
Supplementary Note 1: Our Protocol Setup

There are four parties in our GWAS protocol: study participants (SP), two main computing parties
(CP1 and CP2), and an auxiliary computing party (CP0). The auxiliary computing party CP0 only
participates in a precomputation (or preprocesisng) phase of the protocol, and in particular, does
not participate in the main protocol execution. For simplicity, we take SP to be a single entity that
possesses all of the input genomes and phenotypes. As we discuss in Supplementary Note 9, this
setting naturally generalizes to the crowdsourcing scenario where SP represents many independent
participants, each securely contributing their own genome to the computing parties.

Overview. The overall workflow of our GWAS protocol is as follows. First, using a cryptographic
technique called secret sharing, the study participants SP share their data (i.e., their genome and
associated phenotypes) with CP1 and CP2 in such a way that enables computation over the shared
data, but does not reveal any information to either CP1 or CP2. Next, CP1 and CP2 engage in
an interactive protocol to perform GWAS over the private inputs without learning anything about
the underlying data. During this computation, CP1 and CP2 leverage pre-computed data from CP0

(which is input-agnostic) to greatly speed up the computation. Finally, CP1 and CP2 combine their
outputs to reconstruct the final GWAS statistics from secret shares and publish the results. We work
in the general paradigm of computing on secret-shared data first formalized by Ben-Or et. al [1],
and subsequently extended in a number of works [2, 3, 4, 5, 6].

Security model. In this paper, we assume that the protocol participants are semi-honest (i.e.,
honest-but-curious). In other words, all parties follow the protocol exactly as specified, but at
the end of the protocol execution, parties may try to infer additional information about other
parties’ private inputs based on their view of the protocol execution. Informally, we say that a
cryptographic protocol is secure in the semi-honest model if all of the information a party is able
to learn from the protocol execution can be expressed as a function of just the party’s input to the
protocol execution and the output of the computation (i.e., the GWAS results). In Supplementary
Note 10, we briefly describe ways of extending our protocol to relax our security assumptions and
additionally provide security against malicious adversaries in the online phase of the protocol by
applying the techniques from the SPDZ online protocol [3].

Communication model. In our protocol, we assume that every pair of parties communicate
over a secure and authenticated channel (e.g., over the TLS protocol). Concretely, this means that
if CP1 sends a message to CP2 during the protocol execution, only CP2 can read the message; other
parties (such as SP, CP0, or an eavesdropper on the network) are unable to do so.

Nature Biotechnology: doi:10.1038/nbt.4108

Supplementary Note 2: Secure Multiparty Computation Review

Here, we formally describe a cryptographic framework known as secure multiparty computation
(MPC) based on secret sharing, which provides the foundation for our secure GWAS protocol.

2.1 Notation

We begin by introducing some notation that we use throughout this work. For a prime q, we write
Zq to denote the integers modulo q. For a finite set S, we write x

r← S to denote that x is sampled
uniformly at random from S. Our protocols consist of a sequence of operations performed by
multiple parties. We annotate each operation with the relevant party or parties that is responsible
for performing the operation (unless the operation applies to all parties). We write a tuple with
angle brackets (e.g., 〈a, b, c, d〉) to represent data that are visible to only a subset of the parties
in the protocol. The ordering we adopt is 〈CP1,CP2,CP0, SP〉. In other words, these tuples are
placeholders that take on different values depending on which party is executing the corresponding
line of the protocol. We write ⊥ to denote an empty slot, and we adopt the following abbreviations
for compactness:

〈a, b〉 ≡ 〈a, b,⊥,⊥〉 and 〈a, b, c〉 ≡ 〈a, b, c,⊥〉 .

We give a few examples of our notation in the table below:

Notation Description

〈a, b, c, d〉 CP1 sees a, CP2 sees b, CP0 sees c, SP sees d
〈⊥, a,⊥, a〉 Both CP2 and SP see a
〈a,⊥, b〉 CP1 sees a, CP0 sees b
〈a, b〉 CP1 sees a, CP2 sees b

2.2 Secret Sharing

Our protocol relies on secret sharing—a cryptographic technique that allows two or more parties
to collectively represent a private value without having any knowledge about it individually. The
underlying secret is reconstructed only when a prescribed set of parties (e.g., all of them) combine
their respective shares. In our setting, the study participants first secret share their data to the two
computing parties CP1 and CP2. The protocol execution consists of an interactive protocol where
CP1 and CP2 jointly compute over the secret-shared data.

Our protocol relies on a two-party additive secret sharing scheme. A two-party additive sharing
of a value x ∈ Zq consists of a pair of values (r, x − r) where r

r← Zq is a uniformly random field
element. By construction, each share (either r or x− r) individually reveals no information about
the value x. However, given both shares r and x− r, it is possible to recover the secret value x by
adding together the two shares (hence the name, additive secret sharing). In this work, we denote
the two shares (r, x− r) of a value x ∈ Zq by ([x]1, [x]2), respectively. Using our tuple notation, a
secret sharing [x] of a value x ∈ Zq can be written as

[x] := 〈[x]1, [x]2〉 .

In words, [x]1 and [x]2 are shares of x individually owned by CP1 and CP2, respectively. Adding
the two shares together yields the value x. Since CP1 and CP2 each only sees a single share
of x, individually, they have no information about the value of x. The procedures for sharing

Nature Biotechnology: doi:10.1038/nbt.4108

and reconstructing a secret are summarized in Protocol 1 and 2. Note that the return value of
Protocol 2 is 〈x, x〉, which in our notation, means that both CP1 and CP2 learn the shared value x.

Protocol 1: [x]← ShareSecret(〈⊥,⊥,⊥, x〉) (or 〈⊥,⊥, x〉)

1: SP (or CP0): Sample a uniformly random element r
r← Zq

2: SP (or CP0): Send r to CP1 and x− r to CP2

3: return 〈r, x− r〉

Protocol 2: 〈x, x〉 ← ReconstructSecret([x])

1: CP1: Send [x]1 to CP2

2: CP2: Send [x]2 to CP1

3: CP1,CP2: Compute x← [x]1 + [x]2
4: return 〈x, x〉

2.3 Computing on Secret-Shared Data

Not only do secret sharing schemes allow data to be shared across multiple parties in a privacy-
preserving manner, the parties can exploit the structure of the shared data to additionally compute
over the private inputs without learning anything about the underlying inputs [1]. Intuitively, this
is akin to manipulating objects while blindfolded. Secure computation of an arbitrary function
is typically implemented as a composition of subprotocols that are each defined for primitive op-
erations (e.g., addition and multiplication). Each subprotocol takes secret-shared values as input
and outputs the intended result also as secret shares, while ensuring that no information about the
private input is leaked in between.

Affine functions over shared values. First, consider the case of adding two secret-shared
values [x] and [y] without revealing x and y. This is possible by having each party add their own
shares (Protocol 3). Note that the resulting shares [x]1 + [y]1 ∈ Zq and [x]2 + [y]2 ∈ Zq add up to
x+y ∈ Zq. As long as the shares of [x] and [y] were constructed independently, the resulting shares
contain no information about x+y. Similarly, adding or multiplying by a public field element a ∈ Zq
(represented as 〈a, a〉 using our notation) is also possible. We describe these basic subroutines in
Protocols 4 and 5.

Protocol 3: [x+ y]← Add([x], [y]) (also written [x] + [y])

1: return 〈[x]1 + [y]1, [x]2 + [y]2〉

Protocol 4: [x+ a]← AddPublic([x], 〈a, a〉) (also written [x] + a or a+ [x])

1: return 〈[x]1 + a, [x]2〉

Protocol 5: [ax]← MultiplyPublic([x], 〈a, a〉) (also written a[x])

1: return 〈a[x]1, a[x]2〉

Nature Biotechnology: doi:10.1038/nbt.4108

Protocols 3–5 together enable secure computation of any affine function over the private input.
For notational simplicity, we write affine functions directly in terms of the secret shares [·] without
explicitly showing how the basic subroutines are invoked. For instance, we can express the composite
protocol for securely evaluating f(x, y) = ax − y + b given shared inputs [x] and [y] and public
values a and b as

[f(x, y)]← a[x]− [y] + b.

Multiplication of shared values. Multiplication of secret-shared values is more complicated.
We adopt a useful tool known as Beaver multiplication triples [7], which are triples of (correlated)
random values that can be used for secure multiplication. More precisely, a Beaver multiplication
triple is a secret-sharing of a random product: namely, a triple ([a], [b], [c]) where a, b

r← Zq are
random field elements and c = ab ∈ Zq. The key observation is that if two parties possess a
secret-sharing of a random multiplication triple, it is possible to compute a secret-sharing of an
arbitrary product with a small amount of communication. In this work, we take a server-aided
approach [8] to generate the multiplication triples, where we essentially outsource the generation of
the multiplication to an auxiliary party (namely, CP0) during a preprocessing step. The Sharemind
framework [9] for multiparty computation uses a similar technique in their share multiplication
protocol. Protocol 6 outlines the generation of a multiplication triple, and Protocol 7 shows how
it is used to perform secure multiplication on shared values.

Protocol 6: ([a], [b], [c])← GetMultiplicationTriple()

1: CP0: Sample a, b
r← Zq and compute c← ab

2: [a]← ShareSecret(〈⊥,⊥, a〉) (in parallel with Lines 3 and 4)
3: [b]← ShareSecret(〈⊥,⊥, b〉)
4: [c]← ShareSecret(〈⊥,⊥, c〉)
5: return ([a], [b], [c])

Protocol 7: [xy]← Multiply([x], [y]) (also written [x][y])

1: ([a], [b], [c])← GetMultiplicationTriple()
2: 〈x− a, x− a〉 ←ReconstructSecret([x]− [a]) (in parallel with Line 3)
3: 〈y − b, y − b〉 ←ReconstructSecret([y]− [b])
4: return (x− a)(y − b) + (x− a)[b] + (y − b)[a] + [c]

Correctness. Correctness of Protocol 7 follows from the fact that

xy = ((x− a) + a)((y − b) + b)

= (x− a)(y − b) + (x− a)b+ (y − b)a+ ab.

Because this expression is affine over the values in a multiplication triple (a, b, and c = ab), it can
be securely computed given only the secret-shared triple using Protocols 3–5. Note that x− a and
y− b can be treated as public since they are revealed to both parties in Lines 2 and 3 of Protocol 7.

Security. Unlike previous subroutines, Protocol 7 is interactive, so each party sees additional
information beyond their initial input shares. Thus, its security needs to be analyzed more carefully.
Consider the view of CP1 in Protocol 7. It observes the secret shares of the multiplication triple

Nature Biotechnology: doi:10.1038/nbt.4108

([a]1, [b]1, and [c]1) and the data sent by CP2 in Lines 2 and 3 ([x]2 − [a]2 and [y]2 − [b]2). First,
note that [a]1, [b]1, and [c]1 are fresh shares of a, b, and c, and thus are independent of a and
b. In addition, a and b are each independently random and unknown to CP1. This means that
[x]2− [a]2 = ([x]2+[a]1)−a and [y]2− [b]2 = ([y]2+[b]1)−b are independent and uniformly random.
Thus, the view of CP1 during the protocol execution contain no information about x and y (all
the values CP1 sees are distributed uniformly and independently random). The same argument
holds for CP2. Overall, neither party learns anything about x and y during Protocol 7 that was
not previously known.

With the addition of secure multiplication subroutine (Protocol 7), we now have a general-
purpose secure computation framework for arbitrary arithmetic circuits (polynomial functions). In
the following, we extend our shorthand notation for composite protocols to include multiplication:

[a][b] := Secure multiplication of [a] and [b].

Nature Biotechnology: doi:10.1038/nbt.4108

Supplementary Note 3: Our Generalization of Beaver Multiplica-
tion Triples

Multiplication triples are traditionally used to compute a product of two secret-shared values.
In many scenarios, the direct application of multiplication triples to more complex computations
(where each multiplication operation invokes Protocol 7) leads to highly inefficient protocols, es-
pecially when there are a large number of multiplications. Here, we describe how to generalize
multiplication triples to facilitate the evaluation of arithmetic circuits (i.e., polynomials) on secret-
shared data. Our approach is much more practical for complex computations such as computing
GWAS statistics, and thus, may be of independent interest. We begin by giving an outline of our
method:

1. Input blinding: First, the computing parties CP1 and CP2 “blind” their input value [x]
(secret-shared) by subtracting from it a secret random value [r] (also secret-shared). Then,
the computing parties publish their shares of [x− r] to reveal the blinded value x− r. Here,
the blinding factor r is randomly chosen by CP0 and is secret-shared with CP1 and CP2. We
refer to this procedure as Beaver partition (Protocol 8).

2. Offline computation: All parties (CP0, CP1, and CP2) compute over the Beaver-partitioned
data according to the function specification. This step is non-interactive.

3. Output reconstruction: CP0 secret shares the results of its computation (over the blinding
factors) with CP1 and CP2. These shares enable CP1 and CP2 to reconstruct the desired
output without interaction.

Notably, CP0’s task does not depend on any (secret) input value and thus, can be precomputed
and secret-shared in advance. This leads to an efficient protocol where CP1 and CP2 only needs to
communicate in the first step of the computation. The core of the computation is non-interactive.

More formally, let f be the arithmetic circuit (represented as a polynomial) that we want to
evaluate:

f(x1, . . . , xn) :=
T∑
t=1

c(t)x
p
(t)
1

1 · · ·xp
(t)
n
n ,

where the number of monomials T , the coefficients c(t), and the exponents p
(t)
i are public, and the

input is given as secret shares [x1], . . . , [xn].

Input blinding. In the first step, the inputs are Beaver-partitioned into (i) public values x1 −
r1, . . . , xn − rn and (ii) hidden (secret-shared) blinding factors [r1], . . . , [rn] (Protocol 8). The
computing parties CP1 and CP2 receive x1− r1, . . . , xn− rn as well as shares of the blinding factors
[r1], . . . , [rn]. The auxiliary party CP0 chooses the blinding factors r1, . . . , rn.

Protocol 8: 〈x− r, x− r〉 , 〈[r]1, [r]2, r〉 ← BeaverPartition([x])

1: CP0: Sample r
r← Zq

2: [r]← ShareSecret(〈⊥,⊥, r〉)
3: 〈x− r, x− r〉 ←ReconstructSecret([x]− [r])
4: return 〈x− r, x− r〉 , 〈[r]1, [r]2, r〉

Nature Biotechnology: doi:10.1038/nbt.4108

Next, we re-express the function f as a polynomial in the variables r1, . . . , rn using the substi-
tution xi 7→ ri + (xi − ri). Moreover, we treat the values xi − ri as a constant for all i (since this
value is publicly known to CP1 and CP2):

g(r1, . . . , rn) :=
T∑
t=1

c(t)(r1 + (x1 − r1))p
(t)
1 · · · (rn + (xn − rn))p

(t)
n

= f(x1 − r1, . . . , xn − rn)︸ ︷︷ ︸
degree 0

+

n∑
i=1

d̃iri︸ ︷︷ ︸
degree 1

+

T̃∑
t=1

c̃(t)r
p̃
(t)
1

1 · · · rp̃
(t)
n
n︸ ︷︷ ︸

1 < degree < deg(f)

+ f(r1, . . . , rn)︸ ︷︷ ︸
degree deg(f)

, (1)

where we introduce a new set of parameters: coefficients c̃(t) and d̃i, exponents p̃
(t)
i , and T̃ denoting

the number of intermediate-degree terms (between 1 and deg(f)). We separately group degree-one
terms and the terms corresponding to f(r1, . . . , rn) and f(x1 − r1, . . . , xn − rn) to simplify our

subsequent analysis. We enforce that (p̃
(t)
1 , . . . , p̃

(t)
n) be unique for each t = 1, . . . , T̃ , and assume

that there is a canonical structure for g that is fixed and known to all of the parties. In other

words, T̃ and the new exponents p̃
(t)
i are fixed and known to all parties.

