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SUPPLEMENTARY RESULTS 

 

 

 

 

Supplementary Note 1│Mathematical analysis of the polyhedral topologies composed of 

a single chain. 

 

Suppose a polyhedron P is composed of a single polymer chain. Then P can be naturally 

represented with the digraph D(P) whose vertices are the end-points of segments and its arcs 

follow the orientations of the segments. Since the arcs of D(P) appear in pairs, D(P) is an 

Eulerian digraph, moreover, the segments of the polymer chain correspond to an Eulerian 

tour T in D(P). In order for P to be stable, T must fulfill the following conditions for every 

vertex u of D(P): 

 

(i) after T enters u from a vertex v, it does not immediately continue (return) to v;  

(ii) after T passes u as wuv  , it later neither passes u as wuv   nor as 

vuw  .  

 

Conditions (i) and (ii) are illustrated in Supplementary Fig. 1.  

 

 

 

Supplementary Figure 1│Constraints for allowed types of vertices for stable polyhedra. 

(a-c) Non-allowed paths that lead to the unstable vertex, shown in an example of a vertex 

with 4 converging edges, which is also relevant for vertices of other types. This type of 

connection does not lock all paths of the vertex. (d-f) Examples of two types of allowed 

connections in the vertices converging four (d,e) and three edges (f). 

 

If (i) and (ii) hold for a vertex u we say that u is stable (with respect to T). If every 

vertex of D(P) is stable (with respect to T) then T is called stable. Hence a realization of a 

polyhedron P with a single polymer chain corresponds to a stable Eulerian tour in D(P).  

Let now G be an arbitrary connected graph. Then the double of G is the graph G' 

obtained from G by replacing each of its edges with two parallel edges. Such a pair of edges 

will be called a double edge. Call a graph G realizable (with a single-chain self-assembling 
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polypeptide) if its double G' contains a stable Eulerian tour. We point out that an Eulerian 

tour T is completely defined with the sequence of its edges. That is, a start (and an end) of T 

is not considered as a property of T. With this convention, condition (i) implies that the arc 

corresponding to the first segment of a polymer chain and the arc corresponding to its last 

segment must not be on the same double edge. 

 

If G contains a vertex of degree 1 or a vertex of degree 2, then it is not realizable. Hence 

we next look to cubic graphs, that is the graphs whose every vertex is of degree 3, so that 

every vertex of the double of G is of degree 6. (Note that the tetrahedron is the smallest cubic 

graph.) For a cubic graph, a test whether it is realizable can be simplified using the following 

observation.  

 

Lemma 1: Let T be an Eulerian tour in the double of a graph G and let u be a vertex of 

degree 3 in G. Then u is stable (w. r. t. T) if and only if (i) is fulfilled for u.  

Proof: We only need to show that (ii) holds for u provided (i) is true. Suppose on the 

contrary that (ii) does not hold. Then together with subsections wuv  , the tour T either 

contains the subsection wuv   once more or the subsection vuw  . Since u is of 

degree 3 in G, and hence of degree 6 in the double of G, T must enter u once more, say from 

x. But then, since all the other edges are already used, T must return to x, a contradiction with 

the assumption that (i) holds for u.  

 

Using Lemma 1 we next prove that every cubic graph (in particular every cubic 

polyhedron) is realizable. 

 

Theorem 1: All connected cubic graphs are realizable.  

Proof: Let G’ be the double of G. Let m be the number of edges of G, so that G’ has 2m 

edges. Call consecutive arcs of an Eulerian tour that traverse the edges of a double edge one 

after the other a bad pair. By Lemma 1 it suffices to prove that G’ admits an Eulerian tour 

with no bad pair. Since every vertex of G’ is even (of degree 6), G’ contains an Eulerian tour. 

Select an arbitrary tour in G’, say  

1221 vvvvT m    

and let s be the number of bad pairs of T. If 0s , there is nothing to be proved. Hence 

suppose that 1s . We may without loss of generality assume (because we can start the tour 

in any vertex) that T begins with  1321 vvvv  . Select an index i such that 2vvi   

and such that 3i  is as small as possible. Note that such an index exists because the degree 

of 2v is at least 2. Observe also that 5i  and that 211 ,vvvi   . Consider now the sequence 

12212142121' vvvvvvvvvvvT miiii    . 

