## Different glacier status with atmospheric circulations in Tibetan

## Plateau and surroundings

Tandong Yao<sup>1, 3,\*</sup>, Lonnie Thompson<sup>2, 1</sup>, Wei Yang<sup>1</sup>, Wusheng Yu<sup>1</sup>, Yang Gao<sup>1</sup>, Xuejun Guo<sup>1</sup>, Xiaoxin Yang<sup>1</sup>, Huabiao Zhao<sup>1</sup>, Keqin Duan<sup>3, 1</sup>, Baiqing Xu<sup>1</sup>, Jiancheng Pu<sup>3</sup>, Anxin Lu<sup>3,1</sup>, Dahe Qin<sup>3</sup>, Yang Xiang<sup>1</sup>, Dambaru B. Kattel<sup>1</sup>, Daniel Joswiak<sup>1</sup>

<sup>1</sup>Key Laboratory of Tibetan Environmental Changes and Land Surface Processes, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing, 100101, China.

<sup>2</sup>Byrd Polar Research Center and School of Earth Sciences, Ohio State University, Columbus, OH 43210, USA.

<sup>3</sup>State Key Laboratory of Cryosphere Sciences, Chinese Academy of Sciences, Lanzhou 730000, China.

\*corresponding author:

Email: tdyao@itpcas.ac.cn

4A Datun Rd., Chaoyang District, Beijing, P.R. China

#### **1** Supporting Online Material

Glacial area in the Tibetan Plateau (TP) and surroundings is still an issue to be
precisely inventoried. Here we provide a figure of ~100, 000 km<sup>2</sup> in Table S1 based
on studies of Yao et al.<sup>1</sup> and Dyurgerov<sup>32</sup>.

There are many publications in Chinese journals about glacial fluctuations in 5 China<sup>33-50</sup>. Those studies showed different pictures of glacier fluctuations. Some 6 indicated heterogeneous retreat magnitudes in different areas, with the largest retreat 7 in the margin of the TP and decreasing to the interior<sup>33-43</sup>, while others showed a few 8 advancing glaciers in the southeastern TP and central Himalayas<sup>46-47</sup>. However, Jin et 9 al.<sup>47</sup> admitted, from their own experiences, that the 'advancing glaciers' might be 10 misled by satellite images with heavy snow and shadow. Two advancing glaciers 11 interpreted from early satellite images in the paper of Liu et al.<sup>46</sup> are also retreating 12 glaciers according to more reliable satellite images. Some studies emphasized the 13 unique response of debris-covered glaciers to climate changes<sup>15,51,52</sup>. A few studies of 14 in situ observation of glacial length and mass balance do exist<sup>53,54</sup>, but are too sparse 15 to shed light on a holistic picture of glacial fluctuations of the region. Recently some 16 more data are published in the southern TP and Himalayas using new technologies 17 and methods<sup>52</sup>. The situation thus underlines the necessity for a comprehensive study 18 19 of glacial area based on satellite images and in situ glacial length and glacial mass balance. This is the major purpose of our study in this paper. 20

21

#### **1. Glacier area reduction**

Glacier area change is studied using remote sensing images and topographic maps. 23 24 Among the glacial area analysis of 16 river basins in seven regions, nine are based on 25 literatures and seven are based on our studies (four had not been published). It's important to evaluate its potential uncertainty. The accuracy of glacier delineation 26 based on remote sensing images depends on the resolution of the utilized image, the 27 conditions at the time of the acquisition (especially seasonal snow) and the knowledge 28 of the operator to decide the lake region, glacier in cast shadow, perennial or seasonal 29 snow, debris-covered area and location of ice divides and might be subjective<sup>55</sup>. The 30 31 mapping uncertainty of our studies is less than 3% for clean-ice glaciers and 4% for 32 debris-covered glaciers in the Boshula Mountain Range, Southeastern Tibet, Koshi 33 River Basin Nepal, Mapam Yumco Basin, Geladandong and Shulenan Mountain. This

is similar with previous studies, which reported a mapping uncertainty of  $\pm 2-3\%$  for 34 clean-ice glacier<sup>56,57</sup>, of  $\pm 3-4\%$  for debris-covered glacier for ASTER, Landsat TM by 35 comparison with other high-resolution images or estimation<sup>58</sup>. However, it's difficult 36 to evaluate the uncertainty of the result from previous studies (cited in this study), 37 since they were from different operators using different methods. To reduce large 38 uncertainty, we only use the results of the studies with similar resolution images 39 40 (Landsat or ASTER) and at the end of snow season. The uncertainty is no more than 5%. 41

There are totally 7,090 glaciers (~13,363.5 km<sup>2</sup>) analyzed for glacial area reduction in this study. We have measured 2,135 glaciers (~3154.5 km<sup>2</sup>) based on digitized glacier inventories from topographic maps and remote sensing images in six river basins in the TP and surroundings. The other 4,955 glaciers (~10209.0 km<sup>2</sup>) were summarized from the results of previous studies<sup>59-69</sup>.