Offline computation. In the second step, CP1 and CP2 compute the values of c̃(t), d̃i, and
f(x1 − r1, . . . , xn − rn) from the blinded input x1 − r1, . . . , xn − rn derived in the first step of the
computation. Meanwhile, CP0 computes

R(0) := f(r1, . . . , rn) and R(t) := r
p̃
(t)
1

1 · · · rp̃
(t)
n
n , ∀t ∈ {1, . . . , T̃}, (2)

which is possible because CP0 knows the blinding values r1, . . . , rn.

Output reconstruction. Finally, CP0 secret shares R(0), . . . , R(T̃) with CP1 and CP2. Then,
CP1 and CP2 compute

f(x1 − r1, . . . , xn − rn) +
n∑
i=1

d̃i[ri] +
T̃∑
t=1

c̃(t)[R(t)] + [R(0)], (3)

which is [g(x1, . . . , xn)] by Eq. (1). Note this function is affine over the secret inputs [r1], . . . , [rn]

and [R(0)], . . . , [R(T̃)]. Therefore, it can be computed non-interactively using Protocols 3–5.
The overall procedure for securely evaluating a polynomial given a secret-shared input is pro-

vided in Protocol 9. When f(x1, x2) = x1x2, this procedure reduces to the standard Beaver
multiplication protocol (Protocol 7).

Nature Biotechnology: doi:10.1038/nbt.4108

Protocol 9: [f(x1, . . . , xn)]← EvaluatePolynomial(f, [x1], . . . , [xn])

Require: f(x1, . . . , xn) =
∑T

t=1 c
(t)x

p
(t)
1

1 · · ·xp
(t)
n
n where T , c(t), and p

(t)
i are public for all i, t

1: /* Step 1: Input blinding */

2: for each i in {1, . . . , n} do (in parallel)
3: 〈xi − ri, xi − ri〉 , 〈[ri]1, [ri]2, ri〉 ←BeaverPartition([xi])
4: end for
5:

6: /* Step 2: Offline computation */

7: CP0, CP1, CP2: Rewrite f according to Eq. (1) to obtain T̃ and p̃
(t)
i , ∀i, t

8: CP1, CP2: Calculate c̃(t) and d̃i, ∀i, t, and f(x1 − r1, . . . , xn − rn)

9: CP0: Calculate R(0) ← f(r1, . . . , rn) and R(t) ← r
p̃
(t)
1

1 · · · rp̃
(t)
n
n for t = 1, . . . , T̃

10:

11: /* Step 3: Output reconstruction */

12: for each t in {0, . . . , T̃} do (in parallel)
13: [R(t)]←ShareSecret(

〈
⊥,⊥, R(t)

〉
)

14: end for
15: [y]← f(x1 − r1, . . . , xn − rn) +

∑n
i=1 d̃i[ri] +

∑T̃
t=1 c̃

(t)[R(t)] + [R(0)]
16: return [y]

Security. Security of this protocol follows analogously to that for the Beaver multiplication proto-
col. Namely, the additional data observed by each party in the protocol execution consists entirely
of independent random values in Zq, and thus, do not reveal any information about any secret in-
put. As before, consider the view of each party. In the first step (BeaverPartition), CP1 sees values
[x]2 − [r]2 = ([x]2 + [r]1) − r and [r]1, which are distributed uniformly and independently over Zq
(since r and [r]1 are independent, uniformly random values of Zq). An analogous argument holds
for CP2. The second step is non-interactive. In the final step, CP1 and CP2 receive secret shares
of CP0’s computation results, which individually are independent and uniform over Zq. Therefore,
the views of both CP1 and CP2 in the protocol execution consists of uniformly random values. To
conclude the argument, we note that CP0 does not receive any messages from any other party in
Protocol 9 (so its view is trivially independent of any secret inputs).

Circuits with multiple outputs. Our method can be further generalized to arithmetic circuits
with more than one output as follows. Suppose the circuit has ` output gates. We can represent
each output by a polynomial f1, . . . , f` on a common set of inputs x1, . . . , xn. To avoid redundant
computation, we first write out Eq. (1) for each polynomial, and take the union over all intermediate-
degree terms to obtain a set P of exponents (p̃1, . . . , p̃n) that include all intermediate-degree terms
that emerge in the circuit. During the second step, CP0 calculates rp̃11 · · · r

p̃n
n for each (p̃1, . . . , p̃n) ∈

P as well as fj(r1, . . . , rn) for each j ∈ {1, . . . , `} and secret-shares these results with CP1 and CP2

in the final step. This provides all necessary terms for CP1 and CP2 to non-interactively compute
[fj(x1, . . . , xn)] for every j ∈ {1, . . . , `} using Eq. (3).

The linearization cost. We define the linearization cost T̃ of an arithmetic circuit to be the
cardinality of the aforementioned union set P of intermediate-degree terms. Intuitively, T̃ represents
the number of extra terms that need to be calculated by CP0 (over the blinding factors) and secret-
shared with CP1 and CP2 as a consequence of linearizing the function as in Eq. (3). This notion will

Nature Biotechnology: doi:10.1038/nbt.4108

be useful in analyzing the efficiency of our Beaver partitioning approach when applied to various
arithmetic circuits.

3.1 Comparison with Beaver Multiplication Triples

In Supplementary Table 4, we compare the communication complexity of our method with the
standard Beaver multiplication triple method that invokes Protocol 7 for each multiplication gate in
the arithmetic circuit. For both approaches, we allow CP0 to precompute all required operations and
transfer the shares to CP1 and CP2 in advance, since its computation is input-independent. Also,
we allow data transfer to be performed in batches to minimize communication rounds. For instance,
this allows the baseline approach to achieve communication rounds equal to the multiplicative depth
of the circuit, by batching Lines 2 and 3 of Protocol 7 across different multiplication gates that lie
in the same “layer” of the circuit (mutually independent given the output of previous layers).

Beaver multiplication triples Our method

Rounds (online) d 1
Bandwidth (online), CP1 ↔ CP2 2m k

Bandwidth (offline), CP0 → CP1/2 3m k + `+ T̃

Supplementary Table 4: Comparison of Beaver multiplication triples and our generalized
method for securely evaluating an arithmetic circuit with k inputs, ` outputs, multiplicative depth
d, m multiplication gates, and linearization cost T̃ (defined in the previous section).

The key advantage of our generalized method is that irrespective of the number of multiplication
gates and depth of the circuit, the online phase only requires a single round of communication and
bandwidth equal to the input size. As a tradeoff, however, we incur a potentially large offline com-
munication cost that includes T̃ , which is O(2d) in general. We address this tradeoff by employing
our method only in situations where the benefits clearly outweigh the costs. In the following, we
highlight three concrete scenarios where our generalized Beaver partitioning approach is useful in
the context of performing large-scale GWAS.

3.2 Scenario 1: Depth-One Circuits (e.g., Matrix Multiplication)

When the multiplicative depth of the circuit is at most one (deg(f) ≤ 1), there are no intermediate-
degree terms in Eq. (1), and the linearization cost becomes zero (T̃ = 0). A frequent operation
in GWAS for which this property holds is matrix multiplication. Suppose we want to compute
the product of two secret-shared matrices with dimensions d1 × d2 and d2 × d3. Even though this
operation requires evaluating m = d1d2d3 pairwise multiplications, the multiplicative depth d of
the overall computation is 1. Moreover, the arithmetic circuit for performing matrix multiplication
contains d1d2 + d2d3 inputs and d1d3 outputs. Substituting these values into the expression in
Supplementary Table 4, we obtain complexities as shown in Supplementary Table 5. Notably,
using our Beaver partitioning technique, both the online and offline bandwidth is proportional to
the size of the matrices (i.e., quadratic in the dimensions) rather than the number of multiplications
(i.e., cubic in the dimensions). This difference is critical for building a practical GWAS protocol
that can support millions of individuals and SNPs.

Nature Biotechnology: doi:10.1038/nbt.4108

Multiplication triples Our method

Rounds (online) 1 1
Bandwidth (online), CP1 ↔ CP2 2d1d2d3 d1d2 + d2d3
Bandwidth (offline), CP0 → CP1/2 3d1d2d3 d1d2 + d2d3 + d1d3

Supplementary Table 5: Comparison of Beaver multiplication triples and our generalized
method for securely multiplying d1 × d2 and d2 × d3 matrices.

3.3 Scenario 2: Variable Reuse

Because our generalized Beaver partitioning method can evaluate circuits with multiple outputs,
multiple operations (each represented as a circuit) that share common inputs can be combined into
a single circuit for joint evaluation. In doing so, each input only needs to be Beaver partitioned once,
which is more efficient than constructing a fresh Beaver partition for each operation individually.
In fact, we can implicitly combine circuits operating on common inputs by reusing the Beaver
partitions on the common inputs across multiple invocations of Protocol 9.

More precisely, given a secret-shared input [x] involved in the evaluation of f1(x, . . .) followed
by f2(x, . . .), we can simulate the joint evaluation of f1 and f2 by obtaining the Beaver partition
of [x] during the evaluation of f1 and reusing the results, namely 〈x− r, x− r〉 and 〈[r]1, [r]2, r〉 for
a uniformly and independently random r ∈ Zq, for f2. Note this does not affect the security of our
method, because in every invocation of BeaverPartition or ShareSecret in the overall protocol, the
views of CP1 and CP2 still consist only of uniform and independent values in Zq.

As a concrete example, consider the following power iteration procedure that appears in our
randomized PCA protocol (Protocol 32):

for each t in 1, . . . , T do

A(t) ← GTGA(t−1)

end for

where G is d1 × d2 and A(t) is d2 × d3 for all t. In practice, d1 and d2 are large while d3 is small.
Even with our improved method for secure matrix multiplication (Scenario 1), carrying out this
computation by considering each multiplication separately would require Beaver partitioning G a
total of 2T times—a prohibitive cost for a large G. With the reuse of Beaver partitioned data,
we need to Beaver partition G only once. This is another key factor in achieving practicality for
large-scale GWAS. The complexity comparison for this example is shown in Supplementary Table 6.

Beaver
triples

Our method
(without reuse)

Our method
(with reuse)

Rounds (online) 2T 2T 2T
Bandwidth (online), CP1 ↔ CP2 4d3Td1d2 2Td1d2 + d3T (d1 + d2) d1d2 + d3T (d1 + d2)
Bandwidth (offline), CP0 → CP1/2 6d3Td1d2 2Td1d2 + 2d3T (d1 + d2) d1d2 + 2d3T (d1 + d2)

Supplementary Table 6: Comparison of Beaver multiplication triples and our generalized
method for power iteration (shown in text) with an d1× d2 matrix G and d2× d3 matrices A(t) for
all t with d3 � d1, d2. Both our methods are based on invoking our improved matrix multiplication
(see Scenario 1) 2T times.

Nature Biotechnology: doi:10.1038/nbt.4108

3.4 Scenario 3: Exponentiation

Exponentiation is a special case where the linearization cost grows linearly with the circuit depth.
Specifically, consider a circuit that takes a single value x as input and outputs all powers of x up to
a known parameter α ≥ 2: x2, . . . , xα. For simplicity, assume that the circuit is näıvely represented
as a sequence of α− 1 pairwise multiplications. In this case, the circuit has 1 input, α− 1 outputs,
depth α− 1, and consists of α− 1 multiplication gates. Its linearization cost T̃ is T̃ = α− 2, since
there are α−2 intermediate powers of the blinding factor (from 2 to α−1) that needs to be calculated
and shared by CP0. Using the asymptotic analysis given in Supplementary Table 4, we compare our
Beaver partitioning method to the standard method of directly applying multiplication triples in
Supplementary Table 7. Our method has the advantage that it is single-round (compared to α− 1
rounds), and the online communication consists of a single field element (compared to 2(α−1)). The
offline bandwidth is still linear in the exponent α, though the constants are modestly smaller. The
online savings in communication and round complexity leads to a significant increase in efficiency
in our GWAS protocol, as this subroutine (Protocol 10) is frequently invoked as part of the secure
table lookup operation (Protocol 11).

Multiplication triples Our method

Rounds (online) α− 1 1
Bandwidth (online), CP1 ↔ CP2 2(α− 1) 1
Bandwidth (offline), CP0 → CP1/2 3(α− 1) 2(α− 1)

Supplementary Table 7: Comparison of Beaver multiplication triples and our generalized
method for securely evaluating an exponentiation function that outputs all powers of input up
to a given exponent α.

Nature Biotechnology: doi:10.1038/nbt.4108

Supplementary Note 4: Our Protocol Building Blocks

Here, we introduce a number of protocol building blocks that we leverage when constructing our
GWAS protocol.

4.1 Table Lookup

Let T = {ki 7→ vi}di=1 be a public table that maps keys ki to values vi, where ki, vi ∈ Zq for all
i ∈ {1, . . . , d}. The table lookup functionality takes as input a key k ∈ Zq and returns a value
v ∈ Zq, where v = T(k) if k is in the table. If k is not present in the table, then the output of
the table lookup is undefined (can be an arbitrary field element). A table lookup on secret-shared
inputs corresponds to the setting where the input key [k] is secret-shared, and the output should be
a secret sharing of the value [v]. Table lookups can be implemented by representing the entries in
the table as points on a polynomial f . Then, looking up a key k in T just corresponds to evaluating
the polynomial on k. We write LagrangeInterpolation to denote an algorithm that takes as input a
table T of d values and outputs a polynomial (of degree d−1) that interpolates the mappings in T:

• LagrangeInterpolation(T) → c0, . . . , cd−1: On input a table T = {ki 7→ vi}di=1, the Lagrange

interpolation algorithm return the coefficients c0, . . . , cd−1 of a polynomial f(x) =
∑d−1

i=0 cix
i

where f(ki) = vi for all i ∈ {1, . . . , d}.

By representing tables as polynomials, table lookup just corresponds to polynomial evaluation. To
perform polynomial evaluation on a secret-shared input, we first define a subprotocol Powers that
securely computes all powers of input up to a given exponent (Protocol 10) using our generalized
Beaver partitioning approach (Supplementary Note 3). After obtaining [kt] for t = 2, . . . , d −
1 via this subroutine, the interpolated polynomial can be easily evaluated as an affine function∑d−1

t=0 ct[k
t]. This procedure is summarized in Protocol 11.

Protocol 10: [x2], . . . , [xd]← Powers([x], d)

Require: d ≥ 2
1: 〈x− r, x− r〉 , 〈[r]1, [r]2, r〉 ←BeaverPartition([x])
2: CP0: Calculate r2, . . . , rd ∈ Zq
3: for each t in {2, . . . , d} do (in parallel)
4: [rt]← ShareSecret(

〈
⊥,⊥, rt

〉
)

5: end for
6: for each t in {2, . . . , d} do
7: [xt]← (x− r)t +

∑t
i=1

(
t
i

)
(x− r)t−i[ri]

8: end for
9: return [x2], . . . , [xd]

Protocol 11: [T(k)]← TableLookup(T = {ki 7→ vi}di=1, [k])

Require: k ∈ {k1, . . . , kd}, d ≥ 2
1: c0, . . . , cd−1 ← LagrangeInterpolation(T)
2: [k2], . . . , [kd−1]← Powers([k], d− 1)
3: return c0 + c1[k] + · · ·+ cd−1[k

d−1]

Nature Biotechnology: doi:10.1038/nbt.4108

4.2 Bitwise Operations

We now describe several protocols for performing bit-wise operations on secret-shared inputs. Let
{[ai]}Li=1 := {[a1], ..., [aL]} be a secret L-bit vector where ai ∈ {0, 1} for all i, and every individual
bit is secretly shared.

• The FanInOr subroutine (Protocol 12) securely computes the disjunction (“or” operation) of
all of the bits by performing a table lookup using the sum of bits as the key (i.e., a table
where the value 0 maps to 0 and all other values map to 1).

