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SUPPLEMENTARY NOTES

Ontologies supported

GREAT assimilates knowledge from 20 separate ontologies containing biological knowledge about gene func-
tions, phenotype and disease associations, biological pathways, gene expression data, presence of regulatory
motifs, and gene families (Supplementary Table 1). Statistics for each ontology list the total number
of terms in the ontology that are currently tested by GREAT, the number of genes annotated with one or
more terms in the ontology, and the number of direct associations between ontology terms and genes (Sup-
plementary Tables 2 and 3). Some ontologies contain parent/child relationships between terms expressed
as a directed acyclic graph; general terms within these ontologies inherit genes that are only labeled with
more specific child terms as indirect associations. To increase statistical power (by reducing the multiple
hypothesis correction factor), GREAT does not test any general term whose associated gene list is identical
to the associated gene list of a more specific child term. The following ontologies are currently used:

Gene Ontology

The Gene Ontology (GO; http://www.geneontology.org/) provides a controlled vocabulary to describe
attributes of gene products1. GO contains three separate ontologies that describe molecular functions,
biological processes, and cellular components of proteins.

Mouse Phenotype

The Mouse Genome Informatics (MGI) resource contains data about mouse genotype–phenotype associa-
tions primarily obtained via literature curation2,3 (http://www.informatics.jax.org/phenotypes.shtml).
Phenotypic terms are canonicalized and relationships between terms are enumerated in the Mammalian Phe-
notype Ontology4.

MSigDB Ontologies

The Molecular Signatures Database (MSigDB; http://www.broad.mit.edu/gsea/msigdb/) contains a col-
lection of gene sets5. The following description of the various ontologies within MSigDB is taken from
http://www.broad.mit.edu/gsea/msigdb/collections.jsp.

• MSigDB Cancer Neighborhood
Computational gene sets defined by mining large collections of cancer-oriented microarray data. Gene
sets defined by expression neighborhoods centered on 380 cancer-associated genes6. This collection is
identical to that previously reported in5.

• MSigDB Cancer Modules
Computational gene sets defined by mining large collections of cancer-oriented microarray data7.
Briefly, the authors compiled gene sets (“modules”) from a variety of resources such as KEGG, GO,
and others. By mining a large compendium of cancer-related microarray data, they identified 456 such
modules as significantly changed in a variety of cancer conditions.

• MSigDB Pathway
Gene sets from pathway databases. Usually, these gene sets are canonical representations of a biological
process compiled by domain experts.

• MSigDB Perturbation
Gene sets that represent gene expression signatures of genetic and chemical perturbations.

• MSigDB Predicted Promoter Motifs
Sets of genes that share a transcription factor binding site defined in the TRANSFAC (version 7.4,
http://www.gene-regulation.com/) database. Each of these gene sets is annotated by a TRANSFAC
record.
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• MSigDB miRNA Motifs
Sets of genes that share a 3’-UTR microRNA binding motif.

PANTHER Pathway

PANTHER Pathway (http://www.pantherdb.org/pathway/) contains information on biological pathways
(primarily signaling pathways)8. PANTHER pathways are collections of biological molecules and the reac-
tions in which they participate. Only well-documented reactions and relationships are listed.

Pathway Commons

Pathway Commons 9 contains a comprehensive collection of pathways from multiple sources listed at http:
//www.pathwaycommons.org/pc/. According to the website, “[p]athways include biochemical reactions, com-
plex assembly, transport and catalysis events, and physical interactions involving proteins, DNA, RNA, small
molecules and complexes.”

BioCyc Pathway

BioCyc (http://biocyc.org/) contains information linking genes to the metabolic pathways in which they
participate10.

MGI Expression: Detected & Not Detected

The Gene Expression Database (GXD, http://www.informatics.jax.org/expression.shtml), a part of
the Mouse Genome Informatics database, contains expression data with a focus on gene expression during
mouse development3,11. The information is primarily obtained from the literature via manual curation. Each
entry gives the expression in a specific anatomical structure during a specific developmental period or “Theiler
stage”12. The anatomy for each developmental stage is represented by a directed acyclic graph that gives a
hierarchy of anatomical terms and their relationships. The database contains information about which genes
are expressed and which are not found to be expressed.

We represent the MGI Gene Expression Database by several sub-ontologies, where each sub-ontology
is specific to a developmental stage. We then combine all sub-ontologies into one ontology so that all
developmental stages are tested at once. MGI Expression: Detected contains data about genes that are
expressed and MGI Expression: Not Detected contains data about genes whose expression is measured but
not experimentally detected.

The human MGI Expression ontologies are derived by mapping expression information from all genes in
the mouse ontologies to their human orthologs and assume large-scale conservation of expression patterns.

Transcription Factor Targets

The Transcription Factor Targets ontology contains transcription factor (TF) target sets for human and
mouse collected from literature13. Most TF target genes were identified by ChIP-chip experiments (see
http://acgt.cs.tau.ac.il/amadeus/suppl/metazoan compendium.htm).

miRNA Targets

The miRNA Targets ontology contains miRNA target sets for human and mouse collected from literature13.
miRNA target genes were identified as genes downregulated after miRNA overexpression (see http://acgt.

cs.tau.ac.il/amadeus/suppl/metazoan compendium.htm).

InterPro

InterPro (http://www.ebi.ac.uk/interpro/) is a database of protein domains, families and functional
sites14. InterPro annotations give information about the function, structure and evolution of the domains.
InterPro combines data from several other databases (PROSITE, PRINTS, Pfam, ProDom, SMART, TIGR-
FAMs, PIRSF, SUPERFAMILY, PANTHER and Gene3D).
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TreeFam

The Tree families database (TreeFam, http://www.treefam.org/) contains information about the evolu-
tionary history (both orthologs and paralogs) of gene families15. A gene family is defined as “a group of
genes that evolved after the speciation of single-metazoan animals”. We format this data into an ontology
by creating an ontology term for each gene family and then associating each gene within the species (human
or mouse) with its gene family.

HGNC Gene Families

The HUGO Gene Nomenclature Committee groups genes into gene families based on sequence similarity,
data from the literature and other databases, and manual curation16. The groupings are listed at http:

//www.genenames.org/genefamily.html.

Website architecture

The GREAT website output is generated by way of server-side PHP code invoking a Python wrapper over
a C program. The C code makes use of the UCSC Genome Browser17 code libraries and performs the
core calculations. Test results are formatted for web display using Python and PHP code. GREAT uses
the DataTable control from the Yahoo! User Interface Library (http://developer.yahoo.com/yui/) and
custom JavaScript code to allow many user operations without need for more server data. This allows rapid
responses for all filtering requests once the initial results page has loaded locally. Operations which generate
new pages, such as getting details for a single ontology term or the generation of publication quality table
display do involve return trips to the server, which are handled by PHP code.

