yτ = ±1 is a binary label for whether x⃗τ is signal (+1) or background (−1). Let
Qw⃗(⃗x) = sign[Rw⃗(⃗x)], so that Qw⃗(⃗x) = +1 (−1) denotes signal (background) event classification. Thus yτ Qw⃗(⃗xτ) = +1
if x⃗τ is correctly classified as signal or background (yτ and Qw⃗(⃗xτ) agree), and yτ Qw⃗(⃗xτ) = −1 if x⃗τ is incorrectly
classified (yτ and Qw⃗(⃗xτ) disagree). The cost function L(w⃗)=∑τ [1−yτ Qw⃗(⃗xτ)]/2 thus counts the number of incorrectly
classified training events, and minimizing it over all possible weight vectors returns the optimal set of weights, and
hence the optimal strong classifier given the training set T . To avoid overtraining and economize on the number
of weak classifiers used, we can introduce a penalty term proportional to the number of weights, i.e., λ∥w⃗∥, where
λ > 0 is the penalty strength. Thus the optimal set of weights for given λ is

w⃗opt = argmin{w⃗} [L(w⃗)+λ∥w⃗∥] . (1)

This optimization problem cannot be directly mapped onto a quantum annealer, due to the appearance of the sign
function. Instead we next introduce a relaxation to a quadratic form that is implementable on the current generation
of D-Wave devices. Namely, using the training set we form the vector of strong classifier results R⃗w⃗ = {Rw⃗(x⃗τ)}|T |

τ=1,
the Euclidean distance measure δ (w⃗) = ∥⃗y− R⃗w⃗∥2 between the strong classifier and the set of training labels, and
replace Eq. (1) by

w⃗min = argmin{w⃗}δ (w⃗). (2)

Finding w⃗opt in this way is equivalent to solving a quadratic unconstrained binary optimization (QUBO) problem:

w⃗min = argmin{w⃗}

[
∑
τ

Rw⃗(x⃗τ)
2 −2yτ Rw⃗(x⃗τ)+ y2

τ

]
= argmin{w⃗}

[
∑
τ

(
∑
i, j

wiw jci(x⃗τ)c j(x⃗τ)−2yτ ∑
i

wici(x⃗τ)
)
+ |T |

]
. (3)
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We also train an ensemble of boosted decision trees using XGB41 with a maximum depth of 10, a learning rate58

of 0.3, and L2-regularization parameter λ = 2000.59
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mum AUC on the test set at 2000. Testing again, the tree depth and η are found to have minimal effect on the66
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We note that the DNN and XGB settings are selected so as to prevent overtraining.68

3 Mapping weak classifier selection to the Ising problem69

In this section we closely follow Ref. [6], with slight changes of notation. Let V be the event space, consisting of70
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Qw⃗(⃗x) = sign[Rw⃗(⃗x)], so that Qw⃗(⃗x) = +1 (−1) denotes signal (background) event classification. Thus yτ Qw⃗(⃗xτ) = +1
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classified (yτ and Qw⃗(⃗xτ) disagree). The cost function L(w⃗)=∑τ [1−yτ Qw⃗(⃗xτ)]/2 thus counts the number of incorrectly
classified training events, and minimizing it over all possible weight vectors returns the optimal set of weights, and
hence the optimal strong classifier given the training set T . To avoid overtraining and economize on the number
of weak classifiers used, we can introduce a penalty term proportional to the number of weights, i.e., λ∥w⃗∥, where
λ > 0 is the penalty strength. Thus the optimal set of weights for given λ is

w⃗opt = argmin{w⃗} [L(w⃗)+λ∥w⃗∥] . (1)

This optimization problem cannot be directly mapped onto a quantum annealer, due to the appearance of the sign
function. Instead we next introduce a relaxation to a quadratic form that is implementable on the current generation
of D-Wave devices. Namely, using the training set we form the vector of strong classifier results R⃗w⃗ = {Rw⃗(x⃗τ)}|T |