The locations of studied glaciers for area reduction are shown in Figure S1 and Table S2. The total glacier area of 7,090 glaciers has decreased from 13,363.5 km<sup>2</sup> to 12,130.7 km<sup>2</sup> in the period between the 1970s and 2000s. The average decreasing rate is ~-0.30% a<sup>-1</sup> for the TP and surroundings, but different from region to region, with the largest (-0.57% a<sup>-1</sup>) in Region I and the smallest (-0.07% a<sup>-1</sup>) in Region V (Table S3).

53 We have also compared retreat magnitude of different glacier sizes in different regions. Figure S2 summarized the change of glacial area with different sizes in 54 different regions. According to the sizes, glaciers were classified into four types: 55 <1km<sup>2</sup>, 1.0-5.0 km<sup>2</sup>, 5.0-10.0 km<sup>2</sup> and >10km<sup>2</sup>. Although the change rate of smaller 56 glaciers is larger than that of larger glaciers in all the regions, the general pattern of 57 glacial retreat is controlled by regional climate. In a region with the same climate 58 dominance, such as monsoon or westerlies, glaciers undergo similar retreat tendency, 59 60 no matter what sizes the glaciers are.

61

## 62 2. Glacial length fluctuation

We have analyzed glacial length fluctuation of 82 glaciers from the 1970s to 2000s. Among them, the length fluctuation of 13 glaciers is based on our *in situ* observations and that of the other 69 is summarized from previous studies<sup>70-89</sup>. The general pattern of glacial length fluctuation shows more intensive retreat in the Himalayas, with largest retreat of three glaciers in the southeastern TP or the eastern Himalayas and moderate retreat of eight glaciers in the central Himalayas and 20 glaciers in the western Himalayas, and decreasing retreat of five glaciers in the interior northeastern TP and five glaciers in the Nyainqentanglha Mountain, and stable or even advancing characteristics in the eastern Pamir regions and west Kunlun Mountains (among the 41 glaciers, 17 retreated and 10 were stable, while 14 advanced).

74

## 75 **3** . Glacial mass balance change

#### 76 **3.1 Current status of glacial mass balance**

We have analyzed 15 glaciers to assess the current mass balance status in the TP and surroundings (Table S6-S7). Among them, 11 glaciers are based on our *in situ* measurements and the other four are summarized from previous studies<sup>90-92</sup>. The results of the 11 glaciers are presented in the following:

#### 81 The Parlung No.10 Glacier

82 The Parlung No.10 Glacier (29°17'N, 96°54'E) is a valley glacier (Figure S3a) flowing from 4,900 to 5,625 m, with an area of 2.1 km<sup>2</sup> and a length of 3.5 km. A total 83 of 11 measuring stakes have been distributed on this glacier. Figure S3c shows the 84 85 significant variations of spatial distribution of net mass balance year by year, 86 accompanied with ELAs fluctuations (Figure S3b) (data for 2009/10 is absent due to 87 measuring stakes falling down). 2008/09 is the most negative mass balance year we 88 have measured, shown both by the spatial distribution of net balance (negative almost on the whole glacier, shown in Figure S3c and Table S7) and ELA (Figure S3b). The 89 ELAs in the past four years have shifted from 5,419m to 5,500m, and nearly reached 90 91 the glacier summit in 2008/09.

#### 92 The Parlung No.12 Glacier

The Parlung No.12 Glacier (29°18′N, 96°54′E) is a small cirque glacier with an area of about 0.2 km<sup>2</sup> and a length of nearly 0.6 km (Figure S4a). Its elevation ranges from 5,130 to 5,265 m. A total of 5 measuring stakes have been distributed on this glacier. The spatial distribution of net balance demonstrates negative net balance on the whole glacier every year (Figure S4c) and the ELAs have already risen beyond the glacier summit during the period of measurement. This glacier is now suffering from significant mass deficit.

#### 100 The Parlung No.94 Glacier

The Parlung No.94 Glacier (29°23'N, 96°59'E) is a valley glacier with an area of 2.5 km<sup>2</sup>, a length of 2.9 km and its elevation range from 5,000 to 5,635 m (Figure S5a). A total of 19 measuring stakes have been spatially distributed on this glacier. With similar glacier area and altitudinal range, both the spatial distribution of net balance and ELAs variations show a similar pattern with the Parlung No.10 Glacier (Figures S5b-c). The most negative mass balance with the highest ELA occurs in 2008/09.