• Next, the PrefixOr subroutine (Protocol 13) efficiently computes FanInOr of all L prefixes
of the bit vector in a way that does not require invoking FanInOr on each prefix [10]. The
communication in the optimized protocol scales linearly in L (instead of quadratically in L
in the case of the näıve protocol). Note that Lines 12-14 of Protocol 13 can be carried out
as a group using our Beaver partitioning method to increase efficiency, since it is a depth-one
circuit (Supplementary Note 3, Section 3.2). The same optimization applies to Lines 18-20.

• BinaryLessThan (Protocol 14) is a subroutine that takes the binary representation of two
integers (i.e., bit vectors) and returns a share of the comparison result. Our protocol is based
on Damg̊ard et. al [11]. The main technique used is drawn from a well-known solution of
Yao’s millionaire problem [12]. Note that the Lines 1-3 and 5 of Protocol 14 are depth-1
arithmetic computations, and thus, can be more efficiently implemented using our Beaver
partitioning method. Moreover, when one of the numbers being compared is known to both
CP1 and CP2, both Lines 1-3 and 5 turn into affine functions over the secret inputs, and thus
can be calculated non-interactively. This special case is described in BinaryLessThanPublic
(Protocol 15).

Protocol 12: [∨ni=1ai]← FanInOr({[ai]}ni=1) (based on [11])

Require: ai ∈ {0, 1}, ∀i
1: [s]← 1 +

∑n
i=1[ai]

2: [v]← TableLookup({1→ 0} ∪ {i→ 1}n+1
i=2 , [s])

3: return [v]

Nature Biotechnology: doi:10.1038/nbt.4108

Protocol 13: {[∨ij=1aj]}Li=1 ← PrefixOr({[ai]}Li=1) (based on [11])

Require: ai ∈ {0, 1}, ∀i and assume L = `2 for an integer ` (if not, pad with leading zeros)
1: Reshape input as a `-by-` matrix [A] where [Ai,j] = [a(i−1)`+j]
2: for each i in {1, . . . , `} do (in parallel)
3: [xi]← FanInOr({[Ai,t]}`t=1)
4: end for
5: for each i in {1, . . . , `} do (in parallel)
6: [yi]← FanInOr({[xt]}it=1)
7: end for
8: [f1]← [x1]
9: for each i in {2, . . . , `} do

10: [fi]← [yi]− [yi−1]
11: end for
12: for each j in {1, . . . , `} do (in parallel)
13: [cj]←

∑`
i=1[fi][Ai,j]

14: end for
15: for each j in {1, . . . , `} do (in parallel)
16: [dj]← FanInOr({[ct]}jt=1)
17: end for
18: for each (i, j) in {1, . . . , `}2 do (in parallel)
19: [b(i−1)`+j]← [fi][dj] + [yi]− [fi]
20: end for
21: return {[bi]}Li=1

Protocol 14: [a <? b]← BinaryLessThan({[ai]}Li=1, {[bi]}Li=1) (based on [11])

Require: ai, bi ∈ {0, 1},∀i, and index starts from the most significant bit
1: for each i in {1, . . . , L} do (in parallel)
2: [ai ⊕ bi]← [ai]− 2[ai][bi] + [bi]
3: end for
4: {[fi]}Li=1 ←PrefixOr({[ai ⊕ bi]}Li=1)
5: [c]← [b1][f1] +

∑L
i=2[bi]([fi]− [fi−1])

6: return [c]

Protocol 15: [a <? b]← BinaryLessThanPublic({[ai]}Li=1, {〈bi, bi〉}Li=1)

Require: ai, bi ∈ {0, 1},∀i, and index starts from the most significant bit
1: for each i in {1, . . . , L} do
2: [ai ⊕ bi]← [ai]− 2bi[ai] + bi
3: end for
4: {[fi]}Li=1 ←PrefixOr({[ai ⊕ bi]}Li=1)
5: [c]← b1[f1] +

∑L
i=2 bi([fi]− [fi−1])

6: return [c]

Nature Biotechnology: doi:10.1038/nbt.4108

Supplementary Note 5: Computing with Fixed-Point Numbers

To use secret sharing in practice, we need to define a mapping between data values and field ele-
ments. In this work, we use a fixed-point (FP) representation [13] to represent real-valued numbers
that appear during the GWAS computation. Various building blocks for secure computation with
FP numbers, including division, have been proposed by Catrina and Saxena [13]. Here, we re-
call their protocols and describe several optimizations that we make in our work (namely, using a
server-aided design and removing the dependence on the secure bit-decomposition subroutine). We
additionally describe novel square-root and square-root inversion subroutines, which are frequently
invoked in GWAS.

5.1 Data Representation

Let k be the number of bits we use to represent a signed real number, of which f bits are allocated
to the fractional domain (referred to as the precision). The values of k and f are chosen such that
any real number we expect to encounter during the protocol falls in the range

D := [−2k−f−1, 2k−f−1) ⊂ R.

We map each x ∈ D to an element in the finite field Zq using the encoding function

Ef (x) = bx · 2fc mod q,

where b·c denotes the floor function. Conversely, each field element z ∈ Zq is mapped back to real
data space D ∪ {NaN} using the following decoding function:

Df (z) =


z · 2−f if 0 ≤ z < 2k−1,

−(q − z) · 2−f if q − 2k−1 ≤ z ≤ q − 1,

NaN otherwise.

Intuitively, this representation corresponds to taking a real number in D and truncating it to the
closest multiple of 2−f .

Notation. We write [Ef (x)] to denote a secret-share of a value x ∈ D. We alternatively express
this as

[x](f) := [Ef (x)] for x ∈ D.

We use the same base field Zq for all values of f for interoperability. We choose q to be large
enough for the highest precision required. Secret sharing of integers x ∈ D with an identity
encoding function (i.e., [x](0)) is denoted without the superscript as [x], i.e.,

[x] := [x](0) for x ∈ D ∩ Z,

since it is equivalent to directly treating the integer as an element in Zq.

5.2 Arithmetic Operations

Addition and subtraction of secret-shared fixed-point values correspond to addition and subtraction
on the underlying secret-shared field elements, provided that the fixed-point values are encoded with
the same precision. In particular, we define

[x± y](f) := [x](f) ± [y](f) and [x± a](f) := [x](f) ± Ef (a),

Nature Biotechnology: doi:10.1038/nbt.4108

for secret-shared values x, y ∈ D and public constant a ∈ D. Unlike the case of adding and
subtracting shares of field elements, adding and subtracting shares of encoded fixed point values
introduces a small amount of error (bounded by 1/2f−1). To see why, observe that by construction,
the shared value [x](f) + [y](f) is an additive sharing of Df (Ef (x)) + Df (Ef (y)). Due to the
imprecision introduced by the fixed-point encoding, this value is close to [x+y](f) = Df (Ef (x+y)),
but there is some error due to the non-linearity of the encoding/decoding procedures.

Multiplying two FP numbers requires an additional step. Note that directly multiplying two
encoded FP numbers outputs a result with precision 2f instead of f . In particular, we write

[xy](2f) := [x](f)[y](f).

To scale the precision back to f , we use the Truncate subroutine (Protocol 16) from Catrina and
Saxena [13]. Given public values b and s, this protocol truncates the s least significant bits of a
secret-shared integer (in our case, the encoding of a FP number). The output is a secret-sharing
of the most significant b bits of the truncated input. The resulting secure multiplication protocol
for FP numbers, MultiplyFP, is shown in Protocol 17.

Protocol 16: [xtrunc]← Truncate([x], b, s)

Require: Number of bits to mask b, number of least significant bits to truncate s, and a statistical
security parameter κ

1: CP0: Sample r
r← {0, . . . , 2b+κ − 1}

2: CP0: Calculate rtail ← r mod 2s

3: [r]← ShareSecret(〈⊥,⊥, r〉) (in parallel with Line 4)
4: [rtail]← ShareSecret(〈⊥,⊥, rtail〉)
5: 〈x+ r, x+ r〉 ← ReconstructSecret([x] + [r])
6: CP1,CP2: Calculate (x+ r)tail ← x+ r mod 2s

7: return (2s)−1 · ([x] + [rtail]− (x+ r)tail), where (2s)−1 denotes the inverse of 2s in Zq

Security. Notably, Line 5 of Truncate reveals the value x+r in the clear (to CP1 and CP2), where r
is uniform over the set

{
0, . . . , 2b+κ − 1

}
, and x ∈

{
0, . . . , 2b − 1

}
. Assume that the base prime q is

large enough such that x+r does not overflow. Then, the distribution of x+r is statistically close to
the uniform distribution over

{
0, . . . , 2b+κ − 1

}
. More precisely, the statistical distance1 between

the two distributions is bounded by 2−κ for all x ∈
{

0, . . . , 2b − 1
}

. This implies no adversary
(including computationally unbounded ones) is able to distinguish x+ r from a uniformly random
field element r′, except with an advantage 2−κ—i.e., the difference in the a posteriori guessing
probability of a given candidate being a real message (i.e., x + r) between the two candidates
(i.e., r′ and x + r, randomly shuffled) is upper-bounded by 2−κ, where 0 corresponds to perfect
indistinguishability. Thus, CP1 and CP2 effectively sees x+ r as a uniformly random element, and
do not learn anything about x from it as a result.

Our overall GWAS protocol requires multiple invocations of the Truncate protocol, which in-
creases the adversary’s distinguishing advantage by a multiplicative factor v equal to the total num-
ber of invocations (based on a standard hybrid argument; cf. [14, §3.2.3]). In practice, we choose our
statistical security parameter κ such that the adversary’s distinguishing advantage v · 2−κ < 2−30,
or equivalently, κ− log2(v) > 30. This ensures that the view of each party in the overall protocol
is statistically indistinguishable from a sequence of uniformly random field elements.

1The statistical distance between two distributions D1 and D2 over a common finite domain X is defined to be
1
2

∑
x∈X |Pr[D1(x)]− Pr[D2(x)]|.

Nature Biotechnology: doi:10.1038/nbt.4108

Next, since 2b+κ lower-bounds the base prime q we use for the overall protocol, which in turn
determines the overall efficiency, we choose the smallest possible b for each invocation of Truncate.
For example, in Line 2 of MultiplyFP, we choose b = k+ f . Recall that by assumption, every value
encountered during the protocol lies in D. This means that xy ∈ D, which implies E2f (xy) has
effective bit-length at most k + f .

Protocol 17: [xy](f) ← MultiplyFP([x](f), [y](f))

1: [z](2f) ← [x](f)[y](f)

2: [w](f) ← Truncate([z](2f), k + f, f)
3: return [w](f)

5.3 Field Conversion

The following sections describe protocols in which individual bits of a secret integer are sepa-
rately secret-shared. To exploit the smaller field size needed for bit operations compared to FP
operations, we instead perform operations over an auxiliary field Zq′ where q′ � q. We write
[[x]] := 〈[[x]]1, [[x]]2〉 to denote a secret sharing over Zq′ . Because our use of the auxiliary field is
limited to unsigned integers, the mapping between the data space and the auxiliary field is simply
the identity map over {0, . . . , q′ − 1}. When appropriate, we invoke subroutines previously defined
over [·] with the secret shares [[·]]. In our protocols, secret shares over Zq′ are constructed using
the function ShareSecretSmallField defined as follows:

• ShareSecretSmallField(〈⊥,⊥, x〉 , q′) → [[x]]: Same as ShareSecret (Protocol 1) except x is
shared in the smaller field Zq′ .

After operating on the secret-shared bits, the resulting secret shares can be mapped back into the
large field Zq via TableLookupWithFieldConversion (Protocol 18). In other words, the TableLookup-
WithFieldConversion algorithm converts a secret sharing of x ∈ Zq′ into a secret-sharing of x ∈ Zq.
The field conversion algorithm relies on the observation that if we simply view [[x]] as a secret shar-
ing of x over the large field Zq, then performing the reconstruction (namely, computing [[x]]1+[[x]]2
in Zq) either yields the value x ∈ Zq or the value x+ q′ ∈ Zq. We can thus use TableLookup to map
each of these two possibilities for x′ to the value x ∈ Zq. Of course, this approach is efficient only
if there are just a few possible values to convert (e.g., if Zq′ is small). This is indeed the setting of
our protocol, since the outputs of bit operations lie in a small range.

Protocol 18: [v]← TableLookupWithFieldConversion(T = {ki 7→ vi}di=1, [[k]])

Require: k ∈ {k1, . . . , kd}, d ≥ 2, [[x]] secret-shared in Zq′ with q′ � q
1: T′ ← T ∪ {(ki + q′) 7→ vi : (ki 7→ vi) ∈ T}
2: [k′]← 〈[[k]]1, [[k]]2〉
3: [v]← TableLookup(T′, [k′])
4: return [v]

5.4 Comparison

To implement a comparison protocol on secret-shared fixed-point values, we first implement a secure
sign test for FP values (i.e., a comparison with zero). Here, we use the technique of Nishide and

Nature Biotechnology: doi:10.1038/nbt.4108

Ohta [15] for comparing elements of Zq to the value q/2 (as a real number). Given a secret-shared
FP value [x](f), the idea is to securely retrieve the least significant bit of 2 ·Ef (x). If x is negative,
then Ef (x) > q/2, and thus 2 · Ef (x) wraps around and results in an odd integer (since q > 2 is
odd). On the other hand, if x is positive, then Ef (x) < q/2, which implies 2 ·Ef (x) is even. Thus,
retrieving the least significant bit of 2 · Ef (x) is equivalent to performing a sign test on x. The
least significant bit is securely obtained by manipulating the binary representation of 2 ·Ef (x) + r,
where the blinding factor r is sampled uniformly at random and secret-shared by CP0. The overall
procedure is shown in IsPositive (Protocol 19). Note we make use of the following helper functions:

• BitLength(x)→ `: Returns the bit length of an integer x.

• BinaryRepresentation(x, L) → {ai}Li=1: Takes a field element x ∈ Zq and returns the L least
significant bits a1, . . . , aL of its binary representation in decreasing order of significance.

Protocol 19: [x >? 0]← IsPositive([x](f)) (based on [15])

Require: Base prime of main field q, base prime of auxiliary field q2
1: L← BitLength(q)

2: CP0: Sample r
r← Zq

3: CP0: Calculate {ai}Li=1 ← BinaryRepresentation(r, L)
4: [r]← ShareSecret(〈⊥,⊥, r〉)
5: for each i in {1, . . . , L} do (in parallel, including Line 4)
6: [[ai]]← ShareSecretSmallField(〈⊥,⊥, ai〉, q2)
7: end for
8: 〈2 · Ef (x) + r, 2 · Ef (x) + r〉 ← ReconstructSecret(2[x](f) + [r])
9: CP1,2: Calculate {bi}Li=1 ← BinaryRepresentation(2Ef (x) + r, L)

10: [[a <? b]]← BinaryLessThanPublic({[[ai]]}Li=1, {〈bi, bi〉}Li=1)
11: [[aL ⊕ bL]]← [[aL]]− 2bL[[aL]] + bL
12: [[u]]← [[aL ⊕ bL]] · [[a <? b]]
13: [s]← TableLookupWithFieldConversion({1→ 1, 2→ 0}, [[u]] + 1)
14: return [s]

Security. The security of IsPositive follows from the security of secret sharing (Lines 4-7) and the
fact that 2Ef (x) + r in Line 8 does not reveal any information about x to either party, since r is
uniformly random and independent from all other values.

Comparing secret-shared FP values. The IsPositive protocol can be used to compare two
secret-shared FP values [x](f) and [y](f) by casting the problem as a sign test of the difference
[y](f) − [x](f). This extended protocol is named LessThan (Protocol 20). Additionally, we define
LessThanPublic (Protocol 21) for the setting where one of the input values is known to both CP1

and CP2.

Protocol 20: [x <? y]← LessThan([x](f),[y](f))

Require: x and y have the same sign
1: [c]← IsPositive([x](f) − [y](f))
2: return 1− [c]

Nature Biotechnology: doi:10.1038/nbt.4108

Protocol 21: [x <? y]← LessThanPublic([x](f),〈y, y〉)
Require: x and y have the same sign, y ∈ D

1: [c]← IsPositive([x](f) − Ef (y))
2: return 1− [c]

5.5 Division and Square Root

We implement division and square root routines (for FP values) using Goldschmidt’s algorithm [16],
which approximates the desired operation as a series of multiplications. Each iteration quadratically
reduces the relative approximation error.