It is straightforward to see that T’ is an Eulerian tour in G’. The bad pair 1321 vvvv   

of T is no longer a bad pair in T’. Moreover, the second arc 21 vv  does not form a bad pair 

with 12  ivv  as well as not the arcs 14 vv  and 21 vv  . Any other bad pair of T’ 

corresponds to a bad pair in T. It follows that T’ has at most 1s  bad pairs. Repeating the 

procedure we end up with an Eulerian tour with no bad pair. 

 

 

We now treat stable Eulerian tours in the key object of this paper, the tetrahedron.  
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Theorem 2: Up to symmetries, the double of the tetrahedron admits exactly three stable 

Eulerian tours. More precisely, the tetrahedron can be composed from a single polymer chain 

in exactly one of the following three ways (Supplementary Fig. 2):  

 

(i) 1, 2, 3, 1, 2, 4, 3, 1, 4, 3, 2, 4, 1  

(ii) 1, 2, 3, 1, 2, 4, 3, 2, 4, 1, 3, 4, 1 

(iii) 1, 2, 4, 1, 2, 3, 4, 1, 3, 2, 4, 3, 1.   

 

 

Supplementary Figure 2│Topological solutions of self-assembling tetrahedron from a 

single polypeptide chain. A tetrahedron can be composed from a single polymer chain in 

exactly one of the three illustrated ways. We designed the polypeptide chain TET12 

according to the topology (i). 

 

 

Proof: Let T be the graph of the tetrahedron. We need to classify the stable Eulerian 

tours in its double T’. To do it, recall that by Lemma 1 we only need to check condition (i) for 

the vertices of T’. Since T’ is a 6-regular graph, an Eulerian tour in T’ enters (and exits) each 

of its vertices three times. Therefore, only two types of vertices are possible (Supplementary 

Fig. 3): 

 

P2A – combining two parallel and one antiparallel segments 

A3 – combining three antiparallel segments. 

 

Supplementary Figure 3│Two types of vertices existing in a cubic polyhedron. The 

number of incoming and outcoming helices have to be equal. 

 

 

Denote the vertices of T (and hence also of T’) with 1, 2, 3, 4, and let D be a stable 

Eulerian tour. It is not difficult to see that there are only three possibilities for vertices: there 

are four A3 vertices, there are four P2A vertices, or there is one A3 and three P2A vertices. 

We treat them one by one.  
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Case 1: All the vertices are A3.  

Suppose first that D contains a cycle of length 3. By symmetry, we may assume that D starts 

with 1, 2, 3, 1. Since vertex 1 is of type A3, we necessarily have D = 1, 2, 3, 1, 4, … In the 

first subcase assume D continues to 2. Then, having in mind that all vertices are A3 and that 

D has no bad pair, we must necessarily have D = 1, 2, 3, 1, 4, 2, 1 3, … Continuing with 4, 

the vertex 1 would be a dead end, hence we necessarily have D = 1, 2, 3, 1, 4, 2, 1 3, 2, 4, 3, 

4, …, a contradiction as D contains a bad pair. In the second subcase assume D continues to 

3. Then D = 1, 2, 3, 1, 4, 3, 2, … If D continues to 1, then D = 1, 2, 3, 1, 4, 3, 2, 1, 3, 4, 2, 4, 

…, a contradiction, while if D continues to 4, then D = 1, 2, 3, 1, 4, 3, 2, 4, 1, 3, 4, 2, 1. But 

now the first and the last arc of D form a bad pair.  

Suppose that D contains no cycle of length 3. Then we may assume that D starts with 1, 

2, 3, 4, 1. Then D = 1, 2, 3, 4, 1, 3, 2, … D cannot continue with 1 because it has no 3-cycle, 

hence D = 1, 2, 3, 4, 1, 3, 2, 4, 3, …, so we have found a 3-cycle.  

We have thus proved that D cannot contain only type A3 vertices.  