τ=1,
the Euclidean distance measure δ (w⃗) = ∥⃗y− R⃗w⃗∥2 between the strong classifier and the set of training labels, and
replace Eq. (1) by

w⃗min = argmin{w⃗}δ (w⃗). (2)

Finding w⃗opt in this way is equivalent to solving a quadratic unconstrained binary optimization (QUBO) problem:

w⃗min = argmin{w⃗}

[
∑
τ

Rw⃗(x⃗τ)
2 −2yτ Rw⃗(x⃗τ)+ y2

τ

]
= argmin{w⃗}

[
∑
τ

(
∑
i, j

wiw jci(x⃗τ)c j(x⃗τ)−2yτ ∑
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wici(x⃗τ)
)
+ |T |
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Regrouping the terms in the sum and dropping the constant we find:

w⃗min = argmin{w⃗}

[
∑
i, j

wiw j

(
∑
τ

ci(x⃗τ)c j(x⃗τ)

)
−2∑

i
wi

(
∑
τ

ci(x⃗τ)yτ

)]
= argmin{w⃗}

[
∑
i, j

Ci jwiw j −2∑
i

Ciwi

]
, (4)

where Ci j = ∑τ ci(x⃗τ)c j(x⃗τ) =Cji and Ci = ∑τ ci(x⃗τ)yτ .76

This has a tendency to overtrain. The reason is that |Rw⃗(x⃗τ)| ≤ ∥w⃗∥/N, so that |yτ −Rw⃗(x⃗τ)|2 ≥ (1−∥w⃗∥/N)2, and
hence δ (w⃗) = ∑τ |yτ −Rw⃗(⃗xτ)|2 ≥ |T |(1−∥w⃗∥/N)2. To minimize δ (w⃗) the solution will be biased toward making ∥w⃗∥
as large as possible, i.e., to include as many weak classifiers as possible. To counteract this overtraining tendency
we add a penalty term that makes the distance larger in proportion to ∥w⃗∥, i.e., λ∥w⃗∥ with λ > 0, just as in Eq. (1).
Thus we replace Eq. (4) by

w⃗min = argmin{w⃗}

[
∑
i, j

Ci jwiw j +∑
i
(λ −2Ci)wi

]
, (5)

The last step is to convert this QUBO into an Ising problem by changing the binary wi into spin variables si =±1,
i.e., wi = (si +1)/2, resulting in:

s⃗min = argmin{⃗s}

[
1
4 ∑

i, j
Ci jsis j +

1
2 ∑

i, j
Ci jsi +

1
2 ∑

i
(λ −2Ci)si

]
, (6)

where we use the symmetry of Ci j to write the middle term in the second line, and we drop the constant terms
1
4 ∑i, j Ci j and 1

2 ∑i(λ −2Ci). We now define the couplings Ji j =
1
4Ci j and the local fields hi =

1
2

(
λ −2Ci +∑ j Ci j

)
. The

optimization problem is then equivalent to finding the ground state s⃗min = argmin{⃗s}H of the Ising Hamiltonian

HIsing =
N

∑
i< j

Ji jsis j +
N

∑
i=1

hisi. (7)

In the main text and hereafter, when we refer to λ it is measured in units of maxi(Ci) (e.g., λ = 0.05 is shorthand77

for λ = 0.05maxi(Ci)).78

4 Robustness of QAML to MCMC mismodelling79

Two essential steps are involved in the construction of the weak classifiers in our approach. First, we remove80

information about the tails of the distributions of each variable and use the corresponding truncated single-variable81

distributions to construct weak classifiers. Second, since the single-variable classifiers do not include any correlations82

between variables, we include additional weak classifiers built from the products/ratios of the variables, where after83

taking the products/ratios we again apply the same truncation and remove tails. That is, our weak classifiers84

account only for one and two-point correlations and ignore all higher order correlations in the kinematic variable85

distribution. The particular truncation choice to define the weak classifiers as a piecewise linear function defined86

only by a central percentile (30th or 70th, chosen during construction) and two percentiles in the tails (10th and87