#### 108 The Parlung No.390 Glacier

The Parlung No.390 Glacier (29°21'N, 97°01'E) flows from an elevation of 5,160 to 5,460 m, with an area of about 0.5 km<sup>2</sup> and a length of 1.2 km (Figure S6a). A total of 5 measuring stakes have been distributed along the central axis of this glacier. Located in the same region with the Parlung No.10, 12 and 94 Glacier, the spatial distribution of net balance and ELAs of the Parlung No.390 Glacier also show a similar pattern (Figures S6b-c).

#### 115 The Gurenhekou Glacier

The Gurenhekou Glacier (30°11'N, 90° 28'E, area 1.4 km<sup>2</sup>, length 2.9 km) lies near 116 the town of Yangbajin on the southern slope of Nyaingentanglha Mountain. The 117 glacier ranges from 6,040 to 5,525 m in elevation (Figure S7a). A total of 12 118 119 measuring stakes have been spatially distributed on this glacier. Different from the 120 four glaciers in the southeastern TP, the circumstance of spatial distribution of 121 negative net balance on the whole glacier did not occur on the Gurenhekou Glacier. In 122 contrast, the mass balance is positive(Figure S7c) with descending ELA (Figure S7b) 123 in 2007/08.

#### 124 The Zhongxi Glacier

The Zhongxi Glacier (30°52'N, 91°27'E, area 1.6 km<sup>2</sup>, length 2.6 km) lies on the northeastern Nyainqentanglha Mountain Range, near the Npen Co lake (Figure S8a). The elevations of the glacier summit and terminus are 6,210 and 5,376 m, respectively. A total of 16 measuring stakes have been spatially distributed on this glacier. The three-year measurements of this glacier show a similar pattern of spatial distribution of net balance and ELA with the Gurenhekou Glacier. Slight positive mass balance occurred in 2007/08 (Figures S8b-c).

#### 132 The Kangwure Glacier

133 The Kangwure Glacier (28°28'N 85°49'E, area 1.9 km<sup>2</sup>, length 3.1 km) lies on the

134 northern slope of central Himalayas range, near the Xixiabangma Mountain (Figure 135 S9a). The glacier ranges from 6,060 to 5,690 m. A total of 16 measuring stakes have 136 been spatially distributed on this glacier. Due to lack of mass balance measurement in 2006, we take the average between 2005/06 and 2006/07 for 2005/06 and 2006/07, 137 138 respectively. The data in 2007/08 is absent due to measuring stakes falling down. 139 Located in the northern slope of Himalayas, the spatial distribution of net balance and 140 ELAs show intensive mass loss (Figure S9b, 9c) although the average elevation of this glacier is very high. The spatial distribution of net balance is negative on the 141 142 whole glaciers in 2005/07.

#### 143 The Naimona'nyi Glacier

The Naimona'nyi Glacier (30°27'N, 81°20'E) is located in the northern slope of 144 west Himalayas and is a valley glacier with an area of 7.8 km<sup>2</sup> and a length of 7.7 km 145 (Figure S10a). Its altitudinal range is between 5,465 and 7,520 m. 16 measuring stakes 146 147 have been spatially distributed on this glacier. Due to lack of measurement in 2006, 148 we take the average between 2005/06 and 2006/07 for 2005/06 and 2006/07, 149 respectively. This glacier suffers from significant mass deficit, with particular 150 circumstance of negative net balance on the whole glacier between 2005/06 and 2006/07 (Figure S10c). An earlier study indicated that the glacier deficit status may 151 have lasted for a long time $^{93}$ . 152

#### 153 The Muztag Ata Glacier

The Muztag Ata Glacier (38°14′N, 75°03′E) is located in West Kunlun Mountain. This glacier has an area of 0.96 km<sup>2</sup>, with a length of 1.8 km (Figure S11a). Its altitudinal range is between 5,235 and 5,940 m. A total of 13 measuring stakes have been spatially distributed on this glacier. Due to lack of measurement in 2009, we take the average between 2008/09 and 2009/10 for 2008/09 and 2009/10, respectively. The spatial distributions of net balance are positive almost on the whole glacier during the period, except in 2002/03 (Figure S11c).

#### 161 The Xiaodongkemadi Glacier

The Xiaodongkemadi Glacier (33°04′N, 92°05′E) is located at the headwaters of the Dongkemadi river, a tributary at the upper reaches of the Buqu River near the Tanggula pass. The Glacier is 1.8 km<sup>2</sup> in area, with a length of 2.8 km (Figure S12a). The elevations of the summit and terminus of the glacier are 5,926 and 5,380 m, respectively. A total of 25 measuring stakes were set up on the glacier. The most significant phenomena of the Xiaodongkemadi Glacier is negative net balance in 168 2009/10 (-1,066 mm), which is higher than that in 2007/08 (-80 mm) and 2008/09

169 (-91mm) by one order (Figures S12b-c).

