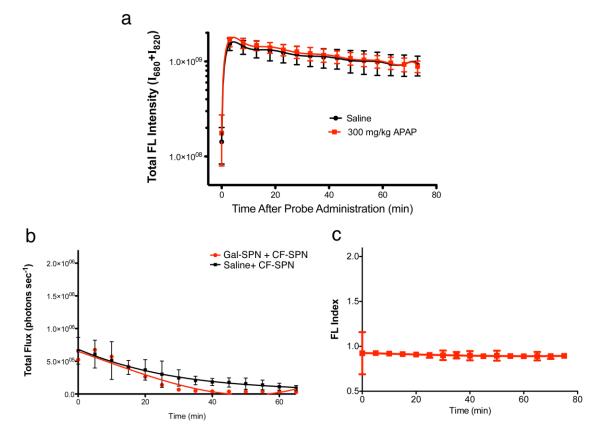
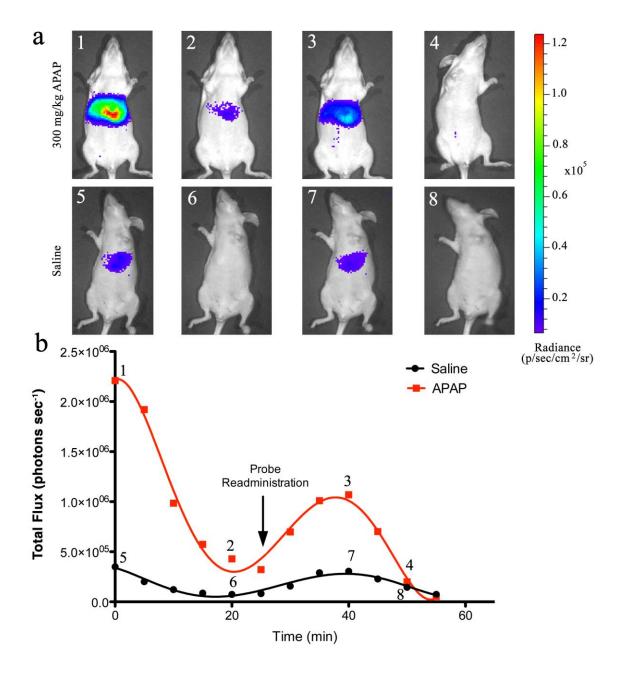

Supplementary Information

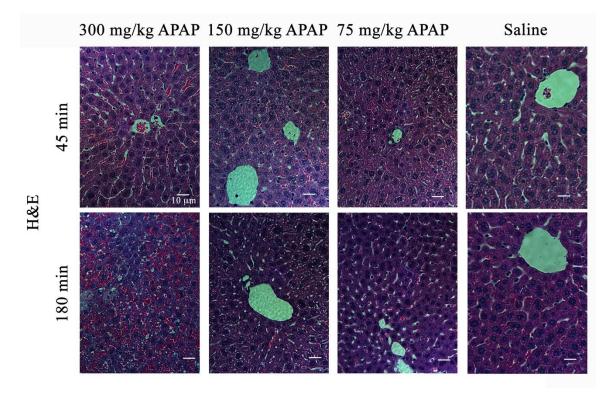
2	Real-time imaging of oxidative and nitrosative stress in the
3	liver of live animals for drug-toxicity testing
4	
5	Adam J. Shuhendler ^{1*} , Kanyi Pu ^{1*} , Lina Cui ¹ , Jack P. Uetrecht ² & Jianghong Rao ¹
6 7 8 9 10	¹ Molecular Imaging Program at Stanford, Department of Radiology, School of Medicine, Stanford University, Stanford, California 94305-5484, USA; ² Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario M5S 3M2, Canada *Both authors contributed equally to this work.
12	
13	
L4	
15	
16	
17	
18	
19	
20	
21	
22	
23	
24	
25	
26	