90th) means that the MC simulations only have to approximately estimate those four percentiles of the marginals88

and the correlations between the variables. Any MC simulation which is unable to approximate the 10th, 30th,89

70th, and 90th percentiles of the marginal distribution for each dimension of the dataset and the products between90

them would surely not be considered acceptably similar to the target distribution for use in HEP data analyses, as91

it is effectively guaranteed to be wrong in the higher order correlations and thus in its approximation of the true92

distribution. Meanwhile, typical machine learning approaches for this problem use arbitrary relationships across93

the entire training dataset, including the tails and high-order correlations, and so are likely to be more sensitive to94

any mismodelling.95

5 Receiver operating characteristic (ROC)96

Any classifier may be characterized by two numbers: the true positive and true negative rates, in our case corre-97

sponding to the fraction of events successfully classified as signal or background, respectively. Since our classifiers98

all return floating point values in [−1,1], to construct a binary classifier we introduce a cut in this range, above and99

below which we classify as signal and background, respectively. Since this cut is a free parameter, we vary it across100
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Figure 1. The ROC curves for the annealer-trained networks (DW and SA) at f = 0.05, DNN, and XGB. Error
bars are defined by the variation over the training sets and statistical error. Both panels show all four ROC
curves. Panel (a) [(b)] includes 1σ error bars only for DW and DNN [SA and XGB], in light blue and pale yellow,
respectively. Results shown are for the 36 variable networks at λ = 0.05 trained on 100 events. The annealer
trained networks have a larger area under the ROC curve

the entire range and plot the resulting parametric curve of signal acceptance (true positive, εS) and background101

rejection (true negative, rB), producing a receiver operating characteristic (ROC) curve.42102

More explicitly, consider a labeled set of validation events, V = {x⃗v,yv}, with yv = 0 or 1 if x⃗v is background or103

signal, respectively, and a strong classifier Rw⃗(⃗x). The latter is constructed from a given set of weak classifiers and104

a vector of weights w⃗ previously obtained from training over a training set T . The strong classifier outputs a real105

number Rw⃗(x⃗v) = ∑i wici(x⃗v). To complete the classifier, one introduces a cut, Oc, such that we classify event x⃗v as106

signal if Rw⃗(x⃗v) > Oc and background if Rw⃗(x⃗v) < Oc. If we evaluate the strong classifier on each of the events in107

our validation set V , we obtain a binary vector of classifications, C⃗ = {Cv}, with entries 0 denoting classification as108

background and 1 denoting classification as signal. By comparing Cv to yv for all v we can then evaluate the fraction109

of the events which are correctly classified as background, called the true negative rate or “background rejection”110

rB (equal to the number of times Cv = yv = 0, divided by the total number of actual background events ), and the111

fraction of events correctly classified as signal or “signal efficiency” εS (equal to the number of times Cv = yv = 1,112

divided by the total number of actual signal events). For a given strong classifier, these values will be a function of113

the cutoff Oc. Plotting rB(Oc) against εS(Oc) yields a parametric curve, dubbed the “receiver operator characteristic”114

(ROC) curve, as shown in Fig. 1. Note that the cutoffs are trivial to adjust while all the computational effort goes115

into forming the networks, so one can vary Oc essentially for free to tune the performance of the network to suit116

one’s purposes.117

In other words, for a given strong classifier, i.e., solution/state, we can evaluate its output as a floating point118

number on each of the values in our data set, and for any value of a cut on [−1,1] this results in a single classification119

of the test data, C⃗. One can then evaluate the true positive and true negative rates by computing C⃗v · y⃗k where120

k ∈ [S,B] (signal, background), yi
k = 1 if datum i is in ensemble k and is 0 otherwise.121