Goldschmidt’s algorithm for division. Take two real numbers a, b ∈ R. We describe Gold-
schmidt’s algorithm for approximating the quotient a/b ∈ R. Let w0 be an initial approximation
of 1/b and let ε0 := 1−bw0 be the relative error for the approximation w0. We require that |ε0| < 1.
The algorithm iteratively computes the following:

xt ← xt−1(1 + yt−1)

yt ← yt−1yt−1

with x0 = aw0 and y0 = ε0. Here, xt converges to a/b [16].

Goldschmidt’s algorithm for square root. For computing the square root of a value a ∈ R,
Goldschmidt’s algorithm starts with an initial approximation w0 of 1/

√
a. As before, let ε0 :=

1 − aw2
0 denote the relative error in the approximation. We require that |ε0| < 1. The algorithm

then iteratively computes

zt−1 ← 1.5− xt−1yt−1
xt ← zt−1xt−1

yt ← zt−1yt−1

with x0 = aw0 and y0 = w0/2. Here, xt converges to
√
a and 2yt converges to 1/

√
a [16]. Note we

obtain the square root inverse of a for free.

Choosing the number of iterations. Normally, if the input is available in the clear, we would
iterate Goldschmidt’s algorithm until the values satisfy some convergence criterion. However, this
strategy does not extend to the secure computation setting when the number of iterations needed
before convergence could itself reveal information about the underlying inputs. In our protocol
execution, we thus take an oblivious evaluation approach and instead fix the number of iterations
in advance and always iterate the algorithm for that many rounds. We choose the number of
iterations to be sufficiently large to ensure the desired level of accuracy. In this work, we follow the
recommendation from a previous work [13] and use 2dlog2(k/3.5)e iterations for both the division
and square root routines. An extra iteration is added for division protocol to account for our initial
approximation (described below) being slightly less accurate, albeit more efficient, than what was
proposed in the original work.

Nature Biotechnology: doi:10.1038/nbt.4108

Computing the initial approximations. For both the division and square root routines, we
require a suitable initial approximation w0 of 1/x or 1/

√
x to ensure convergence of the iterative

procedure. We achieve this by first scaling the input to be within [0.25, 1) and evaluating a quadratic
polynomial that approximates the desired function within that range. Reverse scaling is performed
to map the approximation back to the scale of input.

We introduce a new protocol NormalizerEvenExponent (Protocol 22) to efficiently handle the
scaling operation, which is based on the constant-round bit length protocol of Dahl et. al [17].
Notably, our protocol replaces the expensive bit decomposition routine that previous work relied
on [13]. The protocol NormalizerEvenExponent takes as input a secret-shared integer [z], and returns
two secret numbers [22t] and [2t] such that 2k−2 ≤ 22tz < 2k. Since the algorithm is rather involved,
we refer the readers to the [17, Appendix A.1] for a description of the technique. In this work,
we modify their algorithm to return the normalization factor instead of the bit-length of the input
and added an extra step of finding the closest even power of two, which is achieved by splitting
a bit vector into even and odd bits (Lines 22 and 23 of NormalizerEvenExponent). Similar to
Truncate, the NormalizerEvenExponent protocol achieves statistical security (with statistical security
parameter κ) as opposed to perfect security. In particular, Line 7 of NormalizerEvenExponent blinds
the input value x (which has at most k bits) with a uniformly random value from

{
0, . . . , 2k+κ − 1

}
.

The distribution of the blinded value x + r is at least 2κ-close to the uniform distribution over{
0, . . . , 2k+κ − 1

}
.

After obtaining [22t] and [2t] where 2k−2 ≤ 22t · z < 2k for the input value [x](f), we scale x to
[0.25, 1) by truncating k − f bits of [22t][x](f) with Truncate. The resulting scaled input is denoted
[x̄](f). We only need to mask k bits during Truncate (i.e., b = k), since 22t ·Ef (x) < 2k. Note that
we assume x > 0 during this process, which is always the case in our GWAS protocol. One can
additionally support x < 0 by performing an additional sign test and providing [|x|](f) as input to
NormalizerEvenExponent.

Given the scaled input [x̄](f), we approximate the desired function by securely evaluating the
quadratic polynomials

1

x̄
≈ 5.9430− 10x̄+ 5x̄2 and

1√
x̄
≈ 2.9581− 4x̄+ 2x̄2,

where the coefficients of non-constant terms are chosen to be integers to avoid adding an extra call
to Truncate. The resulting estimate, denoted [w̄0], is scaled back to match the input as follows. For
division, as noted in previous work [13], we can exploit the fact that

1

x
= 22t−(k−f)

1

22t−(k−f)x
= 22t−(k−f)

1

x̄
≈ 22t−(k−f)w̄0.

Thus, we approximate 1/x as

[w0]
(f) ← Truncate([22t][w̄0]

(f), k + f + 2, k − f).

Note our scaled approximation w̄0 < 4 for x̄ ∈ [0.25, 1). Thus, we set b = k + f + 2 for Truncate
since 22tEf (w̄0) has at most k + f + 2 bits.

Adapting the above approach for the inverse square root, we observe

1√
x

= 2t−
k−f
2

1√
22t−(k−f)x

≈ 2t−
k−f
2 w̄0,

which leads to
[w0]

(f) ← Truncate([2t][w̄0]
(f), bk/2c+ f + 2, (k − f)/2)

Nature Biotechnology: doi:10.1038/nbt.4108

for approximating 1/
√
x. Here, b = bk/2c + f + 2 is sufficient, since 2t is at most bk/2c bits and

w̄0 < 4 as before. Importantly, we require k − f to be even in order to ensure (k − f)/2 is an
integer.

The resulting subroutines Divide and SqrtAndSqrtInverse are shown in Protocols 23 and 24. The
security of both subroutines follow from the security of individual building blocks that are invoked
during the procedure.

Protocol 22: [22t], [2t]← NormalizerEvenExponent([x]) (adapts the bit-length protocol of [17])

Require: Data range |x| < 2k−f−1 for even k, statistical security parameter κ, base prime of
auxiliary field q1

1: CP0: Sample a random element r
r← {0, . . . , 2k+κ − 1}

2: CP0: {ri}ki=1 ← BinaryRepresentation(r, k)
3: [r]← ShareSecret(〈⊥,⊥, r〉)
4: for each i in {1, . . . , k} do (in parallel, including Line 3)
5: [[ri]]← ShareSecretSmallField(〈⊥,⊥, ri〉, q1)
6: end for
7: 〈x+ r, x+ r〉 ← ReconstructSecret([x] + [r])
8: CP1,2: {zi}ki=1 ← BinaryRepresentation(x+ r, k)
9: [[c]]← BinaryLessThanPublic({[[ri]]}ki=1, {〈zi, zi〉}ki=1)

10: [[z′1]]← 1− [[c]]
11: for each i in {2, . . . , k + 1} do
12: [[z′i]]← [[ri−1]]− 2zi−1[[ri−1]] + zi−1
13: end for
14: {[[Zi]]}k+1

i=1 ← PrefixOr({[[z′i]]
k+1
i=1 })

15: for each i in {1, . . . , k} do
16: [[ti]]← [[Zi]]− (1− zi)[[ri]]
17: end for
18: {[[Ti]]}ki=1 ← PrefixOr({[[ti]]}ki=1)
19: [[fi]]← zi[[Ti]]
20: [[gi]]← [[ri]] · [[Ti]]
21: [[w]]← BinaryLessThan({[[fi]]}ki=1, {[[gi]]}ki=1)

22: [[bodd]]←
∑k/2

i=1(1− [[T2i]])

23: [[beven]]←
∑k/2−1

i=1 (1− [[T2i+1]])
24: [[b]]← 1 + [[w]] · ([[bodd]]− [[beven]]) + [[beven]]

25: [22t]← TableLookupWithFieldConversion({i 7→ 22(i−1)}k/2+1
i=1 , [[b]])

26: [2t]← TableLookupWithFieldConversion({i 7→ 2i−1}k/2+1
i=1 , [[b]]) (in parallel with Line 26)

27: return [22t], [2t]

Nature Biotechnology: doi:10.1038/nbt.4108

Protocol 23: [a/b](f) ← Divide([a](f), [b](f)) (based on [13])

Require: |a|, |b| < 2k−f−1 for even k, b strictly positive
1: θ ← 2dlog2(k/3.5)e+ 1
2: [22t], [2t]← NormalizerEvenExponent([b](f))
3: [b̄](f) ← Truncate([22t][b](f), k, k − f)
4: [b̄2](f) ← MultiplyFP([b̄](f), [b̄](f))
5: [w̄0]

(f) ← Ef (5.9430)− 10[b̄](f) + 5[b̄2](f)

6: [w0]
(f) ← Truncate([22t][w̄0]

(f), k + f + 2, k − f)
7: [x0]

(f) ← MultiplyFP([a](f), [w0]
(f))

8: [y0]
(f) ← Ef (1)−MultiplyFP([b](f), [w0]

(f))
9: for each t in {1, . . . , θ} do

10: [xt]
(f) ← MultiplyFP([xt−1]

(f), Ef (1) + [yt−1]
(f))

11: [yt]
(f) ← MultiplyFP([yt−1]

(f), [yt−1]
(f))

12: end for
13: return [xθ]

(f)

Protocol 24: [
√
a](f), [1/

√
a](f) ← SqrtAndSqrtInverse([a](f))

Require: |a| < 2k−f−1 for even integers k and f , a strictly positive
1: θ ← 2dlog2(k/3.5)e
2: [22t], [2t]← NormalizerEvenExponent([a](f))
3: [ā](f) ← Truncate([22t][a](f), k, k − f)
4: [ā2](f) ← MultiplyFP([ā](f), [ā](f))
5: [w̄0]

(f) ← Ef (2.9581)− 4[ā](f) + 2[ā2](f)

6: [w0/2](f) ← Truncate([2t][w̄0]
(f), k/2 + f + 2, (k − f)/2 + 1)

7: [x0]
(f) ← MultiplyFP([a](f), 2[w0/2](f))

8: [y0]
(f) ← [w0/2](f)

9: for each t in {1, . . . , θ} do
10: [zt]

(f) ← Ef (1.5)−MultiplyFP([xt−1]
(f), [yt−1]

(f))
11: [xt]

(f) ← MultiplyFP([zt]
(f), [xt−1]

(f))
12: [yt]

(f) ← MultiplyFP([zt]
(f), [yt−1]

(f)) (in parallel with Line 11)
13: end for
14: return [xθ]

(f), 2[yθ]
(f)

Nature Biotechnology: doi:10.1038/nbt.4108

Supplementary Note 6: Our Choice of Base Primes

Here, we describe how we choose the size of finite fields (e.g., Zq) for secret sharing.

Choosing the primary field Zq. Recall first that our supported data range D ⊂ R is defined
to be [−2k−f−1, 2k−f−1), where k is the total number of bits used for the fixed point representa-
tion and f < k is the number of bits assigned to the fractional range. Also, κ is the statistical
security parameter for the subroutines that provide statistical security guarantees (i.e., Truncate
and NormalizerEvenExponent). Whenever we multiply two secret-shared FP values, we obtain the
value [x](2f) for some x ∈ D. This means q must have at least k + f bits. Moreover, invoking
Truncate subroutine on [x](2f) to obtain [x](f) requires us to generate a (k + f + κ)-bit random
number (Line 1 of Truncate, with b = k + f), which lower bounds q at 2k+f+κ. We ensure that
the maximum precision of a secret FP number in our protocol is 2f (by invoking Truncate when
necessary), although one could use higher precisions at the expense of increasing q. In our setting,
the highest lower bound on q is introduced by Line 6 of Divide where we invoke Truncate with
k + f + 2. Thus, our final requirement for q is

q > k + f + κ+ 2.

Choosing the auxiliary fields. For the small auxiliary field for bit operations, we choose two
different base primes q1 and q2 for maximal efficiency. Supplementary Figure 3 (below) shows the
call graph of subroutines that involve bit operations.

In our protocols, TableLookupWithFieldConversion imposes a lower bound on the small prime, as
the size of the field must be at least as large as the number of entries in the table. When the secret
shares are being constructed in the auxiliary field, we find all associated table lookups and choose
the smallest prime that is larger than the largest table size. In summary, NormalizerEvenExponent,

 Require: small prime > k/2 Require: small prime > sqrt(BitLength(q))+1

SqrtAndSqrtInverse

NormalizerEvenExponent

Divide

TableLookupWithFieldConversion (d=k/2) BinaryLessThanPublic

L=k

BinaryLessThan

L=k

PrefixOr

L=k, k+1

LessThan

IsPositive

LessThanPublic

TableLookupWithFieldConversion (d=2)

L=BitLength(q)

TableLookupWithFieldConversion (d=n+1)

FanInOr

n=sqrt(L)

Supplementary Figure 3: Call graph of subroutines that utilize the auxiliary finite
field.

Nature Biotechnology: doi:10.1038/nbt.4108

which Divide and SqrtAndSqrtInverse depend on, uses

q1 > k/2,

whereas IsPositive, which LessThanPublic and LessThan depend on, uses

q2 >
√

BitLength(q) + 1.

Note that q2 is often much smaller than q1, and thus our use of two auxiliary fields leads to a
substantial improvement in efficiency compared to a one-size-fits-all approach.

In addition, we note that our use of NormalizerEvenExponent for Divide, as opposed to the more
natural normalization routine without the requirement of the exponent being even, is intended for
efficiency. If we were to take the alternative approach, the size of the table lookup at the end of
the procedure becomes k instead of k/2. This doubles the size of the small field used for the entire
protocol execution, which in turn, effectively doubles the amount of communication.

Parameters for experiments. The parameter setting we used for our benchmark experiments
is as follows: k = 60, f = 30, κ = 64, q = 2160−47, q1 = 31, and q2 = 17. Base primes q, q1, and q2
are chosen to satisfy the requirements above. The data range parameters k and f naturally depend
on the input data dimensions and the required level of precision. Our choice was sufficient to obtain
accurate results for the benchmark data sets. While larger data may require higher precision, we
note that even doubling the precision (e.g., k = 120 and f = 60) increases the size of each field
element (the bit length of q) by only roughly 40%, and thus maintains the practical feasibility of
our protocol.

Nature Biotechnology: doi:10.1038/nbt.4108

Supplementary Note 7: Further Optimization with Shared Random
Streams

To further improve performance, we use a pseudorandom generator (PRG) to generate the random
bits (used primarily for secret sharing and Beaver partitioning). At a high level, a PRG takes as
input a short uniformly random seed (e.g., 128-bits) and outputs a long stream of random-looking
bits (e.g., 264 bits). The security guarantee is that no “efficient” adversary (i.e., a polynomial-time
algorithm) is able to distinguish the output of the PRG from a uniformly random sequence of
random bits. Using a PRG to derive a random stream of bits allows us to significantly reduce the
communication needed in the protocol. For instance, instead of sending a party a long stream of
uniformly random bits, one can instead send a short PRG seed and have the receiving party derive
the random bits by evaluating the PRG.

This optimization significantly improves the performance of ShareSecret and BeaverPartition.
Protocols 25 and 26 show the improved versions of the respective protocols using shared random
streams, which are denoted as

PRGP := An instance of pseudorandom generator shared among the parties in P.

In ShareSecretSharedPRG, the data owner (either SP or CP0) communicates with one of the main
computing parties only, since the other party can obtain its share from the shared random stream.
Next, in BeaverPartitionSharedPRG, we replace CP0’s sampling of r with an implicit sampling pro-
cedure, where CP1 and CP2 randomly chooses the respective shares [r]1 and [r]2 first and CP0

retroactively recovers r by adding the two shares obtained offline via the shared random streams.
Since [r]1 and [r]2 are uniformly random, we maintain the property that r is uniformly random.
Note CP0 does not communicate with CP1 or CP2 in this modified protocol—neither online nor
offline (precomputation). We summarize the improved communication complexities of our method
for previously described settings in Supplementary Table 8.