 

Case 2: All the vertices are P2A.  

As in Case 1, it is easy to argue that D has at least one cycle of length 3. Hence, by 

symmetry, we may assume that D starts with 1, 2, 3, 1. If D continues with 2, then by case 

analysis we infer that D must necessarily be:  

(a) 1, 2, 3, 1, 2, 4, 3, 1, 4, 3, 2, 4, 1    

In the case when If D continues with 4, case analysis shows that D is one of the 

following:  

(b) 1, 2, 3, 1, 4, 3, 1, 2, 4, 3, 2, 4, 1 

(c) 1, 2, 3, 1, 4, 3, 2, 4, 1, 2, 4, 3, 1 

(d) 1, 2, 3, 1, 4, 3, 2, 4, 3, 1, 2, 4, 1. 

Apply the permutation (1 2 4 3) to (b) and perform a corresponding shift to find out that 

(b) is the same (up to symmetries) stable Eulerian tour. Similarly, apply (1 3 4 2) to (c) and (1 

4)(2 3) to (d) to conclude that also (c) and (d) are the same as (a). This case thus gives us (i).  

 

Case 3: One vertex is A3, three vertices are P2A.  

It is again not difficult to see that D contains at least one 3-cycle. Suppose first that D does 

not contain the cycle on vertices 1, 2, 4. Then we may assume that D starts with 1, 2, 3, 1. But 

then it must continue with 2, 4. Moreover, by the case assumption, the next vertex is 3, and 

all the rest is fixed. We conclude that D is necessarily 

(a) 1, 2, 3, 1, 2, 4, 3, 2, 4, 1, 3, 4, 1. 

This gives the tour (ii). Assume next that D starts with 1, 2, 4, 1. Then case analysis 

gives us the following two possibilities:  

(b) 1, 2, 4, 1, 2, 3, 4, 1, 3, 2, 4, 3, 1 

(c) 1, 2, 4, 1, 3, 2, 4, 3, 1, 2, 3, 4, 1. 

Apply the permutation (1 2 4)(3) to (c) and a corresponding shift to get that (b) and (c) 

are the same (up to symmetries) tours and we have found the tour (iii).  

 

To conclude the proof note that (i) is clearly different from (ii) and from (iii) since (i) 

was obtained in a different case than (ii) and (iii). Finally, (ii) is different from (iii) because 

the Eulerian tour (iii) contains a cycle consisting of three consecutive vertices - the cycle 1, 2, 

4, 1 – all of which double edges are parallel. There is no such cycle in the Eulerian tour (ii). 

 

 

In order to predict applicability of our approach beyond the tetrahedron (alias triangular 

pyramid), we computed the number of stable Eulerian tours in the double of several 

additional, potentially interesting polyhedra: the square pyramid, the triangular bipyramid, 
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the triangular prism, the square prism (alias cube), and the square bipyramid (alias 

octahedron). In order to support our theoretical approach, computations were performed also 

on the double of the triangular pyramid. All enumerations were done with respect to the 

symmetries of the corresponding polyhedron. The obtained results are collected in 

Supplementary Table 1, where (i) and (ii) denote the two defining conditions for stable 

Eulerian tours and the symbols A and P indicate that Eulerian tours have only antiparallel and 

parallel segments, respectively. Hence the last two columns list the number of stable Eulerian 

tours with only antiparallel and parallel segments, respectively. The computed data indicates 

that the variety of stable Eulerian tours becomes relatively large when dealing with objects 

bigger than the tetrahedron. 
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Supplementary Table 1│Number of stable Eulerian tours in the double of some 

polyhedra. Note that the data for the triangular pyramid supports Theorem 2. The double of 

none of the first five polyhedra admits a stable Eulerian tour with only parallel segments, the 

reason being that each of these polyhedra contains vertices of degree 3. On the other hand, in 

the square bipyramid each vertex is of degree 4 and its double admits 275 stable Eulerian 

tours with all segments parallel. (i) and (ii) denote the two defining conditions for stable 

Eulerian tours and the symbols A and P indicate that Eulerian tours have only antiparallel and 

parallel segments, respectively. 