When we take f > 0 and accept excited states with energy E < (1− f )EGS as “successes”, we have a set of122

networks (labeled by f ) for each training set. We simply take the supremum over the f -labeled set of values of rB123

at each value of εS, to form the ROC curve for the classifier formed by pasting together different classifiers over124

various ranges of εS.125

To estimate the error due to limited test sample statistics, we reweight each element of the test set with weights126

w⃗ drawn from a Poisson distribution with mean 1, effectively computing ∑i wi piyi
k. The weights on the elements of127
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the test set are determined for all elements at once and we evaluate all strong classifiers using the same weights.128

For a single weight vector, we evaluate many values of the cut, and use linear interpolation to evaluate it in steps129

of 0.01 in the region [0,1]. This gives us the true negative rate as a function of the true positive rate for a single130

weighting corresponding to a single estimated ROC curve. When constructing a composite classifier from multiple131

states, we are identifying regions of signal efficiency in which one should use one of the states rather than the others,132

namely, we take the maximum background rejection rate over the states for each value of signal efficiency.133

Repeating for many reweightings we get many ROC curves all of which are consistent with our data, and thus134

the standard deviation across weights on a single training set at each value of signal efficiency serves as an estimate135

of the statistical uncertainty in our ROC curves.136

To estimate variation due to the choice of the training set towards reproductions of the procedure and results, for137

a given training size we generate multiple disjoint training sets and use the standard deviation in mean performance138

across training sets as our estimate of the error on the model resulting from the particular choice of training set.139

When we compute the difference between two ROCs or AUROCs, we hold the training set and weight vector fixed,140

take the difference, and then perform statistics over the weights and training sets in the same manner as above.141

Errors in the AUROC were estimated similarly, taking the AUROC for each Poisson weight vector and training set142

(fold) instead of rB(εS). This is the procedure leading to Fig. 3 in the main text. An example of the ROC curves is143

given in Fig. 1. At the scale of that plot, it is virtually impossible to tell the detailed differences between SA and144

DW or the various values of f , so we use plots of differences of AUCs to extract more detailed information about145

the ROC curves. This leads to Fig. 4 in the main text. Additional difference plots are given in Sec. 10 below.146

6 Quantum annealing and D-Wave147

In QA, we interpret the Ising spins si in the Ising Hamiltonian (7) as Pauli operators σ z
i on the ith qubit in a148

system of N qubits. QA is inspired by the adiabatic theorem,43 namely if the Hamiltonian is interpolated from149

an initial Hamiltonian H(t = 0) to a final Hamiltonian H(t = ta) sufficiently slowly compared to the minimum150

ground-to-first-excited state gap of H(t), the system will be in the ground state of H(t = ta) with high probability,151

provided it was initialized in the ground state of H(t = 0). Thus, one can evolve from a simple, easy to initialize152

Hamiltonian at t = 0 to a complicated Hamiltonian with an unknown ground state at t = ta, where ta is known as153

the annealing time. In QA, the initial Hamiltonian is a transverse field HX = ∑i σ x
i , and the final Hamiltonian is154

the Ising Hamiltonian (7), with the time-dependent Hamiltonian taking the form H(t) = A(t)HX +B(t)HIsing, where155

A(t) is monotonically decreasing to 0 and B(t) is monotonically increasing from 0; these functions are known as the156

annealing schedule. QA can be seen as both a generalization and a restriction of adiabatic quantum computation44157

(for a review see15): as a restriction, QA typically requires the initial Hamiltonian to be a sum of σ xs and the158

final Hamiltonian be diagonal in the computational basis (i.e., a sum of σ z terms), while, as a generalization, it159

undergoes open-system dynamics and need not remain in the ground state for the entire computation.160