Graphical User Interface

The graphical user interface (GUI) of GREAT version 1.1.3 has the following components:

• User Input
The user input page (Supplementary Fig. 4a) requires two inputs from the user: the organism
genome assembly in which the analysis should be performed and the cis-regulatory regions to analyze
in BED format17. Optionally, the user can upload a background set of genomic regions to test against
rather than the whole genome. The user can also optionally alter the association rules between cis-
regulatory regions and their putative target genes from the default basal plus extension rule via the
Advanced options tab.

• Global Output & Controls
Upon submission of a dataset, users are directed to the global output screen of GREAT (Supplemen-
tary Fig. 4b). By default, only ontology terms significant by both the binomial and hypergeometric
tests using the multiple hypothesis correction false discovery rate (FDR)18 ≤ 0.05 whose binomial fold
enrichment is at least 2.0 are displayed. The extensive global controls at the top of the page allow users
to change the ontologies shown, alter the data columns displayed for each result term, and change the
multiple test correction type and threshold. The number of enriched terms shown for each ontology,
the display of terms not significant by one or both of the enrichment tests, and the filtering of terms
by their descriptions can all be changed via the global controls.

Within each ontology table, terms can be sorted by any data column except FDR. The data for a single
table can be downloaded either as HTML or as a tab-separated file. By clicking on a particular term,
additional information is presented in an individual term page (described below).

• Individual Term Page
Each ontology term tested for enrichment has an associated individual term page (Supplementary
Fig. 4c). The page lists all cis-regulatory regions that reside within the regulatory domain of any gene
annotated with the term, all the genes annotated with the term that possess one or more input regions
within its regulatory domain, and the definition of the ontology term from the source website inset into
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the page. By clicking on any cis-regulatory region listed, users can navigate to the UCSC Genome
Browser with custom tracks of the entire input set and only the elements contributing to the specific
term enrichment (Supplementary Fig. 4d).

• Online Documentation
User help documentation is available at http://great.stanford.edu/help and includes information
regarding all aspects of GREAT.

• Demo Sets
The SRF19 and limb p300 (ref. 20) datasets presented in the main text, as well as several additional
sets, are available as demonstration input sets for GREAT. These sets can be tested by navigating to
the “Demo” link.

Comparisons of GREAT to gene-based analyses of additional ChIP-Seq studies

To assess the ability of GREAT to improve upon existing gene-based analyses of ChIP-Seq datasets, we
compared GREAT enrichments to gene-based tool enrichments for multiple datasets. Where they were not
performed by the original authors, we performed gene-based enrichment analyses using the Database for
Annotation, Visualization, and Integrated Discovery (DAVID)21. Many other gene list-based approaches
available (see Supplementary Table 4 for a partial list) assess statistical significance in generally similar
manners (reviewed in ref. 22). We used DAVID as a representative tool for the gene-based enrichment
methodology because it is web-based, it integrates many different ontologies including pathways and tissue
expression data, and it is a popular choice among manuscript writers. To examine the relative contributions
of the integration of distal binding events with the binomial test and the unique set of ontologies supported
by GREAT, we also ran “gene-based GREAT” analyses that alter the regulatory domains and significance
testing to exactly mimic existing gene-based tools. The analysis of next-generation binding data is not clearly
mappable to more advanced techniques like the Gene Set Enrichment Analysis (GSEA)5 which rank genes
by the intensity difference of the different probes/genes and are typically applied to compare gene expression
profiles from two classes (e.g. people with a disease vs. healthy controls).

For each ChIP-Seq dataset we analyzed using DAVID, we mapped the identified peaks that reside within
2 kb of the TSS of the nearest gene as identified by the UCSC Known Genes track23 to the nearby gene
and ran enrichments over the resulting gene list. The ten most enriched terms from each annotation cluster
reported significant by DAVID at a threshold of 0.05 after an FDR multiple hypothesis correction are shown
in each enrichment table. To run a “gene-based GREAT”, we used the basal plus extension association rule
with basal upstream and downstream parameters both set to 2 kb and an extension of 0 bp and excluded
the set of curated regulatory domains. The ten most enriched terms significant by the hypergeometric test
at a threshold of 0.05 after an FDR multiple hypothesis correction are shown in each enrichment table.

Since GREAT performs a cis-regulatory element-based test, no mappings from ChIP-Seq peaks to genes
are required for preprocessing. For each ChIP-Seq dataset we analyzed using GREAT, we ran the identified
peaks through GREAT using its default settings (the basal plus extension association rule with basal domains
extending 5 kb upstream and 1 kb downstream of the TSS and extension to the basal domains of the nearest
genes within 1 Mb). The top ten terms significant at a threshold of 0.05 by the binomial test after an FDR
multiple hypothesis correction that have a fold enrichment of at least two and are also significant by the
hypergeometric test are shown in each enrichment table.

P300 in mouse developing embryonic tissues

Recent tissue-specific ChIP-Seq experiments identified 2,453, 561, and 2,105 regions of the mouse genome
bound by the transcriptional coactivator protein p300 at embryonic day 11.5 in forebrain, midbrain, and limb
tissues, respectively20. Assays for enhancer activity in transgenic mice at embryonic day 11.5 showed that
many p300-bound regions are reproducible enhancers with strong tissue specificity20.

We ran a gene-based enrichment analysis of the p300 limb peaks using DAVID as described above, yielding
the enrichments shown in Supplementary Table 10a. This gene-based analysis shows enrichment for p300
binding near transcription factors and hints at regulation of development and morphogenesis. However, no
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enrichment for limb tissue expression or developmental stage of enhancer activity is featured, with the closest
enrichments being the much broader terms “organ development” and “anatomical structure morphogenesis”
(Supplementary Table 10a).

On the other hand, when we ran the 2,105 limb p300 ChIP-Seq peaks through GREAT using the 5+1
kb up to 1 Mb default settings, GO enrichments overwhelmingly emphasize limb morphogenesis and devel-
opment as strongly enriched functions, and GREAT highlights specific functions of the set: while DAVID
identifies “transcription” as a prominent term, GREAT finds significant enrichment for “transcription repres-
sor activity”, thus markedly narrowing the focus of a much broader term (Supplementary Table 10b).
Similarly, the Mouse Phenotype ontology enrichments of GREAT all include an aspect of skeletal develop-
ment, contrasting again to the broad morphogenesis terms enriched by DAVID (main text, Supplementary
Table 10).

Notably, the GREAT enrichments all draw heavily from the appropriate integration of distal binding
events; over 75% of the binding peaks that contribute to every GREAT enriched term occur further than 10
kb from the TSS of the nearest gene (Figure 3, Supplementary Table 10b). The importance of distal
binding is implicitly shown by the results of a “gene-based GREAT” analysis that only associates peaks
within 2 kb of the TSS of a gene (Supplementary Table 11). Only two limb-specific terms are identified
as enriched, and each implicate 100 to 150 fewer genes than the standard GREAT analysis. The markedly
improved enrichments reported by GREAT as compared to gene-based enrichment analyses are a testament
to the importance of properly integrating distal regulators into analyses of vertebrate development, and the
hypothesis that p300 limb peaks indeed play a role in large-scale regulation of key genes controlling embryonic
limb development is strongly supported using GREAT.