 

 

 

Polyhedron number 

of edges 

(i) + (ii) (i) + (ii) 

+ A 

(i) + (ii) 

+ P 

triangular pyramid 

(tetrahedron) 

6 3 0 0 

square pyramid 8 82 5 0 

triangular bipyramid 9 470 0 0 

triangular prism 9 25 2 0 

square prism 

(cube) 

12 40 0 0 

square bipyramid 

(octahedron) 

12 22246 0 275 
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Supplementary Table 2│List of the recombinant polypeptide amino acid sequences. 
Linkers SGPG between peptide segments are underlined. Sequences from vector are double 

underlined. 

 

Name / peptide 

sequence 

Amino acid sequence 

TET12    

  

APH-P3-BCR-

GCNsh-APH-P7-

GCNsh-P4-P5-P8-

BCR-P6 

MYHHHHHHSRAGMKQLEKELKQLEKELQAIEKQLAQLQWKAQARKKKLAQLKKKLQASG

PGSPEDEIQQLEEEIAQLEQKNAALKEKNQALKYGSGPGDIEQELERAKASIRRLEQEV

NQERSRMAYLQTLLAKSGPGQLEDKVEELLSKNYHLENEVARLKKLVGSGPGMKQLEKE

LKQLEKELQAIEKQLAQLQWKAQARKKKLAQLKKKLQASGPGSPEDEIQALEEKNAQLK

QEIAALEEKNQALKYGSGPGQLEDKVEELLSKNYHLENEVARLKKLVGSGPGSPEDKIA

QLKQKIQALKQENQQLEEENAALEYGSGPGSPEDENAALEEKIAQLKQKNAALKEEIQA

LEYGSGPGSPEDKIAQLKEENQQLEQKIQALKEENAALEYGSGPGDIEQELERAKASIR

RLEQEVNQERSRMAYLQTLLAKSGPGSPEDKNAALKEEIQALEEENQALEEKIAQLKYG 

SGTS 

TET11 

 

APH-P3-BCR-

GCNsh-APH-P7-

GCNsh-P4-P5-P8-

BCR 

MYHHHHHHSRAGMKQLEKELKQLEKELQAIEKQLAQLQWKAQARKKKLAQLKKKLQASG

PGSPEDEIQQLEEEIAQLEQKNAALKEKNQALKYGSGPGDIEQELERAKASIRRLEQEV

NQERSRMAYLQTLLAKSGPGQLEDKVEELLSKNYHLENEVARLKKLVGSGPGMKQLEKE

LKQLEKELQAIEKQLAQLQWKAQARKKKLAQLKKKLQASGPGSPEDEIQALEEKNAQLK

QEIAALEEKNQALKYGSGPGQLEDKVEELLSKNYHLENEVARLKKLVGSGPGSPEDKIA

QLKQKIQALKQENQQLEEENAALEYGSGPGSPEDENAALEEKIAQLKQKNAALKEEIQA

LEYGSGPGSPEDKIAQLKEENQQLEQKIQALKEENAALEYGSGPGDIEQELERAKASIR

RLEQEVNQERSRMAYLQTLLAKSGTS 

TET12Scr 

 

GCNsh-APH-APH-

P3-BCR- P7-GCNsh-

P4-P5-P8-BCR-P6 

MYHHHHHHSRAGQLEDKVEELLSKNYHLENEVARLKKLVGSGPGMKQLEKELKQLEKEL

QAIEKQLAQLQWKAQARKKKLAQLKKKLQASGPGMKQLEKELKQLEKELQAIEKQLAQL

QWKAQARKKKLAQLKKKLQASGPGSPEDEIQQLEEEIAQLEQKNAALKEKNQALKYGSG

PGDIEQELERAKASIRRLEQEVNQERSRMAYLQTLLAKSGPGSPEDEIQALEEKNAQLK

QEIAALEEKNQALKYGSGPGQLEDKVEELLSKNYHLENEVARLKKLVGSGPGSPEDKIA

QLKQKIQALKQENQQLEEENAALEYGSGPGSPEDENAALEEKIAQLKQKNAALKEEIQA

LEYGSGPGSPEDKIAQLKEENQQLEQKIQALKEENAALEYGSGPGDIEQELERAKASIR

RLEQEVNQERSRMAYLQTLLAKSGPGSPEDKNAALKEEIQALEEENQALEEKIAQLKYG 

SGTS 

TET12SplitYFP 

 