Current and near-generation quantum annealers are naturally run in a batch mode in which one draws many161

samples from a single Hamiltonian. Repeated draws for QA are fast. The DW averages approximately 5000 samples162

per second under optimal conditions. We take advantage of this by keeping all the trial strong classifiers returned163

and not restricting to the one with minimum energy.1The DW has 1098 superconducting Josephson junction flux164

qubits arranged into a grid, with couplers between the qubits in the form shown in Fig. 3, known as the Chimera165

graph. The annealing schedule used in the DW processor is given in Fig. 4. The Chimera graph is not fully166

connected, a recognized limitation as the Ising Hamiltonian (7) is fully connected, in general. To address this,167

we perform a minor embedding operation.45,46 Minor embedding is the process whereby we map a single logical168

qubit in HIsing into a physical ferromagnetic (Ji j =−1) chain of qubits on DW. For each instance we use a heuristic169

embedding found via the D-Wave API, that is as regular and space-efficient as possible for our problem sizes.170

Given a minor embedding map of logical qubits into a chain of physical qubits, we divide the local fields hi171

equally among all the qubits making up the chain for logical qubit i, and divide Ji j equally among all the physical172

couplings between the chains making up logical qubits i and j. After this procedure, there remains a final degree of173

freedom: the chain strength JF . If the strength of the couplers in the ferromagnetic chains making up logical qubits174

is defined to be 1, then the maximum magnitude of any other coupler is max
(

maxi({|hi|}),maxi, j({
��Ji j

��})) = 1
JF

.175

There is an optimal value of JF , generally. This is due to a competition between the chain needing to behave as176

a single large qubit and the problem Hamiltonian needing to drive the dynamics.47 If JF is very large, the chains177

will “freeze out” long before the logical problem, i.e., the chains will be far stronger than the problem early on, and178

1The energy is effectively a function of error on the training set of the weak classifiers, hence is distinct from the measures used to
directly judge classifier performance, such as the area under the ROC curve.
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the transverse field terms will be unable to induce the large, multi-qubit flipping events necessary to explore the179

logical problem space. Similarly, if JF is very weak, the chains will be broken (i.e., develop a kink or domain wall)180

by tension induced by the problem, or by thermal excitations, and so the system will generally not find very good181

solutions. Ideally, one wants the chains and the logical problem to freeze at the same time, so that at the critical182

moment in the evolution both constraints act simultaneously to determine the dynamics. For the results shown183

here, we used JF = 6 with an annealing time ta = 5µs. To deal with broken chains, we use majority vote on the184

chain with a coin-toss tie-breaker for even length chains. Detailed analysis of the performance of this strategy in185

the context of error correction can be found in the literature.48,49186

Figure 5 shows the average minimum energy returned by the DW, rescaled by the training size (to remove a187

linear scaling), as a function of the chain strength and training size. We see that the smallest training size (N = 100)188

has a smaller average minimum energy than the rest of the training sizes, and that there is only a very slight189

downward tendency as the chain strength JF increases for the larger training sizes.190

Figure 6 plots the fractional deviation of the minimum energy returned by the DW relative to the true ground191

state energy, averaged over the training sets. While the DW’s minimum energy returned approaches the true ground192

state, it seems to converge to ≈ 5% (i.e. f ≈ 0.05) above the ground state as we increase the chain strength, for193

all training sizes ≥ 1000. In this case, we were not able to find the optimal chain strength in a reasonable range of194

chain strengths, and instead simply took the best we found, JF = 6. As discussed in Sec. 8, the DW processor suffers195

from noise sources on the couplers and thermal fluctuations, and it seems that this poses significant challenges for196

the performance of the quantum annealer. It is possible that even larger chain strengths may resolve the issue, but197

given the convergence visible in Fig. 6, it seems likely that JF = 6 is already near the optimum.198