We also ran both DAVID and GREAT on the forebrain p300 peaks. As before, the DAVID gene-based
enrichments are much more general than GREAT enrichments, with the most prominent DAVID term being
“transcription” (Supplementary Table 15a). Though DAVID does also highlight “forebrain development”,
GREAT analysis produces many more details from which to launch experiments to explore forebrain devel-
opment (Supplementary Table 15b). GREAT highlights the regulation of transcription factors as well as
mouse phenotypes in axonal tract formation that are affected by defects in early stages of neuronal differenti-
ation (Supplementary Table 15b). In particular, GREAT offers enrichment for the basic helix-loop-helix
family of transcription factors that are known to play a prominent role in cell fate at this stage of develop-
ment24. Other highly relevant findings of GREAT include the PANTHER Pathway enrichment for the Notch
signaling pathway and multiple enrichments for the Wnt signaling pathway (Supplementary Table 15b).
At this stage of forebrain development, the production of postmitotic neurons and proliferative progenitors
is indeed tightly regulated by both Notch and Wnt signaling25,26.

A “gene-based GREAT” analysis identifies forebrain-related terms as enriched, though similarly to the
limb enrichments the total number of genes identified as important to the processes is markedly reduced
(Supplementary Table 16). The difference in enrichment specificity between proximal limb and forebrain
peaks suggests that forebrain development may be more specialized than limb development.

When we ran GREAT and DAVID on the 561 midbrain p300 peaks, DAVID failed to yield any significant
results. In contrast, GREAT analysis highlighted many terms related to embryonic brain development (Sup-
plementary Table 20), including both terms also enriched in the forebrain set and enrichments unique to
the midbrain (see main text). Nearly all of the 561 midbrain peaks lie distal to genes: only 28 genes have
a midbrain peak within their proximal promoter. Consequently, “gene-based GREAT” identifies only three
total enriched terms involving seven total genes (Supplementary Table 21).

All three datasets have the majority of their binding peaks occur over 50 kb from the TSS of any gene
(Figure 2a). Consequently, while the limb, forebrain, and midbrain ontology terms are still enriched in
GREAT analyses that only extend regulatory domains up to 50 kb (Supplementary Tables 12, 17, and
22, respectively), half of the genomic regions and associated genes are lost. The enrichment of limb (Sup-
plementary Tables 13, 14), forebrain (Supplementary Tables 18, 19), and midbrain (Supplementary
Tables 23, 24) terms are all robust to variation of the distal association rule used.
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P300 in mouse embryonic stem cells

A recent ChIP-Seq analysis of transcription factors involved in the maintenance of the self-renewal and
pluripotency capabilities of embryonic stem cells (ESCs) assayed genome-wide binding of p300 within mouse
ESCs27. The binding profile of p300 was noted to co-localize with the binding profiles of Nanog, Oct4, and
Sox2 (ref. 27), which are known to be involved in stem cell maintenance28.

When we ran DAVID on the associated gene set, no annotation terms were found to be statistically
significant (Supplementary Table 25a). We then analyzed all 524 identified p300 ChIP-Seq peaks27

with GREAT using the default settings (5+1 kb basal, up to 1 Mb extension). GO enrichments indicate
that chromatin binding and transcriptional regulator proteins are targets of p300 in ESCs, with striking
enrichments for genes involved in stem cell maintenance and stem cell differentiation (Supplementary
Table 25b). The MGI Expression: Detected ontology shows enrichment for genes expressed during the
very first stages of development12, consistent with stem cell maintenance. The Predicted Promoter Motifs
ontology shows enrichment for p300 binding near genes whose promoters contain binding sites for GTF3A
and NHLH1. GTF3A, which helps to assemble active chromatin, is required for transcription of the 5S RNA
genes that drive growth in early developing embryos29. While the significance of NHLH1 binding to stem
cell maintenance is not known, NHLH1 is known to be expressed in the developing nervous system30.

The “gene-based GREAT” results identify stem cell differentiation as an enriched term, but none of
the other top enriched terms overlap the enrichments displayed by GREAT (Supplementary Table 26).
Running GREAT with a more limited extension (5+1 kb basal, up to 50 kb extension) highlights more
general terms as enriched and no longer emphasizes enrichment for genes expressed in early development
(Supplementary Table 27). Distal binding appears to contribute greatly to the function of p300 in
embryonic stem cells, as demonstrated by nearly 40% of all binding occurring outside of 50 kb from the TSS
of any gene (Figure 2a). Variation in distal association rules leads to generally similar enrichments as the
default GREAT, emphasizing genes involved in stem cell maintenance and expressed in early development
(Supplementary Tables 28, 29).

Signal transducer and activator of transcription 3 (Stat3) in mouse embryonic stem cells

The binding events of Signal transducer and activator of transcription 3 (Stat3) were also assayed within
mouse ESCs using ChIP-Seq in the study mentioned above27. Stat3 is a transcriptional activator whose
activity is sufficient to maintain an undifferentiated state of mouse ESCs31, but whose constitutive expres-
sion has also been linked to various cancers32. Stat3 transduces signals from the IL-6 family of cytokine
receptors33. One of these cytokines, Leukemia Inhibitory Factor (LIF), is a component of media used to
culture ESCs in an undifferentiated state.

Gene-based DAVID enrichments for the Stat3 dataset were calculated in the manner described above. The
enriched terms from the gene-based analysis are very general, hinting mainly at roles for Stat3 in metabolic
processes and regulation (Supplementary Table 30a).

Supplementary Table 30b displays the cis-regulatory element-based enrichments produced by GREAT
for the same set using the default settings (5+1 kb basal, up to 1 Mb extension). In contrast to the
generality of DAVID’s term enrichments, GREAT produces many highly specific and accurate enrichments
and yields novel, testable hypotheses. GO Biological Process enrichments indicate Stat3 regulates genes
involved in both stem cell maintenance and differentiation. The Mouse Phenotype ontology shows enrichment
for genes whose alteration leads to embryonic lethality before somite formation and abnormal placental
development (Supplementary Table 30b). Stat3 is indeed essential; Stat3 knockout mice are embryonic
lethal at early stages of development34. The PANTHER Pathway ontology suggests that Stat3 modulates
the Interferon-γ signaling pathway. Interestingly, though Stat3 mediation of the Interferon-γ pathway has
yet to be shown, Interferon-γ has recently been shown to suppress Stat3 via dephosphorylation35. The
MSigDB Pathway ontology shows enrichment for genes expressed in breast cancers, especially those involved
in estrogen-receptor-dependent signal transduction. STAT3 expression is frequently detected in breast cancer
tissues36, though a clear link between Stat3 and estrogen receptor expression has yet to be shown. The
MSigDB Perturbation ontology enrichment for genes upregulated after LIF treatment highlights the link
between LIF and Stat3 (Supplementary Table 30b); LIF activates the JAK/STAT signaling pathway
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of which Stat3 is a part37. LIF is also an important factor in uterine blastocyst implantation, though its
expression is required in the utero-placental unit rather than the blastocyst (from which ESCs are derived)38.
Thus it is striking that GREAT highlights the Mouse Phenotype “abnormal trophoblast layer morphology”
and the MGI Expression: Detected enrichments for trophectoderm and extraembryonic component in Theiler
stage 5 (Supplementary Table 30b). The binding of Stat3 to these regions may reflect the totipotent
state of ESCs or an overlap between genes expressed in trophectoderm and the blastocyst. The MSigDB
Perturbation ontology also shows enrichment for genes downregulated by expression of constitutively active
JUN N-terminal kinase (JNK). Indeed, JNK is known to be a negative regulator of Stat339. Furthermore, the
strong enrichment for genes upregulated by insulin is explained by the ability of insulin to activate Stat340.
Finally, there is enrichment for transcriptional modulators present during myeloid differentiation, and indeed,
Stat3 is an essential component for myeloid differentiation41.

