
Power Simulations 
We performed extensive power simulations to demonstrate that the analyses carried out in our 

study are well powered. Our simulations indicate very high power for all experiments which test 

for association between bacterial and ancestral similarity, and between microbiome composition 

and ancestry proportions (where we define power as the proportion of simulations yielding 

P<0.05). Specifically, we considered several simulation scenarios, generated multiple synthetic 

phenotype vectors according to these scenarios, and tested for association between these vectors 

and genetic/ancestry (depending on the simulation scenario). We then estimated statistical 

power via the fraction of tests with P value < 0.05. 

The simulation settings we considered are as follows: 

1. Simulating a phenotype whose distribution depends on ancestry

proportions. Here, we generated for every individual 𝑖 a synthetic phenotype 𝑦𝑖

according to the formulas:

𝑦𝑖 = 𝑐 ∑ 𝑎𝑖𝛽𝑎

𝑎

+ 𝒙𝑖
𝑇𝜸 + 𝜖𝑖

𝛽𝑎 ∼ 𝒩(0, 𝜎2)

𝜖𝑖 ∼ 𝒩(0,1 − 𝜎2)

𝜸 ∼ 𝒩(𝟎, 𝐼). 

Here, the summation is performed over ancestries, 𝑎𝑖 is the ancestry proportion of 

individual  𝑖 for ancestry 𝑎 (the fraction of grandparents originating from this 

ancestry) after centering to obtain a zero mean, 𝛽𝑎 is the coefficient of ancestry 𝑎, 

𝒙𝑖 is the vector of covariates of individual 𝑖, 𝜸 is a vector of covariate effects, 𝜖𝑖 

encodes a residual term, 𝜎2 ∈ (0,1) is the variance of 𝛽𝑎,  and 𝑐 is constant

guaranteeing that 𝑦𝑖 has a unit variance on average after regressing out the 

covariate effects. Hence, under this formulation 𝜎2 controls the fraction of the 

variance of 𝑦𝑖 explained by ancestry (after regressing out the covariate effects). 

We evaluated 𝜎2 values in the range [0,0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9,0.999] and 

repeated each experiment 100 times, where in each experiment we (1) randomly 

sampled 𝛽𝑎, 𝜖𝑖 and 𝜸 values from their distribution; (2) generated 𝑦𝑖 values based 

on the true ancestry proportion values 𝑎𝑖 in our data; (3) regressed the covariates 

𝑥𝑖 out of 𝑦𝑖; and (4) tested if the phenotypes vector 𝑦 is associated with ancestry 

via a Mantel test with Spearman correlation, where we tested for association 

between Euclidean ancestry distances of individuals 𝑖 and 𝑗 (given by ∑ [𝑎𝑖 − 𝑎𝑗]
2

𝑎 ) 

and phenotypic differences (given by [𝑦𝑖 − 𝑦𝑗]
2
).

Steps (3) and (4) in the above procedure mimic the ancestry-microbiome 

association test described in the paper (Figure 1e, Extended Table 1 middle 

column), with the difference that here we test for association with a single 

phenotype 𝑦𝑖 instead of a vector of bacteria. The proposed formulation is designed 

to simulate a genome wide association study, which enables evaluating the 
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model’s power in a well-known setting with a minimal set of assumptions. Although 

the above model could be extended to simulate a multivariate vector instead of a 

scalar phenotype 𝑦𝑖, this would require introducing additional assumptions into the 

model which would detract from its generalizability.  

The results indicate that our study is very well powered to identify a phenotype 

whose distribution is given by the formulas above, even for small values of 𝜎2 

(Supplementary Table 7).  

2. Simulating a bacterial community based on genetic principal components.

Here, we generated for every individual 𝑖, and for each of the 𝐾 = 184 bacterial

species present in >5% of genotyped individuals, a vector of relative abundances

𝑡𝑖
1, … , 𝑡𝑖

𝐾 defined as follows:

𝑡𝑖
1, … , 𝑡𝑖

𝐾 ∼ Dir(𝛼𝑖
1, … , 𝛼𝑖

𝐾)

𝛼𝑖
𝑗

= {[1 + exp (− ∑ 𝑃𝑖
𝑚𝛽𝑗

𝑚

5

𝑚=1

)]

−1

𝑖 ≤ 𝑞

0.5 𝑖 ≥ 𝑞

 

𝛽𝑗
𝑚 ∼ 𝒩(0, 𝑏).