Protocol 25: [x]← ShareSecretSharedPRG(〈⊥,⊥,⊥, x〉) (or 〈⊥,⊥, x〉)
1: SP (or CP0): Compute r ∈ Zq using PRGSP,CP1 (or PRGCP0,CP1)
2: CP1: Compute r ∈ Zq using PRGSP,CP1 (or PRGCP0,CP1)
3: SP (or CP0): Send x− r to CP2

4: return 〈r, x− r〉

Protocol 26: 〈x− r, x− r〉 , 〈[r]1, [r]2, r〉 ← BeaverPartitionSharedPRG([x])

1: CP0,1: Compute [r]1 ∈ Zq using PRGCP0,CP1

2: CP0,2: Compute [r]2 ∈ Zq using PRGCP0,CP2

3: CP0: Calculate r ← [r]1 + [r]2
4: 〈x− r, x− r〉 ←ReconstructSecret([x]− [r])
5: return 〈x− r, x− r〉 , 〈[r]1, [r]2, r〉

Using PRGs to construct the random streams significantly reduces the bandwidth of our overall
protocol. In particular, the initial Beaver partitioning of the input genotype matrix (a matrix with
a million rows and a million columns) no longer requires CP0 to send an equally-large random
matrix to each of the main computing parties (CP1 and CP2). In fact, because the communication
needed for matrix multiplication in our Beaver partitioning framework is proportional to the size of

Nature Biotechnology: doi:10.1038/nbt.4108

Arith. circuit
(Supp. Table 4)

Matrix mult.
(Supp. Table 5)

Power iteration
(Supp. Table 6)

Rounds (online) 1 1 2T
Bandwidth (online), CP1 ↔ CP2 k d1d2 + d2d3 d1d2 + d3T (d1 + d2)

Bandwidth (offline), CP0 → CP1/2 m+ T̃ d1d3 d3T (d1 + d2)

Supplementary Table 8: Communication complexity of our improved method, combining our
Beaver partitioning method and shared random streams, for previously analyzed examples (Sup-
plementary Tables 4–6). The arithmetic circuit has k inputs, m outputs, and linearization cost T̃
(Supplementary Note 3). Recall that T̃ = 0 when the multiplicative depth of the arithmetic circuit
is at most 1 (e.g., in the specific case of matrix multiplication). The second column considers com-
puting the product of a d1-by-d2 matrix with a d2-by-d3 matrix. The third column considers power
iteration on an initial d2-by-d3 matrix, where on each of T iterations, the matrix is left-multiplied
by a d1-by-d2 matrix and then by its transpose (same matrix is used for every iteration).

the output matrix (Supplementary Table 8), this yields a considerable communication reduction if
we ensure that all matrix multiplications involving the genotype matrix outputs a thin (but long)
matrix or a short (but fat) matrix. In this way, we effectively reduce the communication complexity
for Beaver partitioning the initial genotype matrix from quadratic to linear in the dimensions of
the genotype matrix (which constitutes a million-fold improvement in many realistic scenarios).

Nature Biotechnology: doi:10.1038/nbt.4108

Supplementary Note 8: Our Secure Linear Algebra Subroutines

Here, we describe the subroutines for linear algebraic operations that we developed and used to
implement principal component analysis (PCA) in GWAS.

Notation. We extend our previous notation for secret sharing to matrices (which includes vectors
and scalars as special cases). Typically, we will use bold-faced uppercase letters (e.g., A,B) to
denote matrices and bold-faced lowercase letters (e.g., u,v) to denote vectors. For a matrix A ∈
Rn×m and an index 1 ≤ i ≤ n we write Ai:,: to denote the submatrix corresponding to the bottom
n − i + 1 rows of A (namely, the matrix consisting of rows i, i + 1, . . . , n of A). We write A:i,: to
denote the submatrix consisting of the top i rows of A. Similarly, for a column index 1 ≤ j ≤ m,
we write A:,j: to denote the submatrix consisting of the rightmost m − j + 1 columns of A, and
A:,:j to denote the leftmost j columns of A. In some cases, we also combine the two; for instance,
we write A:i,:j to denote the submatrix of A containing the first i rows and j columns of A.

For a real-valued matrix A ∈ Rn×m, we define its secret sharing to be a secret-sharing of the
fixed-point encoding of A:

[A](f) :=

[A1,1]
(f) · · · [A1,m](f)

...
. . .

...

[An,1]
(f) · · · [An,m](f)

 .
We also extend our previously-defined protocols and functions that operate on scalar values to
operate component-wise on matrices. For instance, invoking ShareSecret or ShareSecretSharedPRG
on a matrix is equivalent to invoking the protocol on each element in parallel so that every element
is individually secret shared.

Secure arithmetic with matrices. Much of our previous discussion in Supplementary Note 2
naturally extends to arithmetic operations with matrices. For example, affine functions over secret-
shared matrices can be performed non-interactively, since each element of the resulting matrix is
an affine function over the secret-shared elements in the input. Secure multiplication of two ma-
trices is efficiently handled by our generalized Beaver partitioning method (Supplementary Note 3,
Section 3.2). Furthermore, if the same matrix is used across multiple multiplications, its Beaver-
partitioned data can be reused (Supplementary Note 3, Section 3.3). Note that to simplify the
protocol description, we do not explicitly describe how the variable reuse optimization is applied
in our protocol.

Protocols. We now describe the subroutines used for PCA. All of the protocols described here
implement secure computations over secret-shared real values (represented as fixed-point values, as
described in Supplementary Note 5).

• Householder([x](f))→ [v](f): On input a secret-shared vector [x](f) where x ∈ Rd, the House-
holder protocol (Protocol 27) outputs a share [v](f) of a unit vector v ∈ Rd such that the
reflection of x about the hyperplane associated with v (this is also known as the “Householder
reflection”) yields a vector that is a multiple of the elementary vector e1 (i.e., only the first
element is non-zero). In other words, (1− vvT)x = αe1 for some α ∈ R.

• QRFactorizeSquare([A](f)) → ([Q](f), [R](f)): On input a secret-shared matrix [A](f) where
A ∈ Rd×d, the QRFactorizeSquare protocol (Protocol 28) securely executes a standard QR

Nature Biotechnology: doi:10.1038/nbt.4108

Protocol 27: [v](f) ←Householder([x](f))

Require: x ∈ Rd
1: [c]← IsPositive([x1]

(f))
2: [sign(x1)]← 2[c]− 1
3: [‖x‖2](f) ← Truncate([xT](f)[x](f), k + f, f)
4: [‖x‖](f), [1/‖x‖](f) ← SqrtAndSqrtInverse([‖x‖2](f))
5: [u](f) ← [x](f) + [sign(x1)][‖x‖](f)e1.
6: [‖u‖2](f) ← Truncate([uT](f)[u](f), k + f, f)
7: [‖u‖](f), [1/‖u‖](f) ← SqrtAndSqrtInverse([‖u‖2](f))
8: [v](f) ← Truncate([1/‖u‖](f)[u](f), k + f, f).
9: return [v](f)

factorization algorithm, which applies d− 1 Householder transformations Q1, . . . ,Qd−1 to A
to obtain an upper-triangular matrix R = Qd−1 · · ·Q1A. Setting Q := Q1 · · ·Qd−1 yields
the QR factorization A = QR. The output of the protocol are secret shares [Q](f) and
[R](f) of Q and R, respectively. We also present a modified protocol QRFactorizeRectangle
(Protocol 29) for tall and skinny matrices A where the number of rows d is large enough that
storing a d-by-d matrix in memory (as in QRFactorizeSquare) is not feasible. This is the case
in our GWAS application.

Protocol 28: [Q](f), [R](f) ←QRFactorizeSquare([A](f))

Require: A ∈ Rd×d
1: [Q](f) ← 〈0d×d, Ef (Id×d)〉, where Id×d ∈ Rd×d is the identity matrix of dimension d
2: [R](f) ← 〈0d×d,0d×d〉
3: [A(1)](f) ← [A](f)

4: for i = 1, . . . , d− 1 do

5: [v](f) ← Householder([A
(i)
:,1](f))

6:

7: /* Householder-transform A(i) and Q:,i: */

8: [vTA(i)](f) ← Truncate([vT](f)[A(i)](f), k + f, f) (in parallel with Line 9)
9: [Q:,i:v](f) ← Truncate([Q:,i:]

(f)[v](f), k + f, f)
10: [vvTA(i)](f) ← Truncate([v](f)[vTA(i)](f), k + f, f) (in parallel with Line 11)
11: [Q:,i:vv

T](f) ← Truncate([Q:,i:v](f)[vT](f), k + f, f)
12: [A(i)](f) ← [A(i)](f) − 2[vvTA(i)](f)

13: [Q:,i:]
(f) ← [Q:,i:]

(f) − 2[Q:,i:vvT](f)

14:

15: [Ri,i:]
(f) ← [A

(i)
1,:]

(f)

16: [A(i+1)](f) ← [A
(i)
2:,2:]

(f)

17: end for
18: [Rd,d]

(f) ← [A
(d)
1,1](f)

19: return [Q](f) and [R](f)

• Tridiagonalize([A](f)) → ([Q](f), [T](f)): On input a secret-shared symmetric matrix [A](f)

where A ∈ Rd×d, the Tridiagonalize protocol (Protocol 30) computes matrices Q and T
such that T = QAQT and T is tridiagonal (namely, it only has non-zero elements along

Nature Biotechnology: doi:10.1038/nbt.4108

Protocol 29: [Q](f), [R](f) ←QRFactorizeRectangle([A](f))

Require: A ∈ Rd×r where r � d, and d× d matrix is too large to fit in memory
1: [R](f) ← 〈0r×r,0r×r〉
2: [A(1)](f) ← [A](f)

3: for i = 1, . . . , r do

4: [v(i)](f) ← Householder([A
(i)
:,1](f))

5:

6: /* Householder-transform A(i) */

7: [(v(i))TA(i)](f) ← Truncate([(v(i))T](f)[A(i)](f), k + f, f)
8: [v(i)(v(i))TA(i)](f) ← Truncate([v(i)](f)[(v(i))TA(i)](f), k + f, f)
9: [A(i)](f) ← [A(i)](f) − 2[vvTA(i)](f)

10:

11: [Ri,i:]
(f) ← [A

(i)
1,:]

(f)

12: [A(i+1)](f) ← [A
(i)
2:,2:]

(f)

13: end for
14: [Q](f) ← 〈0d×r, Ef (Id×r)〉
15: for i = r, . . . , 1 do
16: /* Householder-transform Qi:,: */

17: [(v(i))TQi:,:]
(f) ← Truncate([(v(i))T](f)[Qi:,:]

(f), k + f, f)
18: [v(i)(v(i))TQi:,:]

(f) ← Truncate([v(i)](f)[(v(i))TQi:,:]
(f), k + f, f)

19: [Qi:,:]
(f) ← [Qi:,:]

(f) − 2[vvTQi:,:]
(f)

20: end for
21: return [Q](f), [R](f)

the diagonal, subdiagonal and superdiagonal). Similar to the QR factorization algorithm,
tridiagonalization is achieved by iteratively applying Householder transformation to portions
of A so that any element outside of the tridiagonal region becomes zero. The output of the
algorithm is secret shares [Q](f) and [T](f) of Q and T, respectively.

• Eigendecompose([A](f))→ ([Q](f), [L](f)): On input a secret-shared symmetric matrix [A](f)

where A ∈ Rd×d, the Eigendecompose protocol applies the QR algorithm for eigendecomposi-
tion to A [19]. First, A is transformed using Tridiagonalize to improve the convergence of the
subsequent steps. Next, a QR iteration is iteratively applied to the matrix until convergence,
where each iteration consists of first QR factorizing the matrix as QR, then updating the
matrix as RQ. Repeating this procedure pushes the last diagonal element towards the small-
est eigenvalue of A, and upon convergence, the last row and column are deleted to repeat this
procedure on the remaining eigenvalues until all of them are obtained. Notably, the eigenval-
ues revealed by this procedure are already sorted. We use the standard technique of “shifting”
the matrix by the last diagonal element before and after each QR factorization to achieve
cubic convergence [20]. Instead of testing for convergence, which may leak information, we
fix the number of iterations per eigenvalue to a pre-determined value. In our experiments,
five QR iterations per eigenvalue were sufficient to obtain accurate results.

Nature Biotechnology: doi:10.1038/nbt.4108

Protocol 30: [Q](f), [T](f) ← Tridiagonalize([A](f)) (based on [18])

Require: A ∈ Rd×d symmetric
1: [Q](f) ← 〈0d×d, Ef (Id×d)〉
2: [T](f) ← 〈0d×d,0d×d〉
3: [A(1)](f) ← [A](f)

4: for i = 1, . . . , d− 2 do

5: [v](f) ← Householder([A
(i)
2:,1]

(f))

6: [vvT](f) ← Truncate([v](f)[vT](f), k + f, f)

7: [P](f) ←
[
〈0, 1〉 〈0, 0〉
〈0, 0〉 I(d−i)×(d−i) − 2[vvT](f)

]
8: [PA(i)](f) ← Truncate([P](f)[A(i)](f), k + f, f) (in parallel with Line 9)
9: [PQi:,:]

(f) ← Truncate([P](f)[Qi:,:]
(f), k + f, f)

10: [PA(i)PT](f) ← Truncate([PA(i)](f)[PT](f), k + f, f)
11: [A(i)](f) ← [PA(i)PT](f)

12: [Qi:,:]
(f) ← [PQi:,:]

(f)

13: [Ti,i]
(f) ← [A

(i)
1,1]

(f), [Ti,i+1]
(f) ← [A

(i)
1,2]

(f), and [Ti+1,i]
(f) ← [A

(i)
2,1]

(f)

14: [A(i+1)](f) ← [A
(i)
2:,2:]

(f)

15: end for
16: [Td−1:,d−1:]

(f) ← [A(d−1)](f)

17: return [Q](f), [T](f)

Protocol 31: [Q](f), [L](f) ←Eigendecompose([A](f))

Require: A ∈ Rd×d symmetric, number of QR iterations per eigenvalue ω
1: [Q](f), [T](f) ← Tridiagonalize([A](f))
2: [Q](f) ← [QT](f)

3: [L](f) ← [T](f)

4: for i = d . . . 1 do
5: for j = 1 . . . ω do
6: [µ](f) ← [Li,i]

(f)

7: [Q′](f), [R′](f) ← QRFactorizeSquare([L:i,:i]
(f) − [µ](f)Ii×i)

8: [R′Q′](f) ← Truncate([R′](f)[Q′](f), k + f, f)
9: [L:i,:i]

(f) ← [R′Q′](f) + [µ](f)Ii×i
10: [Q:,:iQ

′](f) ← Truncate([Q:,:i]
(f)[Q′](f), k + f, f)

11: [Q:,:i]
(f) ← [Q:,:iQ

′](f)

12: end for
13: end for
14: return [Q](f), [L](f)

Nature Biotechnology: doi:10.1038/nbt.4108

Supplementary Note 9: Our Secure GWAS Protocol

Now we describe how we build a secure and efficient GWAS protocol using the tools described
in the previous Supplementary Notes. We work in the crowdsourcing scenario where there are n
study participants, denoted SP1, . . . ,SPn, and m candidate SNPs to be tested for association. For
simplicity, we assume each SP owns the data of a single individual. In addition, we assume that
the mapping from SNP indices {1, . . . ,m} to known SNP identifiers (e.g., rsids) is fixed and public.
The individuals’ genotypes at each position are of course hidden.