CYFP- APH-P3-

BCR-GCNsh-APH-

P7-GCNsh-P4-P5-P8-

BCR-P6-NYFP 

MYHHHHHHSRAGDKQKNGIKVNFKIRHNIEDGSVQLADHYQQNTPIGDGPVLLPDNHYL

SYQSALSKDPNEKRDHMVLLEFVTAAGITLGMDELYKSGSGMKQLEKELKQLEKELQAI

EKQLAQLQWKAQARKKKLAQLKKKLQASGPGSPEDEIQQLEEEIAQLEQKNAALKEKNQ

ALKYGSGPGDIEQELERAKASIRRLEQEVNQERSRMAYLQTLLAKSGPGQLEDKVEELL

SKNYHLENEVARLKKLVGSGPGMKQLEKELKQLEKELQAIEKQLAQLQWKAQARKKKLA

QLKKKLQASGPGSPEDEIQALEEKNAQLKQEIAALEEKNQALKYGSGPGQLEDKVEELL

SKNYHLENEVARLKKLVGSGPGSPEDKIAQLKQKIQALKQENQQLEEENAALEYGSGPG

SPEDENAALEEKIAQLKQKNAALKEEIQALEYGSGPGSPEDKIAQLKEENQQLEQKIQA

LKEENAALEYGSGPGDIEQELERAKASIRRLEQEVNQERSRMAYLQTLLAKSGPGSPED

KNAALKEEIQALEEENQALEEKIAQLKYGSGSGVSKGEELFTGVVPILVELDGDVNGHK

FSVSGEGEGDATYGKLTLKFICTTGKLPVPWPTLVTTFGYGLQCFARYPDHMKQHDFFK

SAMPEGYVQERTIFFKDDGNYKTRAEVKFEGDTLVNRIELKGIDFKEDGNILGHKLEYN

YNSHNVYIMASGTS 

TET11SplitYFP 

CYFP- APH-P3-

BCR-GCNsh-APH-

P7-GCNsh-P4-P5-P8-

BCR -NYFP 

MYHHHHHHSRAGDKQKNGIKVNFKIRHNIEDGSVQLADHYQQNTPIGDGPVLLPDNHYL

SYQSALSKDPNEKRDHMVLLEFVTAAGITLGMDELYKSGSGMKQLEKELKQLEKELQAI

EKQLAQLQWKAQARKKKLAQLKKKLQASGPGSPEDEIQQLEEEIAQLEQKNAALKEKNQ

ALKYGSGPGDIEQELERAKASIRRLEQEVNQERSRMAYLQTLLAKSGPGQLEDKVEELL

SKNYHLENEVARLKKLVGSGPGMKQLEKELKQLEKELQAIEKQLAQLQWKAQARKKKLA

QLKKKLQASGPGSPEDEIQALEEKNAQLKQEIAALEEKNQALKYGSGPGQLEDKVEELL

SKNYHLENEVARLKKLVGSGPGSPEDKIAQLKQKIQALKQENQQLEEENAALEYGSGPG

SPEDENAALEEKIAQLKQKNAALKEEIQALEYGSGPGSPEDKIAQLKEENQQLEQKIQA

LKEENAALEYGSGPGDIEQELERAKASIRRLEQEVNQERSRMAYLQTLLAKSGSGVSKG

EELFTGVVPILVELDGDVNGHKFSVSGEGEGDATYGKLTLKFICTTGKLPVPWPTLVTT

FGYGLQCFARYPDHMKQHDFFKSAMPEGYVQERTIFFKDDGNYKTRAEVKFEGDTLVNR

IELKGIDFKEDGNILGHKLEYNYNSHNVYIMASGTS 
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Supplementary Figures 4-11 
 

 

 

 

 
 

 

 

 