Results from a “gene-based GREAT” analysis recapitulate DAVID’s generality in GO enrichments, with
none of the top enrichments indicating the roles of Stat3 in stem cell maintenance and differentiation (Sup-
plementary Table 31). The Mouse Phenotype ontology enrichments are also more general than in the
standard GREAT analysis, with placenta morphology identified but the early embryonic lethality uniden-
tified. Similarly to the p300 in embryonic stem cells example, the basal plus extension with a restricted
enrichment domain highlights more general terms and appears more similar to the “gene-based GREAT”
(Supplementary Table 32), while the two nearest genes and single nearest gene association rules lead to
similar enrichments to the default GREAT (Supplementary Tables 33 and 34, respectively).

Overall, by coupling appropriate integration of distal binding events with data from many ontologies
spanning a wide variety of biological phenomena, GREAT highlights many known functions of Stat3 in
mouse ESCs that gene-based tools fail to feature prominently (Supplementary Table 30). Experimentally-
validated links between Stat3 and its pathway involvements, its known cofactors, and its role in stem cell
maintenance are all highlighted by various ontologies. In addition, novel hypotheses of Stat3 involvement in
trophectoderm development and its additional cofactors can be studied by targeted future experimentation.

Neuron-restrictive silencer factor (NRSF) in human Jurkat cells

To assess the functional roles of Neuron-Restrictive Silencer Factor (NRSF, also known as RE1-Silencing
Transcription Factor or REST), we used ChIP-Seq binding data from human Jurkat cells19. NRSF is a
transcription factor involved in silencing neuron-specific genes42–44.

A gene-based analysis of the dataset identified enrichment for genes “mostly involved in neuronal func-
tion”19. The top ten results of the analysis are reproduced in Supplementary Table 35a.

We ran GREAT on a dataset comprised of the most significant ChIP-Seq peaks of NRSF (QuEST score
> 1; n = 1,712) using a whole genome background and default settings. Enriched terms overwhelmingly
implicate NRSF as binding near genes involved in ion channel activity, neurotransmitter transport, and
synaptic transmission (Supplementary Table 35b). Additionally, the GO Cellular Component, Mouse
Phenotype, InterPro, and HGNC Gene Families ontologies indicate that NRSF binds near both calcium
channel and potassium channel genes. NRSF has been shown to modulate aldosterone and cortisol production
by regulating a calcium channel subunit45. NRSF has also been shown to regulate potassium channel
expression, affecting the phenotype of human vascular smooth muscle cells46. The GREAT enrichments
suggest that NRSF may play a role in regulating other calcium and potassium channel genes as well.

The enrichments are robust to all variations of association rule including a “gene-based GREAT” (Sup-
plementary Tables 36–39). The ability of both the gene-based analyses and GREAT to identify the
neuron-specific functions of NRSF binding data suggests that both proximal and distal binding events play a
role in the transcriptional repression of neuron-specific genes44. Given the high information content of the 21
bp neuron-restrictive silencer element (NRSE) bound by NRSF42,43, binding of NRSF to the NRSE may be
predominantly functional regardless of the location of the binding area relative to nearby genes (Figure 2a).

GA-Binding Protein (GABP) in human Jurkat cells

The binding profile of GA-Binding Protein (GABP) was assayed in human Jurkat cells via ChIP-Seq19.
GABP is a ubiquitous transcription factor that controls transcriptional regulation of genes involved in many
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diverse functions including apoptosis, differentiation, cell cycle, and cellular energy metabolism47.
A gene-based analysis of GABP-regulated genes showed enrichment for genes “involved in basic cellular

processes, particularly those related to gene expression”19. The top ten results are reproduced in Supple-
mentary Table 40a.

Due to the large number (6,442) of GABP binding peaks present in the dataset, more than 3,000 genes
possess a GABP binding peak even within their proximal promoter. As a result the DAVID website cannot
even be used to analyze this set, as it can only analyze datasets of 3,000 or fewer genes. In contrast, GREAT
can handle datasets of hundreds of thousands of genomic peaks, and any number of resulting gene picks. We
ran GREAT on the most significant ChIP-Seq peaks of GABP (QuEST score > 1, n = 3,585) using a whole
genome background and default settings (Supplementary Table 40b).

Enrichments from the Pathway Commons ontology highlight the known functions of GABP as a tran-
scriptional activator, as the strongest enrichment is for genes involved in transcription. Interestingly, there
are also strong enrichments for genes involved in various aspects of mRNA processing, with the MSigDB
Pathway ontology highlighting genes involved in mRNA splicing as its strongest enrichment. GABP has
been shown to regulate Hepatocyte Growth Factor-Regulated Tyrosine Kinase Substrate, a protein that me-
diates alternative mRNA splicing during liver regeneration47,48. The MSigDB Pathway and GO Molecular
Function ontologies also show strong enrichments for ribosomal proteins. Indeed, GABP is known to regulate
multiple ribosomal proteins49,50, though the extent of GABP binding suggests that many other ribosomal
proteins may also be regulated by GABP. Furthermore, GABP regulates transcription of eIF6, an essential
trans-acting factor in ribosome biogenesis51. The MSigDB Pathway enriched terms “oxidative phosphory-
lation” and “electron transport” also correspond to known functions of GABP; GABP regulates mtTFA,
a mitochondrial transcription factor important in oxidative phosphorylation52. Finally, the Transcription
Factor Targets ontology indicates that GABP binding peaks occur near genes that are regulated by ETS1
and YY1, suggesting a possible cooperative role between GABP and these factors. GABP itself is part of the
ETS family, and ChIP-Seq experiments examining the binding of both GABP and ETS1 show that the pro-
teins do bind many similar promoters, though GABP is in general a more ubiquitous factor53. Interactions
between GABP and YY1 have also been experimentally shown47,54.