9.1 Input Data

We represent the input data owned by each SPi as follows:

• gAA
i ,gAa

i ,gaa
i ∈ {0, 1}m: gAA

ij ,g
Aa
ij ,g

aa
ij represents whether the jth SNP of SPi is homozygous-

reference allele, heterozygous, homozygous-alternative allele, respectively

• hi ∈ {0, 1}m: hij represents whether the jth SNP of SPi is missing

• ci ∈ {0, 1}`: covariate features (e.g., age group membership) for SPi

• yi ∈ {0, 1}: phenotype of interest (e.g., disease status) for SPi

We let gAA
ij = gAa

ij = gaa
ij = 0 if the genotype is missing (i.e., hij = 1). In addition, minor allele

dosages xi ∈ {0, 1, 2}m are defined as

xi := gAa
i + 2 · gaa

i ,

which can be easily computed from the above data. We use a one-hot encoding of genotypes with
gAA
i , gAa

i , and gaa
i in order to obtain the separate counts for AA, Aa, and aa for each SNP, which are

needed for the quality control procedure (Hardy-Weinberg equilibrium and heterozygosity filters).
Note that while computing xi from gAA

i , gAa
i , and gaa

i is easy, the reverse is quite expensive due to
the need to perform several equality tests in order to extract each genotype. For a similar reason,
missing genotypes are encoded in a separate vector hi as opposed to using a sentinel value in the
genotype vector, which would also require equality tests to extract the information.

While all numbers in our data are binary-valued, it is straightforward to incorporate continuous
values using the fixed-point representation (Supplementary Note 5). For instance, we can incorpo-
rate imputed genotypes by assigning probabilities (as FP values) to the corresponding entries in
gAA, gAa, and gaa. Covariate features and the phenotype encodings can also be continuous.

9.2 Initial Data Sharing

During the initial data sharing phase, each SPi samples a random seed for a PRG and sends it to
CP1 over a secure channel. This initializes PRGCP1,SPi

. Next, SP invokes ShareSecretSharedPRG
(Protocol 25) to securely share its data with CP1 and CP2. Note that SP transfers data to only
CP2, since CP1 non-interactively obtains its shares from PRGCP1,SPi

. After all n SPs have shared
their data, CP1 and CP2 execute BeaverPartitionSharedPRG (Protocol 26) on the pooled data to
prepare for the main computation phase. While this step requires communication bandwidth equal
to the total size of input, it can be aggregated and transferred in a single batch. Thus, at the scale
of tens of terabytes (when working with millions of genomes), we expect physically shipping hard
drives to be a viable alternative for this step that may be more efficient than online transfer.

Nature Biotechnology: doi:10.1038/nbt.4108

At the end of this procedure, the computing parties CP1 and CP2 have access to the shares
[gAA
i], [gAa

i], [gaa
i], [hi], [ci], and [yi], as well as their Beaver partitions for all i ∈ {1, . . . , n}. We

also assume CPs have non-interactively computed the minor allele dosages

[xi]← [gAa
i] + 2[gaa

i]

for all i ∈ {1, . . . , n}. Note that the Beaver partitions of [xi] can be obtained for free by simply
taking a linear combination of the Beaver partitions of [gAa

i] and [gaa
i].

9.3 Phase 1: Quality Control

The first phase of the main GWAS computation includes common quality control filters for GWAS.
In the following, we provide the list of filters we implemented. We write UB and LB to denote an
upper bound and a lower bound, respectively, which take on different values for each filter. We
assume that these bounds are public and fixed.

• Heterozygosity of individual i: LB ≤
∑m

j=1 g
Aa
ij

m−
∑m

j=1 hij
< UB

• Genotype missing rate of individual i:
∑m

j=1 hij

m < UB.

• Minor allele frequency (MAF) of SNP j: LB ≤
∑n

i=1 xij

2(n−
∑n

i=1 hij)
< UB

• Genotype missing rate of SNP j:
∑n

i=1 hij

n < UB

• Hardy-Weinberg equilibrium (HWE) χ2 test statistic of SNP j (control cohort-only):

∑
t∈{AA,Aa,aa}

(Otj − Etj)2

Etj
< UB,

where

Otj :=

n∑
i=1

(1− yi)gtij , ∀t ∈ {AA,Aa, aa},

EAA
j := α2

j

(
n−

n∑
i=1

yi

)
EAa
j := 2αj(1−αj)

(
n−

n∑
i=1

yi

)
Eaa
j := (1−αj)2

(
n−

n∑
i=1

yi

)
,

and

αj :=

∑n
i=1 yixij

2(n−
∑n

i=1 yihij)
.

After the CPs compute each of the above quantities over the secret-shared values, they compare
each quantity against the (public) thresholds using the LessThan or LessThanPublic protocols (Pro-
tocols 20 and 21). For all filters except for HWE, we multiply the thresholds with the denominator
of the term being compared to avoid invoking the relatively more expensive Divide protocol. This
reduces the required computation (other than comparisons) to only affine functions over the secret
shares, which can be computed non-interactively.

The HWE filter is the most complex among the quality control filters. First, the numerator
and denominator of αj are separately computed for all j, which is a depth-one computation with
an overall output size 2m. Given this result, we use m parallel invocations of Divide to securely
compute αj for all j. After computing the terms (Otj −Etj)2 and Etj via secure multiplications, we

Nature Biotechnology: doi:10.1038/nbt.4108

use three rounds of m parallel invocations of Divide (one for each t ∈ {AA,Aa, aa}) to calculate the
ratios (Otj−Etj)2/Etj . Lastly, the results are added for each SNP to obtain the HWE test statistics,
which are then compared with the threshold.

After the CPs have securely evaluated each of the above filters, the computing parties compute
an AND over the filter outputs. The computing parties then publish their shares and reconstruct the
binary inclusion/exclusion status for each individual or SNP (to be revealed also at the conclusion
of GWAS along with the association statistics). We perform this step in advance to allow the
CPs to directly filter the data sets for the subsequent steps, which cannot be done efficiently if
the filtering results are kept hidden. As further explained at the end of this Supplementary Note,
this information reveals only a single bit per SNP or per individual and therefore arguably poses a
significantly smaller privacy risk than the publication of association statistics.

In practice, researchers may wish to apply some filters first and evaluate the remaining filters
over the reduced data. For instance, if the data is pooled from different genotyping platforms, it
may be desirable to filter out SNPs with high missing rates first in order to discard non-intersecting
loci. In our experiments, we performed quality control in three stages: (i) locus missing rate filter,
(ii) individual missing rate and heterozygosity filters, and (iii) locus HWE and MAF filters. The
results from each stage was used to reduce the data set before proceeding to the next stage.

We use nqc and mqc to denote the number of individuals and SNPs passing all quality control
filters, respectively.

9.4 Phase 2: Population Stratification Analysis

The next phase of the computation is population stratification analysis, where the goal is to obtain
the top principal components of the genotype matrix via principal component analysis (PCA) to
be included as covariates in the association tests.

SNP selection. The current standard practice is to perform PCA over a reduced set of SNPs
that are largely independent from one another. Strong correlations among the SNPs, such as
those arising from linkage disequilibrium (LD), can distort the PCA results and thus, need to be
avoided [21]. In our protocol, we take the simplified approach of keeping only SNPs that are at
least 100 Kb apart in order to minimize the impact of LD. Alternative approaches, such as directly
computing pairwise correlations and filtering based on them, can be implemented at the expense of
efficiency. Since annotations (e.g., genomic position) associated with each SNP in the input data is
public, each party independently filters the SNPs according to the same procedure and obtains the
reduced matrix non-interactively. Let mpca be the resulting number of SNPs to be used for PCA.

Computing standardization parameters. We denote the filtered input matrix for PCA as
X ∈ {0, 1, 2}nqc×mpca , which contains minor allele dosages. The corresponding missingness data is
also represented as a matrix H ∈ {0, 1}nqc×mpca .

To standardize the matrix before performing PCA, we follow previous work [22] to compute the
mean µj and standard deviation σj of each SNP j as

µj :=
1 +

∑nqc

i=1 Xij

2 + 2(nqc −
∑nqc

i=1 Hij)
,

σj :=
√
µj(1− µj),

where the mean is computed over only the observed genotypes. Note µj is smoothed by adding a
pseudocount for both allele types to avoid zero standard deviations.

Nature Biotechnology: doi:10.1038/nbt.4108

To compute these parameters, the CPs first calculate the denominator and numerator of µj for
all j, which are affine functions over the secret shares. Next, µj for all j are computed by mpca

parallel invocations of Divide. Then, µj and 1 − µj are securely multiplied and provided as input
to mpca parallel invocations of SqrtAndSqrtInverse to obtain 1/σj for all j. We keep 1/σj instead
of σj in order to standardize the genotypes by multiplication, and not by division, as

X̃ij := (1/σj) · (Xij − µj(1−Hij)),

where X̃ denotes the standardize input matrix for PCA. Note we subtract the mean only where
the genotype is not missing.

Implicit standardization. Explicitly constructing the standardized matrix X̃ incurs a commu-
nication cost that scales quadratically in the dimension of the input data. This is because each
element in X̃ corresponds to an output gate that needs to be reconstructed. Instead, we adopt
a lazy computation scheme for standardizing X, where every occurrence of X̃ in the following
computation is replaced with

X̃ 7→ (X−HM)Σ−1,

with

M :=

µ1 0
. . .

0 µmpca

 and Σ−1 :=

1/σ1 0
. . .

0 1/σmpca

 .
In our PCA protocol, X̃ only appears in products where the resulting matrix is either tall-and-
skinny or short-and-fat with the smaller dimension being a very small constant. After writing out
each multiplication with the above substitution, we observe that we can evaluate matrix products
involving X̃ in one of two different ways:

AX̃ 7→ A(X−HM)Σ−1 7→ (AX)Σ−1 − ((AH)M)Σ−1,

X̃B 7→ (X−HM)Σ−1B 7→ X(Σ−1B)−H(M(Σ−1B)),

where A is short-and-fat and B is tall-and-skinny. This way, each matrix multiplication involving
X results in an intermediary matrix that has at least one very small dimension. This means that
the overall communication bandwidth scales linear in mpca and nqc. Note that the computation
results we obtain via this procedure is equivalent to directly working with X̃.

Randomized PCA. Given the standardized genotype matrix X̃ (which is never explicitly con-
structed), the final step of Phase 2 is to securely perform PCA to obtain the top principal compo-
nents (PCs) of the columns of X̃ (i.e., the left singular vectors of X̃). These principal component
represent broad genetic patterns in the data that are thought to be indicative of population struc-
ture. Since PCA is a complex, iterative algorithm, directly performing PCA on X̃ is infeasible due
to the large input dimensions involved in realistic GWAS scenarios. To illustrate, if we were to
naively invoke Eigendecompose (Protocol 31) on the covariance matrix X̃X̃T to perform PCA, we
would need to QR factorize a nqc×nqc matrix a multiple of nqc times. As a result, communication
scales cubically in nqc, which is infeasible. In this work, we instead use an efficient randomized
algorithm for matrix factorization based on the techniques of [23].

We give a high-level sketch of the RandomizedPCA (Protocol 32) subroutine that we use. First,
we obtain a matrix Q ∈ Rmpca×(ψ+α) whose orthonormal columns satisfy

X̃QQT ≈ X̃.

Nature Biotechnology: doi:10.1038/nbt.4108

Note ψ is the desired number of top principal components, and α is a small oversampling parameter
(set to 10 in our experiments) used to increase the stability and accuracy of the algorithm. Also,
ψ + α � mpca. Such Q can be obtained by projecting X̃ onto a random subspace and extracting
its orthonormal bases via QR factorization. We additionally apply the power iteration procedure
to improve the approximation quality, as described in [23]. More precisely,

Q ∈ Rmpca×(ψ+α) := Orthonormal bases of the row space of ΠX̃(X̃T X̃)ρ,

where Π ∈ R(ψ+α)×mpca is a random projection matrix publicly known by all CPs (e.g., CountS-
ketch [24], which is our method of choice), and ρ is the number of power iterations (set to 20 in
our experiments). To reduce communication, we derive Π using a PRG, and have each of the
computing parties generate it locally (from a globally shared PRG seed).

Next, we perform ψ-truncated singular value decomposition (SVD) on the matrix Z := X̃Q ≈
UψΣψVT

ψ , where UψΣψ(QVψ)T is the ψ-truncated SVD of X̃QQT , which is approximately X̃.

Thus, Uψ approximates the desired left singular vectors of X̃.
In our adaptation of this algorithm, we take a step further and compute the SVD of Z by the

eigendecomposition of an even smaller (ψ + α)× (ψ + α) matrix

ZTZ = Q′L′(Q′)T

with eigenvectors Q′ and a diagonal L′ containing the eigenvalues. Assuming the eigenvalues are
sorted, we have

Q′:,:ψ = Vψ and L′:ψ,:ψ = Σ2
ψ.

Thus, we can recover Uψ given the eigendecomposition of ZTZ by computing

Uψ = ZQ′:,:ψ(L′:ψ,:ψ)−1/2,

which concludes our algorithm.
Overall, our modified algorithm reduces the original problem of factorizing a large nqc ×mpca

matrix X̃ to an eigendecomposition of a tiny (ψ + α) × (ψ + α) matrix ZTZ whose dimensions
only slightly exceed the number of top principal components we are interested in. Notably, the size
of this subproblem does not depend on nqc or mpca, and in typical GWAS scenarios, we expect
ψ + α ≤ 20.

9.5 Phase 3: Association Tests

The final phase of GWAS is computing the association statistic for each SNP, which intuitively
quantifies how informative each SNP is for predicting the phenotype of interest. In this work, we
compute the χ2 statistics of Cochran-Armitage (CA) trend test. We use a generalized version of
the CA test described in [22] that additionally corrects for covariates, which in our case, includes
those provided in the input (e.g., age) as well as the principal components from Phase 2. Correction
is performed by regressing out the covariate features from each genotype and phenotype vectors
before computing the test statistic.

Given the secret shares of ψ principal components Uψ ∈ Rnqc×ψ and representing ` input
covariate features as a matrix C ∈ {0, 1}nqc×`, the first step is to find the orthonormal bases of
the subspace spanned by both. This is achieved by concatenating the two matrices and invoking
QRFactorizeRectangle. We denote the resulting bases of the covariate subspace Q ∈ Rnqc×(ψ+`).

Nature Biotechnology: doi:10.1038/nbt.4108

Protocol 32: [Uψ](f) ←RandomizedPCA([A](f), ψ)

Require: A ∈ Rn×m, number of top principal components (of columns in A) to output ψ, over-
sampling parameter α, number of power iterations ρ

1: /* Random projection */

2: CP0,CP1,CP2: Sample a (ψ + α)× n random sketch matrix Π from PRGCP0,CP1,CP2

3: [ΠA](f) ← Π[A](f)

4:

5: /* Power iteration */

6: for i = 1, . . . , ρ do
7: [ΠA(ATA)i−1AT](f) ← Truncate([ΠA(ATA)i−1](f)[AT](f), k + f, f)
8: [ΠA(ATA)i](f) ← Truncate([ΠA(ATA)i−1AT](f)[A](f), k + f, f)
9: end for

10: [Y](f) ← [ΠA(ATA)ρ](f)

11:

12: /* Dimensionality reduction */

13: [Q](f), [R](f) ← QRFactorizeRectangle([YT](f))
14: [Z](f) ← Truncate([A](f)[Q](f), k + f, f)
15: [ZTZ](f) ← Truncate([ZT](f)[Z](f), k + f, f)
16:

17: /* Eigendecomposition of reduced matrix */

18: [Q′](f), [L′](f) ← Eigendecompose([ZTZ](f))
19: [Q′](f) ← [Q′:,:ψ](f) and [L′](f) ← [L′:ψ,:ψ](f)

20:

21: /* Reconstruction of principal components */

22: [(L′)1/2](f), [(L′)−1/2](f) ← SqrtAndSqrtInverse([L′](f)) (only on diagonal elements)
23: [ZQ′](f) ← Truncate([Z](f)[Q′](f), k + f, f)
24: [ZQ′(L′)−1/2](f) ← Truncate([ZQ′](f)[(L′)−1/2](f), k + f, f)
25: return [ZQ′(L′)−1/2](f)

Let xj ∈ {0, 1, 2}nqc denote the genotype vector (minor allele dosages) of SNP j and y ∈ {0, 1}nqc

be the phenotype vector of interest. Both vectors are first corrected for covariates by projecting
them onto the null space of Q:

x̂j := (Inqc×nqc −QQT)xj ,

ŷ := (Inqc×nqc −QQT)y.