Supplementary Figure 4│Helical wheel diagram for parallel and antiparallel coiled-coil 

dimers. The sequence of seven amino acid residues (heptad repeat) is denoted by positions 

abcdefg. Positions a and d are typically occupied by hydrophobic residues forming a 

hydrophobic core. Positions e and g are frequently occupied by charged residues that by the 

formation of interhelical electrostatic interactions direct the parallel or antiparallel helix 

orientation. Stabilizing interactions between residues of the two helices are denoted by 

arrows. 
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Supplementary Figure 5│ Molecular model of the folded tetrahedron TET12. The model 

was prepared by using the MODELLER
33

 program as described in the online methods 

section. Scale bar below the model indicates 5 nm. 
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Supplementary Figure 6│Analysis of the orthogonality of the designed coiled-coil pair 

combinations used for the construction of the tetrahedron. CD spectra of synthetic 

peptides (a), orthogonal peptide pairs (b) or non-orthogonal peptide pairs (c) at concentration 

of 25 M in 20 mM Tris, pH 8.0, were recorded at 20

C. Spectra are the average of three 

scans.  
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Supplementary Figure 7│Purification of polypeptides TET12, TET12splitYFP, variants 

with deleted (TET11) and scrambled (TET12scr) segment order. (a) Polypeptide TET12 

(Mw = 53,391 Da) was expressed in the form of inclusion bodies (1), which were purified by 

chelating chromatography (2) and RP-HPLC (3). (b) SDS-PAGE of the purified polypeptides 

TET12 (1), TET11 (Mw = 49,381 Da) (2), TET12scr (Mw = 53,391 Da) (3), TET12splitYFP  

(Mw = 80,810 Da) (4) and TET11splitYFP (Mw = 76,800 Da) (5). SDS-PAGE was performed 

on a 12 % separation gel under non-reducing conditions and proteins were stained with a 

solution of Coomassie brilliant blue R (Sigma).  
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Supplementary Figure 8│Formation of aggregates produced by dialysis at high, 10 M 

TET12 polypeptide concentration. The hydrodynamic diameters above 80 nm were 

determined by DLS in three independent experiments with the calculated mean value ± s.d.  

of 100.2 ± 20.4 nm. Representative histogram of one experiment is shown.  
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Supplementary Figure 9│ Tetrahedral particles visualized by TEM. Samples of self-

assembled polypeptide tetrahedra were either stained with uranyl (a,b) or uranyl staining was 

used after 1.8-nm nanogold beads were bound to one vertex of the tetrahedron via (His)6 

peptide tag (c-f). Self-assembling procedures were performed by slow refolding of denatured 

polypeptide TET12. The samples were positively stained using either a short time (a) or a 

long time (b) staining procedure. Tetrahedral structures were obtained by slow refolding of 

chemically denatured polypeptide (c,d) or by slow annealing of temperature denatured 

polypeptide TET12 (e). Polypeptide structures were labeled by nanogold and subsequently 

stained with uranyl, for a short time (c,e) or a long time (d). (f) TET12splitYFP formed 

tetrahedral structures. Scale bars, 5 nm. 
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Supplementary Figure 10│Self-assembly of TET12 at high concentration forms a 

network rather than discrete structures. TET12 was dialyzed at high concentration (10 

M) from 6 M GdnHCl against 20 mM Tris buffer, pH 8.5 and 150 mM NaCl. Sample was 

imaged by TEM using uranyl staining. Self-assembly at high concentration reveals the 

formation of network due to intermolecular interactions with the complementary segments 

from the other molecules. Scale bar, 20 nm. 
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Supplementary Figure 11│Decreased stability of structures formed by TET12 variants 

with incomplete (TET11) or scrambled (TET12scr) coiled-coil-building segments in 

comparison to TET12 nanostructures. Stability of the assembled material at low, 100 nM 

polypeptide concentration followed by concentration of samples to 4 µM was determined 

from the dependence of the molar ellipticity at 222 nm in addition of GdnHCl from 0 to 6 M. 

Values are expressed as means of triplicate measurements. Error bars indicate the s.d. of the 

measurements. 
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