As GABP binds predominantly near the promoter of its target genes (Figure 2a), the unique enrichments
highlighted by GREAT ontologies are robust to both gene-based analysis (Supplementary Table 41) and
for all tested variations of association rule (Supplementary Tables 42–44).
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Supplementary Figure 1: The gene-based hypergeometric test generates false positive enriched terms in many
ontologies when not restricted to only proximal binding events. The average number of false positive enriched terms
for the region-based binomial (blue) and gene-based hypergeometric (red) test over 1,000 random input sets in which
each base pair in the human genome (excluding assembly gaps) is equally likely to be included in the set is shown for
(a) MGI Expression: Detected, (b) MGI Expression: Not Detected, (c) Mouse Phenotype, and (d) InterPro. Each test
associates genomic regions to genes using GREAT’s default basal plus extension association rule with 5+1 kb basal
domain and extension up to 1 Mb (Supplementary Methods). False positive enriched terms are defined as those
significant at a threshold of 0.05 after applying the conservative Bonferroni correction. Though the total number of
average false positive terms varies across ontology (note scale changes on y-axis), the qualitative shape of the graphs
is similar with the majority of false positive enriched terms occurring for input sets containing 1-50k elements.
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Supplementary Figure 2: Computationally-defined regulatory domains. The transcription start site (TSS) of
each gene is shown as an arrow. The corresponding regulatory domain for each gene is shown in matching color
as a bracketed line. The association rule and relevant parameters used in a run of GREAT can be altered via the
web interface prior to execution. (a) The basal plus extension association rule assigns a basal regulatory domain
to each gene regardless of genes nearby (thick line). The domain is then extended to the basal regulatory domain
of the nearest upstream and downstream genes. (b) The two nearest genes association rule extends the regulatory
domain to the TSS of the nearest upstream and downstream genes. (c) The single nearest gene association rule
extends the regulatory domain to the midpoint between this gene’s TSS and the nearest gene’s TSS both upstream
and downstream. All regulatory domain extension rules limit extension to a user-defined maximum distance for genes
that have no other genes nearby.
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Supplementary Figure 3: Binomial and hypergeometric p-value differences for several different datasets. Each
set uses GREAT’s default basal plus extension association rule with 5+1 kb basal domain and extension up to 1 Mb
(Supplementary Methods). “x” denotes a top ten most enriched term using the binomial test, with “b1” the top
ranking, etc. “+” denotes a top ten most enriched term using the hypergeometric test, with “h1” denoting the top
ranking, etc. (a) p300 mouse embryonic limb data set20. (b) p300 mouse embryonic forebrain data set20. (c) p300
mouse embryonic midbrain data set20. (d) NRSF human Jurkat data set19. (e) p300 mouse embryonic stem cell
data set27. (f) Stat3 mouse embryonic stem cell data set27.
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Supplementary Figure 4: Screenshots of the GREAT version 1.1.3 workflow. (a) The input screen where the
user chooses an organism, inputs a set of cis-regulatory regions, and optionally alters the mapping of cis-regulatory
regions to genes. (b) The main output screen displays enriched terms from twenty different ontologies. Global and
per-table controls allow the user to set significance criteria and level of detail. Publication-grade HTML tables and
tab-separated files for independent analysis or formatting are provided on the fly. (c) The individual term details
screen, available by clicking on any term in any ontology, displays information related to the enrichment of the term
including the cis-regulatory regions and genes that make this term enriched and an inset definition of the ontology
term. (d) Clicking any listed cis-regulatory region in an individual term details screen opens a UCSC Genome Browser
display focused on that region that includes custom tracks for the entire set of input cis-regulatory regions and for
the subset that contributes to that particular term.
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SUPPLEMENTARY TABLES

Supplementary Table 1: Human and mouse ontologies currently supported by GREAT.

Ontology References

Gene Ontology
GO Molecular Function ref. 1
GO Biological Process ref. 1
GO Cellular Component ref. 1

Phenotype Data and Human Disease
Mouse Phenotype refs. 2–4
MSigDB Cancer Neighborhood* refs. 5,6
MSigDB Cancer Modules* refs. 5,7

Pathway Data
PANTHER Pathway ref. 8
Pathway Commons ref. 9
BioCyc Pathway ref. 10
MSigDB Pathway ref. 5

Gene Expression Data
MGI Expression: Detected refs. 3,11
MGI Expression: Not Detected refs. 3,11
MSigDB Perturbation ref. 5

Regulatory Motifs
MSigDB Predicted Promoter Motifs ref. 5
Transcription Factor Targets ref. 13
MSigDB miRNA Motifs ref. 5
miRNA Targets ref. 13

Gene Families
InterPro ref. 14
TreeFam ref. 15
HGNC Gene Families* ref. 16

* Ontology only supported in human.
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Supplementary Table 2: Ontology contents for human.

Ontology Terms Genes Direct associations Download date

GO Molecular Function 2,800 14,401 43,207 March 5, 2009
GO Biological Process 5,215 13,293 47,287 March 5, 2009
GO Cellular Component 834 15,210 39,984 March 5, 2009
Mouse Phenotype 5,781 5,377 96,704 April 22, 2009
MSigDB Cancer Neighborhood 427 4,717 41,713 March 11, 2009
MSigDB Cancer Modules 456 7,918 47,511 March 11, 2009
PANTHER Pathway 150 1,983 4,676 March 9, 2009
Pathway Commons 1,253 3,921 52,505 July 20, 2009
BioCyc Pathway 288 693 1,860 March 13, 2009
MSigDB Pathway 706 6,473 25,280 March 11, 2009
MGI Expression: Detected 6,700 7,330 190,463 March 23, 2009
MGI Expression: Not Detected 3,079 4,812 82,621 March 23, 2009
MSigDB Perturbation 911 11,189 67,052 March 11, 2009
Transcription Factor Targets 19 5,375 9,980 March 12, 2009
MSigDB Predicted Promoter Motifs 615 11,777 154,911 March 11, 2009
MSigDB miRNA Motifs 222 6,896 32,101 March 11, 2009
miRNA Targets 9 1,095 1,199 March 12, 2009
InterPro 6,587 15,228 53,630 March 3, 2009
TreeFam 8,272 16,684 16,812 March 3, 2009
HGNC Gene Families 238 4,616 5,021 March 6, 2009

Supplementary Table 3: Ontology contents for mouse.