Next, the CA statistic is computed as the squared Pearson correlation coefficient between the
corrected vectors x̂j and ŷ, which can be expressed as

r2j :=
(nqc

∑
i x̂jiŷi −

∑
i x̂ji

∑
i ŷi)

2[
nqc
∑

i x̂
2
ji − (

∑
i x̂ji)

2
] [
nqc
∑

i ŷ
2
i − (

∑
i ŷi)

2
] . (4)

We include missing genotypes as zeros to maintain consistency with the PCA step. Note only SNPs
and individuals with low missing rates are considered here as a result of Phase 1, so the impact of
missing data is minimal.

Efficiently computing the above expression for r2j for every SNP is not trivial. For instance,
explicitly constructing the corrected genotypes x̂j for all SNPs should be avoided, as it would incur

Nature Biotechnology: doi:10.1038/nbt.4108

a communication cost equal to the size of the genotype matrix, which is naturally quadratic in the
input dimensions. Here, we provide an alternative formulation for computing the CA statistics that
requires only linear communication bandwidth.

First, observe that ŷ can be explicitly computed, since it is only a single vector (unlike x̂j , which
exists for each j ∈ {1, . . . ,mqc}). We evaluate ŷ as y −Q(QTy) to ensure that all intermediary
results have linear size. Once the secret shares of ŷ are obtained, they are Beaver partitioned to
use in future computation.

Next, note that computing the following summary statistics are sufficient for computing the CA
statistics:

sxj :=
∑

i x̂ji,∀j ∈ {1, . . . ,mqc},
sxxj :=

∑
i x̂

2
ji,∀j ∈ {1, . . . ,mqc},

sxyj :=
∑

i x̂jiŷi,∀j ∈ {1, . . . ,mqc},
sy :=

∑
i ŷi,

syy :=
∑

i ŷ
2
i .

We can directly calculate sy and syy from the secret shares of ŷ. In addition, note sxyj can be com-
puted using the uncorrected xj , since taking the inner product with ŷ, which is already projected
onto the null space of Q, ensures that the component of x residing in the covariate space will be
ignored. Thus, we compute sxyj as

∑
i xjiŷi for all j, which is a depth-one circuit with output size

mqc.
It remains to show how to compute sxj and sxxj . Let X be an nqc ×mqc matrix constructed by

horizontally concatenating xj for all j (i.e., xj is placed in the j-th column of X). We express the
required computation in terms of matrices as

sx = 1Tnqc
(Inqc×nqc −QQT)X

= 1Tnqc
X− (1Tnqc

QQT)X,

sxx = diag(XT (Inqc×nqc −QQT)X)

= diag(XTX)− diag((QTX)T (QTX)),

where we write 1nqc to denote the nqc-dimensional vector consisting of all ones. Next, we simplify
the computation by defining

u := QQT1nqc ,

B := QTX,

both of which have size linear in the input dimensions and thus, can be evaluated without incurring
a quadratic communication cost. The remainder of the computation is computed as

sx = 1Tnqc
X− uTX,

sxx = diag(XTX)− diag(BTB),

which are depth-one circuits with output size only mqc each.
After all of the summary statistics have been computed, the CA statistics can be obtained via

secure multiplications and invocations of SqrtAndSqrtInverse (or Divide) over length-mqc vectors
in accordance with Eq. (4). We formally describe our procedure CochranArmitage for efficiently
computing CA statistics in Protocol 33.

Nature Biotechnology: doi:10.1038/nbt.4108

Protocol 33: [r2](f) ←CochranArmitage([X], [y], [Uψ](f), [C])

Require: Genotype matrix X ∈ {0, 1, 2}n×m, phenotype vector y ∈ {0, 1}n×1, top ψ principal
components Uψ ∈ Rn×ψ, additional covariate matrix C ∈ {0, 1}n×`

1: /* Obtain covariate subspace */

2: [U′](f) ←
[
[U](f) 2f [C]

]
∈ Zn×(ψ+`)q

3: [Q](f), [R](f) ← QRFactorizeRectangle([U′](f))
4:

5: /* Calculate corrected phenotypes */

6: [QTy](f) ← [QT](f)[y]
7: [QQTy](f) ← Truncate([Q](f)[QTy](f), k + f, f)
8: [ŷ](f) ← 2f [y]− [QQTy](f)

9: [u](f) ← Truncate([Q](f)[QT](f)1(ψ+`), k + f, f)
10:

11: /* Calculate summary statistics */

12: [sx](f) ← 2f1Tnqc
[X]− [uT](f)[X]

13: [sxy](f) ← [ŷT](f)[X]
14: [sxx](f) ← 1Tn ([X] ◦ [X]), where [X] ◦ [X] denotes the element-wise product of X with X
15: [B](f) ← [QT](f)[X]
16: [diag(BTB)](f) ← Truncate(1T(ψ+`)([B](f) ◦ [B](f)), k + f, f)

17: [sxx](f) ← [sxx](f) − [diag(BTB)](f)

18: [sy](f) ← [ŷT](f)1n
19: [syy](f) ← Truncate([ŷT](f)[ŷ](f), k + f, f)
20:

21: /* Calculate test statistics */

22: [s̄y](f) ← Truncate(Ef (1
N)[sy](f), k + f, f)

23: [s̄x](f) ← Truncate(Ef (1
N)[sx](f), k + f, f)

24: [a](f) ← [sxy](f) −N · Truncate([s̄x](f)[s̄y](f), k + f, f)
25: [b1]

(f) ← [syy](f) −N · Truncate([s̄p](f)[s̄y](f), k + f, f)
26: [b2]

(f) ← [sxx](f) −N · Truncate([s̄x](f)[s̄x](f), k + f, f)
27: [
√

b1]
(f), [1/

√
b1]

(f) ← SqrtAndSqrtInverse([b1]
(f)) (in parallel with Line 28)

28: [
√

b2]
(f), [1/

√
b2]

(f) ← SqrtAndSqrtInverse([b2]
(f))

29: [1/
√

b](f) ← Truncate([1/
√

b1]
(f)[1/

√
b2]

(f), k + f, f)
30: [r](f) ← Truncate([a](f)[1/

√
b](f), k + f, f)

31: [r2](f) ← Truncate([r](f)[r](f), k + f, f)
32: return [r2](f)

9.6 Output Reconstruction

At the end of our GWAS protocol, the computing parties CP1 and CP2 reveal their individual shares
of the association statistics via ReconstructSecret (Protocol 2) and publish the results. In addition,
they publish the results of the quality control filters from Phase 1 to facilitate the interpretation of
the released GWAS statistics. For instance, one may wish to distinguish whether a particular SNP
is deemed insignificant based on the association test or simply excluded from the analysis due to
poor quality.

Nature Biotechnology: doi:10.1038/nbt.4108

9.7 Precomputation

None of the computation by CP0 in our overall protocol for GWAS depends on input values, and
thus can be performed entirely in advance in a preprocessing phase. The one exception is the
filtering step in Phase 1. The auxiliary computing party CP0 needs the results of the filtering step
to obtain the data dimensions used in the subsequent computation and use the appropriate Beaver
partitions obtained during the initial data sharing phase. Thus, CP0 performs the precomputation
in stages: once before initial data sharing and once after each filtering stage in Phase 1. Note CP0

can remain offline for the entirety of Phases 2 and 3.

9.8 Overall Complexity

To summarize, excluding the initial data sharing phase, our secure GWAS protocol requires commu-
nication complexity for both precomputation and online computation phases only linear in number
of individuals and number of SNPs in the data. This is enabled by the following technical contri-
butions:

• our generalized Beaver partitioning method, which allows for efficient evaluations of depth-
one circuits (e.g., matrix multiplication) and effective reuse of Beaver partitioned data for
multiple operations (Supplementary Note 3),

• our use of shared random streams (PRGs) to enable Beaver partitioning without any com-
munication between CP0 and the other computing parties (Supplementary Note 7),

• our use of a randomized PCA algorithm for population stratification analysis, which reduced
a large matrix factorization problem to a tiny constant-sized matrix (Section 9.4), and

• our careful restructuring of the required computations to ensure that all intermediary results
have linear sizes (e.g., Section 9.5).

9.9 Privacy Guarantees

The security of our end-to-end GWAS protocol reduces to the security of the underlying building
blocks we use. More precisely, the view of each computing party in each of the subprotocols consist
of uniformly random values (or values that are statistically close to uniform). As explained in the
security section of Supplementary Note 5, we choose a large enough statistical security parameter κ
to achieve an overall statistical distance (or equivalently, an adversary’s distinguishing advantage)
< 2−30 between each computing party’s view and an ideal distribution where all of the messages
exchanged in the protocol consist of uniformly random values. This ensures no information about
the underlying input genotypes and phenotypes is leaked to the computing parties during the
computation.

Therefore, the only information about the input that is “leaked” are the publicly-revealed GWAS
results computed by our protocol, which include the association test statistics and the output of the
quality control filters. The quality control results consist of binary-valued inclusion/exclusion status
of each individual or SNP, and in realistic GWAS scenarios, do not pose a significant privacy risk
for the participants. For example, our per-individual filter reveals only whether a study participant
had poor genotyping (too many missing genotypes) or has too many or too few heterozygous
sites across the whole genome. The link between such high-level and limited information (a single
bit) and the raw genotypes at individual SNPs is extremely tenuous. On the other hand, the
association results arguably contain more information about the raw genotypes. We can compose

Nature Biotechnology: doi:10.1038/nbt.4108

our protocols with techniques based on differential privacy [25] (as a post-processing step) to assuage
these concerns [26, 27]. However, at the scale of a million individuals or more, we expect the risk
of releasing such summary statistics to be considerably small.

Nature Biotechnology: doi:10.1038/nbt.4108

Supplementary Note 10: Towards Stronger Security Guarantees

10.1 Relaxing the No-Collusion Assumption

The security of our protocol assumes the computing parties do not collude with each other. In
settings where it is difficult to justify this assumption, we can introduce additional computing
parties to ensure tolerance against a bounded number of collusions in the online (namely, input-
dependent) phase of the computation. Note that we still need to assume a semi-honest (and
non-colluding) CP0 in the precomputation phase. In particular, instead of secret sharing the data
between two main computing parties CP1 and CP2, we can distribute the private input x across n
such entities CP1, . . . ,CPn such that CPi for 1 ≤ i ≤ n − 1 holds an independent and uniformly
random number as its share ([x]i = ri), and CPn holds [x]n = x −

∑n−1
i=1 ri. Analogous to the

two-party case, we have the property that
∑

i[x]i = x. Here, as long as there exists a single honest
party that does not collude, x remains perfectly hidden. Our building block protocols can be
easily extended to handle secret shares over more than two parties. In the extended version of our
Beaver partitioning approach, CP0 still obtains the blinding factors in the clear, so we require that
CP0 does not collude with the other parties. In summary, the relaxed security assumption in the
(n + 1)-party setting (including CP0) is that CP0 and at least one other CP are honest (i.e., do
not collude with the other parties). The main benefit of this setup is that the protocol is able to
tolerate collusion among the other n− 1 computing parties in the online phase of the computation.
As a tradeoff, however, the overall communication scales linearly with the number of computing
parties involved.

10.2 Handling Active Adversaries

Our protocol provides security against semi-honest adversaries, namely adversaries that honestly
follow the protocol execution, but may subsequently try to learn additional information about
other parties’ private inputs. In some scenarios, it may be necessary to ensure security even against
malicious or active adversaries. For instance, if one of the computing parties is compromised or
subverted during the computation, then it may deviate from the protocol specification in order to
learn additional information about the participants’ genomes.

In the last few years, an elegant line of work [3, 4, 6, 28] has introduced secret-sharing-based
multiparty computation protocols with an optimal online phase which provides security against
active (i.e., malicious) adversaries that may deviate from the protocol execution. The same tech-
niques can be applied to our protocol to achieve security against active adversaries in the online
phase of the computation. We describe the main idea used in the SPDZ protocol here [3] and how
to extend it to our protocol. For simplicity, we describe our extension in the two-party setting, but
everything generalizes naturally to the multiparty setting.

Secret-shared authenticated values. First, in the precomputation phase of the protocol, CP0

samples a random field element α
r← Zq and secret shares it with the computing parties CP1 and

CP2. The secret element α serves as a secret key for an information-theoretic message authentication
code (MAC) that is used to authenticate the secret-shared data and validate the outputs of the
computation. Then, in the online phase of the computation, an authenticated secret-sharing of a
value x ∈ Zq is represented as follows:

[x] := 〈(δ, [x]1, [α(x+ δ)]1), (δ, [x]2, [α(x+ δ)]2)〉 ,

Nature Biotechnology: doi:10.1038/nbt.4108

where δ ∈ Zq is some public scalar (known to all parties). At a high level, each computing party
possesses a share of the input x as well as a share of the MAC αx on x.

Computing on authenticated shares. It is straightforward to see that

[x] + [y] = [x+ y] and a · [x] = [ax] and [x] + a = [x+ a], (5)

where [x]+[y] denotes component-wise addition, a·[x] denotes component-wise scalar multiplication,
and

[x] + a := 〈(δ − a, [x]1 + a, [α(x+ δ)]1), (δ − a, [x]2, [α(x+ δ)]2)〉 .

Thus, computing linear functions on secret-shared authenticated values is almost identical to com-
puting linear functions of normal secret-shared values (Supplementary Note 2). Multiplication relies
on Beaver multiplication triples as before. In particular, given two secret-shared authenticated val-
ues [x], [y], and an authenticated sharing of a multiplication triple ([a], [b], [c]) where c = ab, the
parties can compute an authenticated secret-sharing of the product [xy]. Specifically, the parties
first reveal the values x− a and y − b (but not their MACs). Then, they compute

[xy] := (x− a)(y − b) + (x− a)[b] + (y − b)[a] + [c],

exactly as in Protocol 7 using the linear relations defined in Eq. (5). Moreover, our generaliza-
tion of Beaver multiplication triples (Supplementary Note 3) directly applies to reduce the online
communication costs of computing on authenticated values as our generalized Beaver partitioning
method only requires computing linear relations over secret-shared authenticated values.

Validating the MAC. At the end of the computation, all of the computing parties have an
authenticated secret-sharing [y] of the output y. In the semi-honest version of the protocol, the
computing parties would simply publish their shares of the output, and reconstruct the final output
of the computation. In the actively-secure protocol, all of the parties first validate the MAC on the
output and only if the MAC verification succeeds do the (honest) parties publish their shares. This
step of the computation is identical to the output verification step in the SPDZ protocol described
in [3, Fig. 1], and we refer the reader to there for the full description. Thus, we can apply the
SPDZ techniques to provide active security in the online phase of the computation. The additional
computational overhead needed to achieve active security in the online phase of the protocol is
essentially a factor of two (since each party has to perform computations on both the secret-shared
values as well as their MACs). The communication complexity in the online phase is unchanged
since only the blinded inputs (and not their MACs) need to be revealed for each Beaver partitioning
operation. The protocol also scales naturally to more than two parties (for instance, if we wanted
to additionally apply the transformation in the previous section).