Here, 𝛼𝑖
𝑗
 is the Dirichlet concentration parameter of taxon 𝑗 in individual 𝑖 (where

larger values indicate a larger tendency to carry taxon 𝑗), 𝑚 iterates over the top 

five genetic principal components, 𝑃𝑖
𝑚 is the 𝑚𝑡ℎ genetic principal component of

individual 𝑖, 𝛽𝑗
𝑚 is the weight of the 𝑚𝑡ℎ genetic principal component with respect

to taxon 𝑗, 𝑏 is the variance of 𝛽𝑗
𝑚, and 𝑞 is a tunable parameter controlling the

number of species affected by genetic principal components. Hence, larger values 

of 𝑞 and of 𝑏 indicate that a larger fraction of the microbiome composition is 

affected by genetic ancestry, which should be reflected in the PCos of a microbial 

β–diversity matrix. 

We carried out experiments where we (1) generated bacterial taxa vectors 

according to the model above, using 𝑏 values in the grid [5,10,20] and 𝑞 values 

corresponding to 0%, 1%, 25%, 50%, 75%, 95% and 100% of 𝐾; (2) computed the 

top PCos of a bacterial Bray-Curtis matrix; and (3) tested for a Spearman 

correlation between the top genetic PCs and the corresponding top microbiome 

PCos, with 100 experiments carried out for each evaluated value of 𝑞. We then 

computed P values for association via the standard asymptotic formulas for either 

a Spearman or a Pearson correlation of two multivariate random variables, and 

performed a multiple hypothesis correction for testing five different hypotheses via 

the Benjamini-Hochberg procedure. We measured power as the fraction of 

experiments with P value < 0.05 (after multiple hypothesis correction). 

The results indicate excellent power for finding correlations between genetic PCs 

and bacterial PCos. (Supplementary Table 8). 
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3. Simulating a bacterial taxon based on ancestry proportions. Here, we

generated for every individual 𝑖 a synthetic species 𝑡𝑖 whose relative abundance is

given by:

𝑡𝑖 ∼ Beta(1 + 𝑘𝒂𝑖, 1 + 𝑘(1 − 𝑎𝑖)),

where 𝑎𝑖 is the ancestry proportion of individual 𝑖 for ancestry 𝑎, and 𝑘 ≥ 0 is a 

tunable parameter which controls the association strength. After generating 𝑡𝑖, we 

scaled all other bacterial species carried by the same individual so that their total 

relative abundance (including 𝑡𝑖) sums to unity. Hence, when 𝑘 = 0 𝑡𝑖 is distributed 

uniformly between 0 and 1, whereas larger values of 𝑘 induce a greater tendency 

for individuals of ancestry 𝑎 to have a larger taxon abundance, and for individuals 

from other ancestries to have a smaller taxon abundance. 

As before, we repeated the experiment multiple times, where each experiment is 

associated with different values of 𝑘 and of an ancestry 𝑎. Specifically, we 

investigated values of 𝑘 in the grid [0,0.25,0.5,1,2,5], and repeated each experiment 

100 times. As the above formulation simulates an association between a single 

taxon and a single ancestry, we used our machine learning model to estimate 

power. Specifically, in each experiment we trained a Ridge regression model to 

estimate the ancestry proportions of individuals based on their microbiome, and 

computed the coefficient of determination (𝑅2) via a 10-fold cross validation. This 

test mimics the ancestry proportion prediction test described in the results section 

of the main text. We computed approximate P values by generating a distribution 

of 1,000 𝑅2 values obtained under 𝑘 = 0 (corresponding to the null hypothesis) for 

each ancestry 𝑎, and computing the fraction of null 𝑅2 values greater than the one 

obtained in practice. 

The results indicate excellent power in the majority of studied settings, and 

especially when 𝑎 corresponds to Ashkenazi ancestry (Supplementary Table 9). 

4. Simulating a phenotype based on genetic kinship. Here, we generated a vector

of synthetic phenotype 𝒚 according to the formula:

𝒚 ∼ 𝒩(𝑿𝜸, 𝜎2𝑮 + (1 − 𝜎2)𝑰𝑛)

𝜸 ∼ 𝒩(0, 𝑰𝑐)

where 𝑿 is an 𝑛 × 𝑐 matrix of 𝑐 covariates for 𝑛 individuals, using the same 

covariates defined in the main text, 𝜸 is a vector of 𝑐 effect sizes (often denoted as 

fixed effects), 𝑮 is an 𝑛 × 𝑛 kinship matrix, 𝑰𝑛 is the 𝑛 × 𝑛 identity matrix, 𝑰𝑐 is the 

𝑐 × 𝑐 identity matrix, and 𝜎2 controls the fraction of phenotype variance explained 

by genetic kinship (after regressing out the covariate effects). 

We evaluated 𝜎2 values in the range [0,0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9,0.999] and 

repeated each experiment 100 times, where in each experiment we (1) randomly 
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sampled a vector of effect sizes 𝜸 and a vector of phenotypes 𝒚 from their 

distribution; (2) regressed the covariates 𝑿 out of y; and (3) tested if the 

phenotypes vector 𝒚 is associated with the genetic kinship matrix G via a Mantel 

test with Spearman correlation. 