Ontology Terms Genes Direct associations Download date

GO Molecular Function 2,380 13,932 47,595 March 23, 2009
GO Biological Process 4,539 12,805 45,480 March 23, 2009
GO Cellular Component 686 14,548 34,827 March 23, 2009
Mouse Phenotype 5,798 5,536 98,514 April 22, 2009
PANTHER Pathway 149 1,759 4,023 March 9, 2009
Pathway Commons* 83 116 206 July 20, 2009
BioCyc Pathway 275 888 2,109 March 13, 2009
MSigDB Pathway 456 3,479 10,778 March 11, 2009
MGI Expression: Detected 6,701 7,730 194,545 March 23, 2009
MGI Expression: Not Detected 3,119 5,121 87,257 March 23, 2009
MSigDB Perturbation 248 7,419 23,073 March 11, 2009
Transcription Factor Targets 6 1,194 1,377 March 12, 2009
MSigDB Predicted Promoter Motifs 615 9,117 127,459 March 11, 2009
MSigDB miRNA Motifs 222 5,948 28,369 March 11, 2009
miRNA Targets 1 97 97 March 12, 2009
InterPro 6,281 16,096 51,140 March 3, 2009
TreeFam 7,953 16,974 17,040 March 3, 2009

* The mouse Pathway Commons ontology contains considerably less data than its human counterpart because many
input databases in Pathway Commons are specific to human pathways.
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Supplementary Table 4: Comparison of several enrichment tools.

Primary use Ontologies Web Real-time Reference
supported based response

GREAT Cis-regulatory regions Many Yes Yes This publication
DAVID Gene sets Many Yes Yes ref. 21
Babelomics Gene sets Many Yes No ref. 55
OntoTools Gene sets GO, chromosome Yes Yes ref. 56
GOstat Gene sets Only GO Yes Yes ref. 57
GoMiner Gene sets Only GO No N/A ref. 58

Supplementary Table 5: Datasets analyzed by GREAT.

Dataset Species Tissue References

Serum Response Factor Homo sapiens Jurkat cells ref. 19
Neuron-Restrictive Silencer Factor Homo sapiens Jurkat cells ref. 19

GA-Binding Protein Homo sapiens Jurkat cells ref. 19
p300 Mus musculus Embryonic limb ref. 20
p300 Mus musculus Embryonic forebrain ref. 20
p300 Mus musculus Embryonic midbrain ref. 20
p300 Mus musculus Embryonic stem cells ref. 27

Signal transducer and Mus musculus Embryonic stem cells ref. 27
activator of transcription 3
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Supplementary Table 6: “Gene-based GREAT” enrichments of all genes that possess an SRF binding peak within
2 kb of its transcription start site. Shown are the top ten hypergeometric enriched terms at a false discovery rate of
0.05.

GO Molecular
Function

Ontology

GO Biological
Process

GO Cellular
Component

Pathway
Commons

MSigDB
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Transcription
Factor
Targets
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20 SupplementNature Biotechnology: doi: 10.1038/nbt.1630



Supplementary Table 7: GREAT enrichments of SRF using the basal plus extension association rule with a basal
regulatory region extending 5 kb upstream and 1 kb downstream of the transcription start site and a maximum
extension of 50 kb. Shown are the top ten binomial enriched terms at a false discovery rate of 0.05 with a fold
enrichment of at least two that are also significant by the hypergeometric test, using the highest-scoring SRF peaks
anywhere in the genome (QuEST score > 1; n = 556).
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Supplementary Table 8: GREAT enrichments of SRF using the two nearest genes association rule with a maximum
extension of 1 Mb. Shown are the top ten binomial enriched terms at a false discovery rate of 0.05 with a fold
enrichment of at least two that are also significant by the hypergeometric test, using the highest-scoring SRF peaks
anywhere in the genome (QuEST score > 1; n = 556).
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Supplementary Table 9: GREAT enrichments of SRF using the single nearest gene association rule with a maxi-
mum extension of 1 Mb. Shown are the top ten binomial enriched terms at a false discovery rate of 0.05 with a fold
enrichment of at least two that are also significant by the hypergeometric test, using the highest-scoring SRF peaks
anywhere in the genome (QuEST score > 1; n = 556).
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Supplementary Table 10: Enrichments for regions bound by p300 in mouse limb. (a) DAVID gene-based enrich-
ments of genes with proximal p300 binding events. (b) GREAT cis-regulatory element enrichments for all regions
bound by p300.

a
DAVID Gene-based Enrichments of p300 Binding Peaks in Mouse Limb

b
GREAT Enrichments of p300 Binding Peaks in Mouse Limb
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Supplementary Table 11: “Gene-based GREAT” enrichments of all genes that possess a p300 limb binding peak
within 2 kb of its transcription start site. Shown are the top ten hypergeometric enriched terms at a false discovery
rate of 0.05.

25 SupplementNature Biotechnology: doi: 10.1038/nbt.1630



Supplementary Table 12: GREAT enrichments of all p300 limb peaks using the basal plus extension association
rule with a basal regulatory region extending 5 kb upstream and 1 kb downstream of the transcription start site and
a maximum extension of 50 kb. Shown are the top ten binomial enriched terms at a false discovery rate of 0.05 with
a fold enrichment of at least two that are also significant by the hypergeometric test.
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Supplementary Table 13: GREAT enrichments of all p300 limb peaks using the two nearest genes association rule
with a maximum extension of 1 Mb. Shown are the top ten binomial enriched terms at a false discovery rate of 0.05
with a fold enrichment of at least two that are also significant by the hypergeometric test.
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Supplementary Table 14: GREAT enrichments of all p300 limb peaks using the single nearest gene association
rule with a maximum extension of 1 Mb. Shown are the top ten binomial enriched terms at a false discovery rate of
0.05 with a fold enrichment of at least two that are also significant by the hypergeometric test.
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Supplementary Table 15: Enrichments for regions bound by p300 in mouse forebrain. (a) DAVID gene-based
enrichments of genes with proximal p300 binding events. (b) GREAT cis-regulatory element enrichments for all
regions bound by p300.

a
DAVID Gene-based Enrichments of p300 Binding Peaks in Mouse Forebrain

b
GREAT Enrichments of p300 Binding Peaks in Mouse Forebrain
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Supplementary Table 16: “Gene-based GREAT” enrichments of all genes that possess a p300 forebrain binding
peak within 2 kb of its transcription start site. Shown are the top ten hypergeometric enriched terms at a false
discovery rate of 0.05.
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Supplementary Table 17: GREAT enrichments of all p300 forebrain peaks using the basal plus extension association
rule with a basal regulatory region extending 5 kb upstream and 1 kb downstream of the transcription start site and
a maximum extension of 50 kb. Shown are the top ten binomial enriched terms at a false discovery rate of 0.05 with
a fold enrichment of at least two that are also significant by the hypergeometric test.
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Supplementary Table 18: GREAT enrichments of all p300 forebrain peaks using the two nearest genes association
rule with a maximum extension of 1 Mb. Shown are the top ten binomial enriched terms at a false discovery rate of
0.05 with a fold enrichment of at least two that are also significant by the hypergeometric test.
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Supplementary Table 19: GREAT enrichments of all p300 forebrain peaks using the single nearest gene association
rule with a maximum extension of 1 Mb. Shown are the top ten binomial enriched terms at a false discovery rate of
0.05 with a fold enrichment of at least two that are also significant by the hypergeometric test.
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Supplementary Table 20: Enrichments for regions bound by p300 in mouse midbrain. (a) DAVID gene-based
enrichments of genes with proximal p300 binding events. (b) GREAT cis-regulatory element enrichments for all
regions bound by p300.

a
No terms were found significant after multiple hypothesis correction in DAVID’s gene-based test.

b
GREAT Enrichments of p300 Binding Peaks in Mouse Midbrain
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Supplementary Table 21: “Gene-based GREAT” enrichments of all genes that possess a p300 midbrain binding
peak within 2 kb of its transcription start site. Shown are the top ten hypergeometric enriched terms at a false
discovery rate of 0.05.