Initial data sharing. To leverage the SPDZ techniques for active security in the online setting,
we assumed that each of the computing parties have secret-shared authenticated values (rather
than vanilla secret-shared values). Thus, we need to adapt the initial data sharing procedure
(between the study participants SP and the computing parties CP) so that the computing parties
possess authenticated shares of the participants’ input. We achieve this using a simple adaptation
of the SPDZ input-sharing procedure. To simplify the description, assume for now that each SPi
contributes just a single input xi ∈ Zq. The protocol naturally generalizes to the setting where
each study participant contributes a vector of field elements. During the precomputation phase,
for each study participant SPi, the auxiliary computing party CP0 secret-shares a random value [ri]

Nature Biotechnology: doi:10.1038/nbt.4108

where ri
r← Zq with each of the computing parties. To contribute its input to the study, SPi first

interacts with CP0 to obtain the blinding factor ri. It then sends the blinded value xi−ri to each of
the computing parties. Since the computing parties possess an authenticated sharing of [ri], they
can locally compute an authenticated secret-sharing of [ri] + (xi − ri) = [xi], exactly as required
for the online protocol. Note that here, we can use the same trick from Supplementary Note 7
and have CP0 derive the randomness ri from a PRG. Then, the total communication between CP0

and each SPi consists of only a single (short) PRG seed. Compared to the semi-honest protocol,
there is increased communication between CP0 and one of the computing parties CPi since CP0

needs to send over a share of ri (the other shares can also be derived from a PRG as before).
The communication from the study participant to the computing parties also increases, since it
now needs to broadcast xi − ri to all computing parties. However, the resulting protocol provides
stronger security in the online setting.

Security discussion. By relying on the SPDZ protocol for the online phase of the computation,
our online protocol is secure against even if one of the computing parties is actively malicious. More
generally, in the extended setting with additional computing parties, the online phase provides
security against an active adversary that corrupts all but a single computing party. However, the
resulting protocol still relies on a semi-honest precomputation phase. In other words, security of the
online phase relies on correctly-generated authenticated secret-shared (generalized) Beaver triples,
as well as CP0 not colluding with any of the computing parties in the online phase. While this
may seem like a strong assumption, it is important to keep in mind that the precomputation phase
is input-independent, and moreover, we only need CP0 to be a “trusted dealer” (as opposed to a
trusted party that possibly sees private inputs). More precisely, CP0 can be modeled as a “write-
only” party since we can structure the protocol such that it never needs to receive any message
from another party during the protocol execution. This means that an adversary who only corrupts
CP0 does not compromise privacy of any of the study participants’ inputs.

Nature Biotechnology: doi:10.1038/nbt.4108

Supplementary Note 11: Other Cryptographic Frameworks

Here, we provide a ballpark assessment of the applicability of other existing cryptographic frame-
works for secure computation, namely homomorphic encryption (HE) [29] and garbled circuits
(GC) [12], for securely evaluating large-scale GWAS. HE refers to an encryption scheme that al-
lows certain types of computation to be performed over the private input by manipulating the
ciphertexts without decrypting them. Unlike our multiparty solution, HE computation can be car-
ried out by a single party, albeit with greater computational overhead. The current state-of-the-art
HE schemes can evaluate a single multiplication in 0.1 seconds [30]. Given that the number of
multiplication gates in just the PCA computation is loosely lower-bounded by the number of ele-
ments in the genotype matrix, existing HE solutions already require over 30 years of computation
to evaluate PCA over a matrix of one million individuals and a reduced set of 10K SNPs, which is
clearly infeasible.

On the other hand, Yao’s GC protocol is a two-party protocol that enables secure evaluation of
arbitrary functionalities (represented as Boolean circuits). In Yao’s protocol, one of the parties (i.e.,
the “garbler”) takes the Boolean circuit, and encrypts and permutes (i.e., “garbles”) the circuit.
The other party (i.e., the “evaluator”) is then able to evaluate the garbled circuit and learn the final
output, but nothing else about the other party’s input. While Yao’s protocol require just two rounds
of communication for arbitrary computation, the size of the Boolean circuit needed to evaluate our
large-scale GWAS computation is prohibitively large. This is due to the fact that GWAS evaluation
consists primarily of arithmetic operations. Converting an arithmetic circuit to a Boolean circuit
incurs a non-negligible overhead, which is typically linear or quadratic in the bit-length of the values.
For example, assuming the same number of bits (60) are used to represent a single number as in
our method (using the fixed-point representation), a pairwise multiplication using the Karatsuba
algorithm requires roughly 600 AND gates. At 128-bits of security, we require 32 bytes to represent
a single AND gate in a garbled circuit [31]. Thus, a single pairwise multiplication requires 20.6 KB
of communication. Using the same lower-bound for the number of multiplication gates as in our
analysis of HE, communicating a garbled circuit for performing PCA requires roughly 190 PB for
a million individuals and 10K SNPs. This is well beyond the feasible realm.

Note our estimates above are very loose lower-bounds, and thus we expect the computational
burden of the current state-of-the-art HE and GC frameworks for large-scale GWAS to be even
greater in practice.

Nature Biotechnology: doi:10.1038/nbt.4108

Supplementary Note 12: Towards Logistic Regression Analysis

In case-control studies where the phenotype of interest is binary (e.g., disease status), logistic
regression analysis is often used in conjunction with Cochran-Armitage (CA) trend tests to quantify
the candidate SNP’s impact on phenotypic odds ratio (e.g., disease risk). To this end, one typically
trains a logistic regression model for each SNP that predicts the phenotype based on the SNP’s
minor allele dosage as well as other covariate features, such as age, gender, and population weights
(captured by principal components). The estimated model parameter for minor allele dosage is
interpreted as the marginal effect of the SNP on the odds ratio and is often reported with top
GWAS hits.

Secure evaluation of logistic regression is very challenging. Unlike CA tests, where the required
computation can be formulated as a few rounds of matrix multiplications and division (see Pro-
tocol 33), training a logistic regression model not only requires frequent evaluation of the sigmoid
function (highly nonlinear), but also relies on iterative optimization techniques for parameter es-
timation (e.g., stochastic gradient descent). These aspects greatly increase the complexity of the
overall computation. To illustrate, a recent work based on homomorphic encryption reported a
runtime of 30 seconds for a single evaluation of the sigmoid function [32]. Applying this tech-
nique to GWAS with a million individuals would result in a runtime of almost a year for a single
pass through the data set, which is clearly not feasible considering that gradient descent methods
typically require many passes through the data.

The efficient secure computation techniques we introduced for GWAS offer a more tractable
approach for performing logistic regression at large-scale. Notably, we approximate the sigmoid
function (more precisely, its logarithm: − log(1 + exp(−x))) as a piecewise-linear function (with 64
segments to ensure high accuracy). Given a private input, we perform secure binary search of depth
six—implemented as a sequence of secure comparisons (Protocol 21)—to determine which segment
the input belongs to. Then, we retrieve the coefficients of the corresponding linear function via
secure table lookup (Protocol 11). Given these coefficients, the (approximate) output of sigmoid
and its derivative can be easily computed, non-interactively.

The rest of the computation in logistic regression can be handled by our MPC framework in
a straightforward manner. Importantly, our novel generalization of Beaver multiplication triples
(Supplementary Note 3) is critical for obtaining an efficient protocol for the stochastic gradient
descent (SGD) algorithm, which heavily depends on matrix multiplications and displays high data
reuse patterns. In particular, a näıve approach using Beaver multiplication triples would freshly
blind/Beaver-partition the input matrix for every iteration, which is infeasible at our scale; with
our technique, Beaver-partitioning is performed only once.

Even with our advances, logistic regression imposes an overwhelming computational burden
when applied to hundreds of thousands of SNPs in a typical GWAS data set. In practice, we
suggest a two-step approach where CA tests are first used to narrow down the set of candidate
SNPs with tangible association signals and we consider only the chosen SNPs in a subsequent
logistic regression analysis.

We implemented logistic regression in our secure MPC framework and tested it on our bench-
mark lung cancer data set. Our protocol accurately computed the odds ratios for 100 SNPs within a
day of runtime (Supplementary Figure 2). Extrapolating to a million-individual data set, we expect
a runtime of approximately three months for computing the odds ratios for 100 SNPs. Note that
the actual runtime may be substantial shorter as the number of passes through the data (“epochs”)
until the convergence of SGD may be smaller for larger data sets given that our models have only
few predictive features. While further improvements are needed to achieve genome-wide scalability
of secure logistic regression, our results suggest that obtaining the odds ratios for a small subset of

Nature Biotechnology: doi:10.1038/nbt.4108

SNPs is currently feasible as newly enabled by our techniques.
Recently, Mohassel and Zhang also introduced an implementation of privacy-preserving logis-

tic regression by combining techniques from secret-sharing-based MPC with garbled circuits [33].
Although they show that their protocol achieves practical runtimes for data sets containing up
to a million training instances, their improved scalability comes at the expense of accuracy. In
particular, a key factor that contributed to the scalability of their protocol is their use of a coarse
approximation of the sigmoid function (namely, as a piecewise linear function with three segments).
While this approximation may suffice for obtaining competitive predictive performance (the focus
of their work) for certain data sets, it is too inaccurate in our GWAS setting where the goal is
to obtain an accurate estimate of the model parameters. Moreover, even with their coarse ap-
proximation, training a separate logistic regression model for each of the hundreds of thousands
of SNPs in a typical GWAS data set still requires several years of computation. We also observed
that, using our implementation, we can achieve runtimes that are comparable to their approach by
reducing the quality of our approximation of the sigmoid function and taking a similar number of
passes through the data set for SGD. This further illustrates the challenges of achieving a practical
solution for genome-wide logistic regression analysis under secure computation frameworks.

Nature Biotechnology: doi:10.1038/nbt.4108

Supplementary References

[1] Ben-Or, M., Goldwasser, S. & Wigderson, A. Completeness theorems for non-cryptographic
fault-tolerant distributed computation. In STOC, 1–10 (1988).

[2] Bendlin, R., Damg̊ard, I., Orlandi, C. & Zakarias, S. Semi-homomorphic encryption and
multiparty computation. In EUROCRYPT, 169–188 (2011).

[3] Damg̊ard, I., Pastro, V., Smart, N. P. & Zakarias, S. Multiparty computation from somewhat
homomorphic encryption. In CRYPTO, 643–662 (2012).

[4] Damg̊ard, I. et al. Practical covertly secure MPC for dishonest majority - or: Breaking the
SPDZ limits. In ESORICS, 1–18 (2013).

[5] Nielsen, J. B., Nordholt, P. S., Orlandi, C. & Burra, S. S. A new approach to practical
active-secure two-party computation. In CRYPTO, 681–700 (2012).

[6] Keller, M., Orsini, E. & Scholl, P. MASCOT: faster malicious arithmetic secure computation
with oblivious transfer. In ACM CCS, 830–842 (2016).

[7] Beaver, D. Efficient multiparty protocols using circuit randomization. In CRYPTO, 420–432
(1991).

[8] Kamara, S., Mohassel, P. & Raykova, M. Outsourcing multi-party computation. IACR Cryp-
tology ePrint Archive 272 (2011).

[9] Bogdanov, D., Laur, S. & Willemson, J. Sharemind: A framework for fast privacy-preserving
computations. In ESORICS, 192–206 (2008).

[10] Chandra, A., Fortune, S. & Lipton, R. Lower bounds for constant depth circuits for prefix
problems. Automata, Languages and Programming 109–117 (1983).

[11] Damgard, I., Fitzi, M., Kiltz, E., Nielsen, J. B. & Toft, T. Unconditionally Secure Constant-
Rounds Multi-party Computation for Equality, Comparison, Bits and Exponentiation. In
Theory of Cryptography, 285–304 (Springer, 2006).

[12] Yao, A. C. Protocols for secure computations (extended abstract). In FOCS, 160–164 (1982).

[13] Catrina, O. & Saxena, A. Secure computation with fixed-point numbers. In International
Conference on Financial Cryptography and Data Security, 35–50 (Springer, 2010).

[14] Goldreich, O. The Foundations of Cryptography - Volume 1, Basic Techniques (Cambridge
University Press, 2001).

[15] Nishide, T. & Ohta, K. Multiparty computation for interval, equality, and comparison without
bit-decomposition protocol. In International Workshop on Public Key Cryptography, 343–360
(Springer, 2007).

[16] Markstein, P. Software division and square root using goldschmidts algorithms. In Proceedings
of the 6th Conference on Real Numbers and Computers, vol. 123, 146–157 (2004).

[17] Dahl, M., Ning, C. & Toft, T. On secure two-party integer division. In International Conference
on Financial Cryptography and Data Security, 164–178 (2012).

Nature Biotechnology: doi:10.1038/nbt.4108

[18] Seiler, M. C. & Seiler, F. A. Numerical recipes in c: the art of scientific computing. Risk
Analysis 9, 415–416 (1989).

[19] Ortega, J. M. & Kaiser, H. F. The llt and qr methods for symmetric tridiagonal matrices. The
Computer Journal 6, 99–101 (1963).

[20] Wang, T.-L. Convergence of the tridiagonal qr algorithm. Linear Algebra and Its Applications
322, 1–17 (2001).

[21] Laurie, C. C. et al. Quality control and quality assurance in genotypic data for genome-wide
association studies. Genetic Epidemiology 34, 591–602 (2010).

[22] Price, A. L. et al. Principal components analysis corrects for stratification in genome-wide
association studies. Nature Genetics 38, 904–909 (2006).

[23] Halko, N., Martinsson, P.-G. & Tropp, J. A. Finding structure with randomness: Probabilistic
algorithms for constructing approximate matrix decompositions. SIAM Review 53, 217–288
(2011).

[24] Charikar, M., Chen, K. & Farach-Colton, M. Finding frequent items in data streams. Theo-
retical Computer Science 312, 3–15 (2004).

[25] Dwork, C. Differential privacy. In ICALP, 1–12 (2006).

[26] Simmons, S., Sahinalp, C. & Berger, B. Enabling Privacy-Preserving GWASs in Heterogeneous
Human Populations. Cell Systems 3, 54–61 (2016).

[27] Simmons, S. & Berger, B. Realizing Privacy Preserving Genome-Wide Association Studies.
Bioinformatics 32, 1293–1300 (2016).

[28] Damg̊ard, I. & Nielsen, J. Scalable and unconditionally secure multiparty computation. Ad-
vances in Cryptology-CRYPTO 2007 572–590 (2007).

[29] Gentry, C. Fully Homomorphic Encryption Using Ideal Lattices. STOC (2009).

[30] Chillotti, I., Gama, N., Georgieva, M. & Izabachene, M. Faster fully homomorphic encryption:
Bootstrapping in less than 0.1 seconds. ASIACRYPT 10031, 3–33 (2016).

[31] Zahur, S., Rosulek, M. & Evans, D. Two halves make a whole: Reducing data transfer in
garbled circuits using half gates. In EUROCRYPT, 220–250 (2015).

[32] Bos, J. W., Lauter, K. & Naehrig, M. Private predictive analysis on encrypted medical data.
Journal of Biomedical Informatics 50, 234–243 (2014).

[33] Mohassel, P. & Zhang, Y. Secureml: A system for scalable privacy-preserving machine learning.
Cryptology ePrint Archive 396 (2017).

Nature Biotechnology: doi:10.1038/nbt.4108

	Our Protocol Setup
	Secure Multiparty Computation Review
	Notation
	Secret Sharing
	Computing on Secret-Shared Data

	Our Generalization of Beaver Multiplication Triples
	Comparison with Beaver Multiplication Triples
	Scenario 1: Depth-One Circuits (e.g., Matrix Multiplication)
	Scenario 2: Variable Reuse
	Scenario 3: Exponentiation

	Our Protocol Building Blocks
	Table Lookup
	Bitwise Operations

	Computing with Fixed-Point Numbers
	Data Representation
	Arithmetic Operations
	Field Conversion
	Comparison
	Division and Square Root

	Our Choice of Base Primes
	Further Optimization with Shared Random Streams
	Our Secure Linear Algebra Subroutines
	Our Secure GWAS Protocol
	Input Data
	Initial Data Sharing
	Phase 1: Quality Control
	Phase 2: Population Stratification Analysis
	Phase 3: Association Tests
	Output Reconstruction
	Precomputation
	Overall Complexity
	Privacy Guarantees

	Towards Stronger Security Guarantees
	Relaxing the No-Collusion Assumption
	Handling Active Adversaries

	Other Cryptographic Frameworks
	Towards Logistic Regression Analysis