7 Simulated annealing199

In simulated annealing,10 we initialize the vector s⃗ in a random state. At each time step, we create a trial vector200

s⃗′ by flipping one of the spins in s⃗, selected at random. We accept the trial vector using the Metropolis update201

rule:50 the new state is accepted with probability 1 if H (⃗s′) < H (⃗s) (i.e., lower energy states are accepted deter-202

ministically), whereas if H (⃗s′) > H (⃗s), we accept the trial vector with probability exp{−β (H (⃗s′)−H (⃗s))} for some203

inverse temperature β . After we have attempted N spin flips, which amounts to one sweep, we then increase the204

inverse temperature β according to some schedule. At first, β ≪ 1 and the system quickly drifts through the space205

of possible states. As β grows the system settles into lower lying valleys in the energy landscape, and ultimately206

ceases to evolve entirely in the limit of infinite β (zero temperature). Our simulations used βinit = 0.1 and βfinal = 5,207

and used a linear annealing schedule (i.e., if we perform S sweeps, we increase β after each sweep by βfinal−βinit
S ). These208

parameters have generally performed well in other studies.33 All SA data in the main text and presented here is at209

1000 sweeps, however we also tested SA at 100 sweeps, and found a negligible difference in overall performance, as210

seen in Fig. 7, where the integrated difference of the ROC curves is found to be statistically indistinguishable from211

0.212

8 Effect of noise on processor213

Internal control error (ICE) on the current generation of D-Wave processors is effectively modeled as a Gaussian214

centered on the problem-specified value of each coupler and local field, with standard deviation 0.025, i.e., a coupler215

Ji j is realized as a value drawn from the distribution N(Ji j,0.025) when one programs a Hamiltonian. Figure 8216

contains a histogram of the ideal values of the embedded couplers corresponding to connections between logical217

qubits across all 20 problem instances of 36 variables at 20000 training events. One can see that the ideal distribution218

has some structure, with two peaks. However, if one resamples values from the Gaussian distribution induced by219

ICE, one finds that many of the features are washed out completely. This suggests that the explanation for the220

flattening out of the performance of QA as a function of training size (recall Fig. 3 in the main text) is due to this221

noise issue. Thus we investigate this next.222

Figures 9-11 tell the story of the scaling of the couplers with training size. Figure 9 shows linear scaling223

of the maximum Hamiltonian coefficient with training size. We observe wider variation at the smallest training224

sizes, but overall the precision scales linearly with training size. This is confirmed in Figure 10, which shows the225

maximum coefficient normalized by the training size. Since this value is constant for sufficiently large training226

sizes, the maximum value scales linearly with size. At first glance, this indeed suggests an explanation for why the227

performance of QA using the DW levels off as a function of training size: the coupling values pass 20 (half the scale228

of the errors which is ≈ 1/0.025 = 40). However, absolute numbers are not necessarily informative, and Fig. 11229

dispels this explanation.230

6/25



W W W. N A T U R E . C O M / N A T U R E  |  7

SUPPLEMENTARY INFORMATION RESEARCH

Figure 11 shows the ratio of the median coefficient to the maximum coefficient, thereby showing the scale of231

typical Hamiltonian coefficients on the DW prior to rescaling for chain strength (which for the most of the data232

here would reduce the magnitude by a further factor of 6).233

Since all the different types of coefficient ratios are constant with system size, we have effectively no scaling with234

training size of the precision of the couplers. This means that the scaling of precision with training size cannot235

explain the saturation of performance with increasing training size.236

However, the magnitudes here are quite small, and so once one accounts for rescaling the energies, typical237

couplers are expected to be subject to a significant amount of noise, even causing them to change sign. This effect238

likely explains, at least in part, the difficulties the DW has in finding the true ground state, as discussed above and239

seen in Fig. 6, where even at the largest chain strength we still find that the DW’s typical minimum energy is ∼ 5%240

above the ground state energy.241

9 Sensitivity to variation of the parameters of weak classifier construction242

When constructing the weak classifiers, we choose to define vcut as the 70th percentile of the signal distribution.243