Supplementary Table 22: GREAT enrichments of all p300 midbrain peaks using the basal plus extension association
rule with a basal regulatory region extending 5 kb upstream and 1 kb downstream of the transcription start site and
a maximum extension of 50 kb. Shown are the top ten binomial enriched terms at a false discovery rate of 0.05 with
a fold enrichment of at least two that are also significant by the hypergeometric test.
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Supplementary Table 23: GREAT enrichments of all p300 midbrain peaks using the two nearest genes association
rule with a maximum extension of 1 Mb. Shown are the top ten binomial enriched terms at a false discovery rate of
0.05 with a fold enrichment of at least two that are also significant by the hypergeometric test.
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Supplementary Table 24: GREAT enrichments of all p300 midbrain peaks using the single nearest gene association
rule with a maximum extension of 1 Mb. Shown are the top ten binomial enriched terms at a false discovery rate of
0.05 with a fold enrichment of at least two that are also significant by the hypergeometric test.
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Supplementary Table 25: GREAT enrichments for regions bound by p300 in mouse embryonic stem cells. (a)
DAVID gene-based enrichments of genes with proximal p300 binding events. (b) GREAT cis-regulatory element
enrichments for all regions bound by p300.

a
No terms were found significant after multiple hypothesis correction in DAVID’s gene-based test.

b
GREAT Enrichments of p300 Binding Peaks in Mouse Embryonic Stem Cells
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Supplementary Table 26: “Gene-based GREAT” enrichments of all genes that possess a p300 binding peak in
mouse embryonic stem cells within 2 kb of its transcription start site. Shown are the top ten hypergeometric enriched
terms at a false discovery rate of 0.05.
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Supplementary Table 27: GREAT enrichments of all p300 binding peaks in mouse embryonic stem cells using the
basal plus extension association rule with a basal regulatory region extending 5 kb upstream and 1 kb downstream of
the transcription start site and a maximum extension of 50 kb. Shown are the top ten binomial enriched terms at a
false discovery rate of 0.05 with a fold enrichment of at least two that are also significant by the hypergeometric test.
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Supplementary Table 28: GREAT enrichments of all p300 binding peaks in mouse embryonic stem cells using the
two nearest genes association rule with a maximum extension of 1 Mb. Shown are the top ten binomial enriched terms
at a false discovery rate of 0.05 with a fold enrichment of at least two that are also significant by the hypergeometric
test.
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Supplementary Table 29: GREAT enrichments of all p300 binding peaks in mouse embryonic stem cells using the
single nearest gene association rule with a maximum extension of 1 Mb. Shown are the top ten binomial enriched terms
at a false discovery rate of 0.05 with a fold enrichment of at least two that are also significant by the hypergeometric
test.
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Supplementary Table 30: Enrichments for regions bound by Stat3 in mouse embryonic stem cells. (a) DAVID
gene-based enrichments of genes with proximal Stat3 binding events. (b) GREAT cis-regulatory element enrichments
for all regions bound by Stat3.

a
DAVID Gene-based Enrichments of Stat3 Binding Peaks in Mouse Embryonic Stem Cells

b
GREAT Enrichments of Stat3 Binding Peaks in Mouse Embryonic Stem Cells
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Supplementary Table 31: “Gene-based GREAT” enrichments of all genes that possess a Stat3 binding peak in
mouse embryonic stem cells within 2 kb of its transcription start site. Shown are the top ten hypergeometric enriched
terms at a false discovery rate of 0.05.
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Supplementary Table 32: GREAT enrichments of all Stat3 binding peaks in mouse embryonic stem cells using the
basal plus extension association rule with a basal regulatory region extending 5 kb upstream and 1 kb downstream of
the transcription start site and a maximum extension of 50 kb. Shown are the top ten binomial enriched terms at a
false discovery rate of 0.05 with a fold enrichment of at least two that are also significant by the hypergeometric test.
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Supplementary Table 33: GREAT enrichments of all Stat3 binding peaks in mouse embryonic stem cells using the
two nearest genes association rule with a maximum extension of 1 Mb. Shown are the top ten binomial enriched terms
at a false discovery rate of 0.05 with a fold enrichment of at least two that are also significant by the hypergeometric
test.

46 SupplementNature Biotechnology: doi: 10.1038/nbt.1630



Supplementary Table 34: GREAT enrichments of all Stat3 binding peaks in mouse embryonic stem cells using the
single nearest gene association rule with a maximum extension of 1 Mb. Shown are the top ten binomial enriched terms
at a false discovery rate of 0.05 with a fold enrichment of at least two that are also significant by the hypergeometric
test.
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Supplementary Table 35: Enrichment for regions bound by NRSF in human Jurkat cells. (a) The top ten proximal
binding gene-based enrichments (reproduced from ref. 19). (b) GREAT cis-regulatory element enrichments for all
regions bound by NRSF.

a Gene-based GO Enrichments of NRSF Promoter Binding Peaks

Term p-value

membrane 1.33× 10−43

ion transport 9.35× 10−37

calcium ion binding 4.27× 10−31

synaptic transmission 4.45× 10−29

integral to membrane 2.67× 10−28

ion channel activity 5.82× 10−21

nervous system development 2.19× 10−20

potassium ion binding 7.49× 10−20

potassium ion transport 1.87× 10−19

protein binding 1.14× 10−18

b
GREAT Enrichments of NRSF Binding Peaks in Human Jurkat Cells
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Supplementary Table 36: “Gene-based GREAT” enrichments of all genes that possess an NRSF binding peak
within 2 kb of its transcription start site. Shown are the top ten hypergeometric enriched terms at a false discovery
rate of 0.05.
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Supplementary Table 37: GREAT enrichments of NRSF using the basal plus extension association rule with a
maximum a basal regulatory region extending 5 kb upstream and 1 kb downstream of the transcription start site
and extension of 50 kb. Shown are the top ten binomial enriched terms at a false discovery rate of 0.05 with a fold
enrichment of at least two that are also significant by the hypergeometric test, using the highest-scoring NRSF peaks
anywhere in the genome (QuEST score > 1; n = 1,712).
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Supplementary Table 38: GREAT enrichments of NRSF using the two nearest genes association rule with a
maximum extension of 1 Mb. Shown are the top ten binomial enriched terms at a false discovery rate of 0.05 with a
fold enrichment of at least two that are also significant by the hypergeometric test, using the highest-scoring NRSF
peaks anywhere in the genome (QuEST score > 1; n = 1,712).