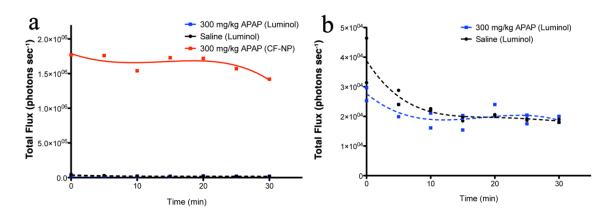
27


Supplementary Figure S1. Signal stability and imaging depth penetration for CF-SPN *in vitro*. (a) The lifetime of chemiluminescent signal production from CF-SPN (5 μ g/mL) in 1x PBS incubated with H_2O_2 (50 mM). (b) Stability of the baseline fluorescence ratio (red) and baseline chemiluminescence emission (dashed blue) upon incubation of CF-SPN (5 μ g/mL) in undiluted mouse serum at 37 °C. To demonstrate the prolonged capacity for ROS detection, H_2O_2 (6 μ M) as added to CF-SPN incubations at indicated times (solid blue). (c) Chemiluminescence imaging depth of penetration of CF-SPN (5 μ g/mL) through a gelatin-hemoglobin-intralipid imaging phantom. (d) The total chemiluminescence, as measured by area under the luminescence curve (AUC), from CF-SPN after incubation with different concentrations of ONOO⁻.


Supplementary Figure S2. Effective liver targeting through the conjugation of galactose to the SPN surface. Nanoparticles composed of PFODBT and PS-g-PEG-Galactose (Gal-SPN) or PS-g-PEG (PEG-SPN) were administered i.v. (0.8 mg each). Tissues were excised and imaged 45 min after nanoparticle administration. (a) Representative image of the biodistribution of Gal-SPN (top) and PEG-SPN (bottom). (b) Organ fluorescence (ex/em=580/680 nm) was quantified and represented as the mean \pm s.d. (n=3). * p<0.05 (Mann-Whitney U-test). (c) Uptake of untargeted SPN (top) and asialoglycoprotein

receptor-targeted Gal-SPN (bottom) 30 min following intravenous administration. Images are Z-projections averaged over 20 slices and a total z-depth of 7.7 μ m. Nanoprobe uptake was marked by fluorescence from the conjugated polymer core composed of PFODBT (red), and cellular boundaries were marked by staining of F-actin (blue). Fluorescence images were overlaid with DIC of the liver sections. Scale bars = 15 μ m.




Supplementary Figure S3. (a) The uptake and retention of CF-SPN in the liver as measured by tracking total fluorescence intensity over time. Total fluorescence intensity is the sum of emission at 680 nm and at 820 nm ($I_{680}+I_{820}$), which was measured for mice treated with saline (black curve) or with 300 mg/kg APAP (red curve). Data points represent the mean±s.d. of 3 mice. (b & c) *In vivo* assessment of hepatotoxic potential of administered nanoparticles. The galactose-targeted nanoparticles (Gal-SPN, red circles) or saline (black squares) were administered i.v. 15 min prior to CF-SPN, and the chemiluminescence (b) and fluorescence index (c) was recorded. Data represents the mean±s.d. of n=3 mice.

Supplementary Figure S4. Extension of the time course of H₂O₂ detection after drug challenge by re-administration of CF-SPN. Mice were administered 300 mg/kg APAP (top row, 1-4) or saline (bottom row, 5-8) i.p., followed by the administration of 0.8 mg CF-SPN i.v. After 25 min, CF-NP was re-administered i.v. (a) Luminescence images and (b) quantitation of liver luminescence are shown. Black arrow in (b) indicates readministration of CF-SPN. Numbers on images correspond to time points indicated on plot (n=1 mouse per group).

Supplementary Figure S5. Histological analysis of liver tissues. Mice were treated, from left to right, with 300, 150, 75 mg/kg APAP, or saline, and euthanized 45 min (top row) or 180 min (bottom row) after drug administration. Sections were stained with hematoxylin and eosin. Scale bar represents 10 µm.

Supplementary Figure S6. Comparison between luminol and CF-SPN for their ability to detect drug-induced liver production of H_2O_2 . Mice were administered 300 mg/kg APAP i.p., followed either by i.v. injection of 0.8 mg CF-SPN (containing 0.2 mg CPPO), or 0.2 mg luminol. (a) Chemiluminescent signals from CF-SPN (red) or luminol with (dashed blue) or without (dashed black) APAP treatment are shown. (b) Rescaled y-axis of (a) showing the lack of any signal generation from luminol. Each group, n=1 mouse.