This choice is arbitrary. To test the effect of this value on the classifier performance we use identical training sets244

and values of both 60% and 80% and compare them to our primary estimate of 70%. The results for both the245

minimum energy returned ( f = 0) and f = 0.05 for each are shown in Fig. 12.246

Note that every training set has the same ground state configuration at 70% and 80%. The ROCs and AUROC247

are then invariant across a wide range of vcut values.248

Figure 2 reproduces Fig. 3 from the main text, but also shows the AUROC for SA’s optimal classifier (by energy)249

for various values of the regularization parameter λ . We find no significant variation, with the major features of250

SA being stable, namely the advantage at small training size and the saturation at around an AUROC of ≈ 0.64.251

10 Difference between ROC curves plots252

We show differences between ROC curves for various algorithms in Figs. 13-18. These form the basis for Fig. 4 in253

the main text, which gives the integral of the difference over signal efficiency. Figures 13 and 14 show the difference254

in background rejection rDWB − rSAB as a function of the signal efficiency for f = 0 and f = 0.05, respectively. For255

f = 0 DW and SA are indistinguishable to within experimental error. For f = 0.05 SA slightly outperforms DW in256

the range of low signal efficiencies for training sizes ≥ 5000. The primary conclusion to draw from these plots is257

that SA differs from DW by roughly one standard deviation or less across the whole range, even though DW for258

training sizes larger than 100 struggles to find states within less than 5% of the ground state energy. This suggests259

a robustness of QAML, which (if it generalizes to other problems) significantly improves the potential to exploit260

physical quantum annealers to solve machine learning problems and achieve close-to-optimal classifier performance,261

even in the presence of significant processor noise.262

Figures 15 and 16 show the ROC difference between DW and DNN and DW and XGB at f = 0, respectively.263

The two cases have broadly similar shapes. One clearly sees that QAML on DW outperforms DNN and XGB at264

the smallest training size in a statistically significant manner, but that the trend reverses for sizes ≥ 5000. Note,265

that at the scale of these diagrams, the gap between f = 0 and f = 0.05 is negligible.266

Figures 17 (SA) and 18 (DW) show the difference between f = 0 and f = 0.05. SA and DW exhibit broadly267

similar behavior, with an improvement with excited states of ≈ 0.4% in background rejection for SA and of ≈ 0.2%268

for DW. The improvement increases with training size and is slightly larger for SA than DW (though this difference269

is likely simply noise, as it is less than half the standard deviation of each distribution). It should be noted that270

since QAML’s comparative advantage against other techniques appears to be in the realm of small training sizes.271

However, this is the same range where including excited states has no benefit.272
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Figure 2. A reproduction of Fig. 3 from the main text, now including the optimal strong classifier found by SA at
f = 0 for various values of the regularization parameter λ = 0.,0.1,0.2. We find that this parameter has negligible
impact on the shape of the AUROC curve, and that performance for SA always saturates at ≈ 0.64, with an
advantage for QAML (DW) and SA over XGB and DNNs for small training sizes.
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Figure 3. An 1152 qubit Chimera graph, partitioned into a 12×12 array of 8-qubit unit cells, each unit cell being
a K4,4 bipartite graph. Inactive qubits are marked in red, active qubits in green. There are a total of 1098 active
qubits in the DW processor used in our experiments. Black lines denote active couplers.
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Figure 4. Annealing schedule used in our experiments.
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Figure 5. A plot of the minimum energy returned by the DW as a function of chain strength, rescaled by the
number of training samples. I.e., for training size N, we plot Em/N for minimum return energy Em, where N is
given in the legend.
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Figure 6. Plot of (Em −E0)/E0 for minimum energy returned Em and true ground state energy E0, i.e., the
minimum fractional reserve energy, averaged over the training sets, for each size and chain strength.
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Figure 7. The integral of the difference of the ROC curves, i.e., the area between the ROC curves, for SA and
SA100 for various thresholds of the energy and training size. SA at 100 and 1000 sweeps are effectively identical
by this benchmark.
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Figure 8. Histograms for the true (peaked) distribution of local biases and couplers, and the same distribution
subject to point-wise Gaussian noise with zero mean and standard deviation 0.025, which is approximately the
magnitude of errors on the DW couplers.
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Figure 9. The maximum local bias and coupler term in the Hamiltonian across training sizes and training sets.