51 SupplementNature Biotechnology: doi: 10.1038/nbt.1630



Supplementary Table 39: GREAT enrichments of NRSF using the single nearest gene association rule with a
maximum extension of 1 Mb. Shown are the top ten binomial enriched terms at a false discovery rate of 0.05 with a
fold enrichment of at least two that are also significant by the hypergeometric test, using the highest-scoring NRSF
peaks anywhere in the genome (QuEST score > 1; n = 1,712).
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Supplementary Table 40: Enrichment for regions bound by GABP in human Jurkat cells. (a) The top ten
proximal binding gene-based enrichments (reproduced from ref. 19). (b) GREAT cis-regulatory element enrichments
for all regions bound by GABP.

a Gene-based GO Enrichments of GABP Promoter Binding Peaks

Term p-value

nucleus 1.21× 10−240

protein binding 1.87× 10−120

transcription 2.03× 10−80

nucleotide binding 1.13× 10−77

metal ion binding 9.06× 10−73

RNA binding 4.19× 10−68

intracellular 1.60× 10−67

DNA binding 2.35× 10−65

zinc ion binding 5.12× 10−64

mitochondrion 2.98× 10−62

b
GREAT Enrichments of GABP Binding Peaks in Human Jurkat Cells
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Supplementary Table 41: “Gene-based GREAT” enrichments of all genes that possess an GABP binding peak
within 2 kb of its transcription start site. Shown are the top ten hypergeometric enriched terms at a false discovery
rate of 0.05.
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Supplementary Table 42: GREAT enrichments of GABP using the basal plus extension association rule with a
maximum a basal regulatory region extending 5 kb upstream and 1 kb downstream of the transcription start site
and extension of 50 kb. Shown are the top ten binomial enriched terms at a false discovery rate of 0.05 with a fold
enrichment of at least two that are also significant by the hypergeometric test, using the highest-scoring GABP peaks
anywhere in the genome (QuEST score > 1; n = 3,585).
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Supplementary Table 43: GREAT enrichments of GABP using the two nearest genes association rule with a
maximum extension of 1 Mb. Shown are the top ten binomial enriched terms at a false discovery rate of 0.05 with a
fold enrichment of at least two that are also significant by the hypergeometric test, using the highest-scoring GABP
peaks anywhere in the genome (QuEST score > 1; n = 3,585).
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Supplementary Table 44: GREAT enrichments of GABP using the single nearest gene association rule with a
maximum extension of 1 Mb. Shown are the top ten binomial enriched terms at a false discovery rate of 0.05 with a
fold enrichment of at least two that are also significant by the hypergeometric test, using the highest-scoring GABP
peaks anywhere in the genome (QuEST score > 1; n = 3,585).
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Supplementary Table 45: GREAT analysis table locations.

Dataset Test type
Author/DAVID GREAT “Gene-based GREAT” GREAT GREAT GREAT
Proximal promoter basal+extension* Proximal promoter basal+extension* two nearest genes single nearest gene

Up to 1,000 kb 2 kb Up to 50 kb Up to 1,000 kb Up to 1,000 kb

SRF Table 2 Table 3 Sup. Table 6 Sup. Table 7 Sup. Table 8 Sup. Table 9
p300 Limb Sup. Table 10a Sup. Table 10b Sup. Table 11 Sup. Table 12 Sup. Table 13 Sup. Table 14
p300 Forebrain Sup. Table 15a Sup. Table 15b Sup. Table 16 Sup. Table 17 Sup. Table 18 Sup. Table 19
p300 Midbrain Sup. Table 20a Sup. Table 20b Sup. Table 21 Sup. Table 22 Sup. Table 23 Sup. Table 24
p300 mESC Sup. Table 25a Sup. Table 25b Sup. Table 26 Sup. Table 27 Sup. Table 28 Sup. Table 29
Stat3 Sup. Table 30a Sup. Table 30b Sup. Table 31 Sup. Table 32 Sup. Table 33 Sup. Table 34
NRSF Sup. Table 35a Sup. Table 35b Sup. Table 36 Sup. Table 37 Sup. Table 38 Sup. Table 39
GABP Sup. Table 40a Sup. Table 40b Sup. Table 41 Sup. Table 42 Sup. Table 43 Sup. Table 44

* The basal plus extension rules both define basal regulatory domains to extend 5 kb upstream and 1 kb downstream
from the transcription start site of each gene.

Supplementary Table 46: Analysis of SRF GO term enrichments. (a) Terms significant by both the binomial and
hypergeometric tests highlight many genes involved in the process with many genomic regions implicating the genes
as well. Skews between the fraction of genes annotated with the term and the fraction of the genome that maps to
one or more genes annotated with the term are generally modest. (b) Terms significant by the hypergeometric test
but not the binomial test arise either due to large differences between the fraction of genes annotated with the term
and the fraction of the genome that maps to one or more genes annotated with the term or the association of a single
genomic region to multiple genes annotated with the term. (c) Terms significant by the binomial test but not the
hypergeometric test arise when many genomic regions cluster near one or few genes annotated with the term, and
indicate gene-specific enrichments rather than broad term-based enrichment.

a
Terms significant by both binomial and hypergeometric tests (B ∩ H, listed in Table 1b)

GO ID Description Genes Hit SRF Peaks Fraction of Genes Fraction of Genome

GO:0015629 actin cytoskeleton 30 36 0.013185 0.021250
GO:0030863 cortical cytoskeleton 11 7 0.001859 0.003351
GO:0003779 actin binding 31 37 0.017483 0.032754

b
Terms significant by the hypergeometric test but not the binomial test (H\B)

GO ID Description Genes Hit SRF Peaks Fraction of Genes Fraction of Genome

GO:0010604 positive regulation of macro-
molecule metabolic process

53 61 0.033862 0.073249

GO:0005634 nucleus 284 279 0.284951 0.419860
GO:0009893 positive regulation of

metabolic process
54 62 0.036011 0.077215

GO:0005515 protein binding 397 351 0.423419 0.604715
GO:0019899 enzyme binding 33 37 0.018702 0.037255

c
Terms significant by the binomial test but not the hypergeometric test (B\H)

GO ID Description Genes Hit SRF Peaks Fraction of Genes Fraction of Genome

GO:0032796 uropod organization 2 5 0.000116 0.000100
GO:0035267 NuA4 histone acetyltrans-

ferase complex
2 6 0.000348 0.000231

GO:0043189 H4/H2A histone acetyltrans-
ferase complex

2 6 0.000407 0.000262

GO:0043534 blood vessel endothelial cell
migration

2 6 0.000290 0.000309

GO:0000212 meiotic spindle organization 1 4 0.000116 0.000092
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