Steps (2) and (3) in the above procedure mimic the genetic kinship-microbiome 

association test described in the paper (Figure 2a, Extended Data Table 1 right 

column), with the difference that here we test for association with a phenotypes 

vector 𝒚 instead of a matrix of bacterial abundances. 

The results indicate that our study has moderate power to identify a phenotype 

whose distribution is given by the formulas above. (Supplementary Table 10). 

These results are in good agreement with Figure 4a, which shows that genetic 

kinship estimation has very large confidence intervals for samples with less than 

2,000 individuals. Nevertheless, our analysis of the well-powered twinsUK data set 

of Goodrich et al. provides an estimate that the average estimated fraction of taxa 

variance explained by genetic kinship is 1.9%, or at most 8.1% under very liberal 

assumptions, as explained in the manuscript. 

Statistical Aspects of the Microbiome-Association Index 
The microbiome-association index (b2) is a formal measure of the extent to which microbiome 

composition can predict a phenotype of interest. The value ranges between 0 and 1, with 0 

indicating no predictive power and 1 indicating a fully deterministic prediction. b2 was defined 

analogously to genetic heritability (commonly defined h2). Both b2 and h2 are officially defined as 

the proportion of phenotypic variance that can be explained by the microbiome composition or 

by the genetic contents of an individual, respectively (where the term “explained variance” refers 

to statistical rather than causal explanatory power). 

We now provide a formal description of some of the underlying assumptions behind the 

microbiome-association index. Denoting 𝑌 as a random variable encoding a phenotype of interest, 

and 𝐺, 𝐵, 𝐸 as genetic, microbiome and environmental random variables than can be used to 

predict 𝑌, respectively, we have: 

var(𝑌) = var(𝐺) + var(𝐵) + var(𝐸) + 2cov(𝐺, 𝐵) + 2cov(𝐺, 𝐸) + 2cov(𝐵, 𝐸). 

In this work, we used the simpler term: 

var(𝑌) = var(𝐺) + var(𝐵) + var(𝐸), 

where we estimated 𝐺 via a polygenic risk score, 𝐵 via the relative abundance of bacterial genes, 

and 𝐸 as a normally distributed random variable. Hence, our derivation implicitly assumes 

cov(𝐺, 𝐵) = cov(𝐺, 𝐸) = cov(𝐵, 𝐸) = 0. We emphasize that 𝐺, 𝐵, 𝐸 do not encode the 

genotypes, microbiome composition and the environment of an individual per se. Rather, they 

encode variables that are derived from the genotype, the microbiome composition and the 

environment of an individual, respectively, and can be used to predict 𝑌. Consequently, 
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cov(𝐵, 𝐸) = 0 does not mean that the gut microbiome composition is uncorrelated with the 

environment. Rather, this equality means that the variables derived from the microbiome and 

from the environment for phenotype prediction are uncorrelated. 

Our assumptions are similar to those commonly made in statistical genetics when estimating the 

genetic heritability of a phenotype. Specifically, heritability estimation is typically carried out via 

the equation var(𝑌) = var(𝐺) + var(𝐸) instead of the more general equation var(𝑌) =

var(𝐺) + var(𝐸) + 2cov(𝐺, 𝐸). If we additionally assume that the contribution of each genetic 

variant to 𝐺 is additive, then the heritability estimated from the first formula is typically called 

“narrow-sense heritability”, whereas heritability estimated from the second formula is typically 

called “broad-sense heritability”. Analogously, in this paper we estimate the narrow-sense 

microbiome-association index, rather than the broad-sense microbiome-association index. 

The decision to estimate the narrow-sense microbiome-association index stems from several 

reasons. First, there is a large body of literature in statistical genetics demonstrating that it is very 

difficult to identify interactions terms in high-dimensional models, even if such interactions 

exist1,2. This is due to technical reasons – The first order term of the Taylor expansion of the 

underlying function can accurately approximate the effect of the interaction terms, which are 

originally encoded in the lower order terms. As our model is high dimensional (due to the 

~1,300,000 bacterial genes used in the linear mixed model approach), the overall microbiome-

association index estimate will likely be very similar to that of a model that explicitly encodes 

interactions, regardless of whether such approximations exist in reality. 

Second, even if we ignore the above arguments, there is no established method to encode GxE, 

BxE and GxB interactions in a manner that is well accepted in the statistical genetics community. 

Hence, any attempt to encode these quantities is likely to be based on subjective considerations 

and subject to debate. We thus believe that our simplified model will facilitate reproduction of 

microbiome-association index estimation in different studies with varying study designs. 
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