Figure 10. The maximum local bias and coupler term in the Hamiltonian across training sizes and training sets,
normalized by the number of events in the training set. This makes it clear that the scaling of the Hamiltonian
coefficients is linear in the training size, for training sizes ≥ 5000.
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Figure 11. The ratio of the median coefficient by the maximum coefficient for the non-zero local biases, couplers,
and both taken together.
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Figure 12. Difference between the ROC curve for SA at vcut at the xth percentile during weak classifier
construction and the curve using the yth percentile during the same for the ground state configuration. (a) x = 70,
y = 60, f = 0. (b) x = 70, y = 80, f = 0. (c) x = 70, y = 60, f = 0.05. (d) x = 70, y = 80, f = 0.05.
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Figure 13. Difference between the ROC curves for SA and DW using the minimum energy returned.
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Figure 14. Difference between the ROC curves for SA and DW using all states within 5% of the minimum return
energy.
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Figure 15. Difference between the ROC curves for DW and DNN using the minimum energy configuration from
DW.
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Figure 16. Difference between the ROC curves for DW and XGB using the minimum energy configuration from
DW.
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Figure 17. Difference between the ROC curves between the true ground state configuration and the f = 0.05
composite classifier from SA.
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Figure 18. Difference between the ROC curves between the minimum energy state returned by DW and the
f = 0.05 composite classifier from DW.

References273

1. Le, Q. V. Building high-level features using large scale unsupervised learning. In Acoustics, Speech and Signal274

Processing (ICASSP), 2013 IEEE International Conference on, 8595–8598 (IEEE, 2013).275

2. Arthur, L. Big Data Marketing (Wiley, 2013).276

3. Alwall, J. et al. The automated computation of tree-level and next-to-leading order differential cross sections,277

and their matching to parton shower simulations. JHEP 07, 079 (2014). 1405.0301.278

4. Agostinelli, S. et al. GEANT4: A Simulation toolkit. Nucl. Instrum. Meth. A506, 250–303 (2003).279

5. Neven, H., Denchev, V. S., Rose, G. & Macready, W. G. Training a binary classifier with the quantum adiabatic280

algorithm. arXiv:0811.0416 (2008). URL http://arXiv.org/abs/0811.0416.281

6. Pudenz, K. L. & Lidar, D. A. Quantum adiabatic machine learning. Quantum Information Processing 12,282

2027–2070 (2013). URL dx.doi.org/10.1007/s11128-012-0506-4.283

7. Long, P. M. & Servedio, R. A. Random classification noise defeats all convex potential boosters. Machine284

Learning 78, 287–304 (2010).285

8. Manwani, N. & Sastry, P. S. Noise tolerance under risk minimization. Cybernetics, IEEE Transactions on 43,286

1146–1151 (2013).287

9. Denchev, V., Ding, N., Neven, H. & Vishwanathan, S. Robust classification with adiabatic quantum optimiza-288

tion. In Langford, J. & Pineau, J. (eds.) Proceedings of the 29th International Conference on Machine Learning289

(ICML-12), 863–870 (ACM, New York, NY, USA, 2012). URL http://icml.cc/2012/papers/461.pdf.290

23/25



W W W. N A T U R E . C O M / N A T U R E  |  2 1

SUPPLEMENTARY INFORMATION RESEARCH

Figure 18. Difference between the ROC curves between the minimum energy state returned by DW and the
f = 0.05 composite classifier from DW.
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