#### 170 The Qiyi Glacier

The Qiyi Glacier (39°15′N, 97°45′E) is located on the northern slope of Qilian Mts. Its area is 2.87 km<sup>2</sup>, with a length of 3.8 km (Figure S13a). Its altitudinal range is between 4,304 and 5,159 m. A total of 28 measuring stakes were set up on the glacier. Similar with the Xiaodongkemadi Glacier, the mass balance is much more negative (-648 mm) in 2009/10, comparing with that in 2007/08 (-105 mm) and 2008/09 (-74 mm).

Generally, all the 11 glaciers show negative mass balance in the five years of measurement, except the Muztag Ata Glacier that shows positive mass balance in the past four years (Table S7). The most negative mass balance is observed in the southeastern TP, while positive mass balance is observed in the eastern Pamir regions.

181

#### 182 **3.2. Long-time series of mass balance**

183 There are three glaciers with mass balance starting from the early 1990s or earlier. 184 The Xiaodongkemadi Glacier has been continuously measured for mass balance 185 starting from 1988/89. Otherwise, the Qiyi and Kangwure Glaciers have ten-year and 186 two-year, respectively, *in situ* measurements before 2005. We have reconstructed the 187 past mass balance using the relationship between the measured mass balance and 188 meteorological data (Table S8). For the Qiyi Glacier, the in situ mass balance 189 measurement first started in 1974/75 and measured discontinuously since. Wang et al  $(2010)^{94}$  established a statistical model between ELAs and meteorological factors 190 (warm air temperature and cold-season precipitation) on the basis of measurement of 191 192 the ELAs. The reconstructed ELAs agreed well with the measured data. In this study, based on this model, we have reconstructed annual mass balances  $(B_n)$  in the Qiyi 193 Glacier ( $B_n = 11456-2.44 \times ELA$ , n=12, R<sup>2</sup>=0.92). Figure S14 shows the comparison 194 between the simulated annual mass balances with in situ measurements. The 195 196 simulated mass balance agrees well with the measurements.

For the Kangwure Glacier, we have used mass balance data of 1991/92 and 198 1992/93<sup>95</sup>, and that between 2005/06 and 2009/10. We used the meteorological data at Dingri meteorological station (about 100 km away from the Kangwure Glacier) to analyze the relationship between mass balance and meteorological factors. A regression model was used to reconstruct the mass balance since 1991/92 based on the meteorological factors (annual air temperature (T) and precipitation (P)) and 5-year *in situ* mass balance observations (the linear regression is  $B_n = -350 \times T + 2.36 \times P - 22.4$ , n=5,  $R^2=0.61$ ) (Figure S15). The reconstructed mass balance data are shown in Table S8.

#### 206 **3.3 Climate controls over glacial mass balance**

We've studied glacial mass balance of 11 glaciers on the TP. Mass balance measurement of glaciers with different sizes under different climate regimes demonstrates heterogeneous mass loss as shown in Figure S16. In the monsoonal region where precipitation is decreasing, glacial mass balance is the most negative. In contrast, in the westerly region where precipitation is increasing, glacial mass balance is positive. Glacial mass balance is moderate in the transitional region.

# 213 4. Contrast precipitation trends between Himalayas and

## 214 **Pamir regions**

It was first proposed by Yao et al.<sup>96</sup>, and Liu and Chen<sup>23</sup> that the amplitude of 215 temperature change increases with elevations. Latest study by Frauenfeld et al.<sup>97</sup>, Qin 216 et al.<sup>24</sup>, Kang et al.<sup>54</sup> and You et al.<sup>98</sup> found that, the TP is warming, and the warming 217 218 rate increases with elevation before becoming quite stable with a slight decline near the highest elevations. However, by examining Figure 4 in Qin et al.<sup>24</sup>, we found that 219 the warming rate is most intensive between 4,800 and 6,200 m a.s.l, which covers the 220 221 ablation area of almost all glaciers in the TP. This is still not conclusive, and more 222 studies are necessary to narrow down the uncertainties before a definite conclusion is 223 drawn.

224 Precipitation is a very important factor contributing to the glacial mass balance 225 change. This is particularly the case in the TP and surroundings. The most intensive 226 glacial shrinkage in the Himalayas coincides with the decreasing precipitation 227 accompanied by the weakening Indian monsoon and the least intensive glacial 228 shrinkage in the eastern Pamir regions is linking with the increasing precipitation 229 accompanied by the strengthening westerlies (Figure 4 in the Text). The trends of 230 decreasing precipitation in the Himalayas and increasing precipitation in the eastern 231 Pamir regions are further supported by the Global Precipitation Climatology Project (GPCP) dataset<sup>99</sup> for the period 1979–2010. The precipitation series in the four grids 232

numbered as 1-4 in Figure 4a in the eastern Pamir regions show statistically
significant increasing trends at the 99% confidence level using the Mann-Kendall test
(Figure S17). The precipitation series numbered as 5-8 and 14-16 in Figure 4a in the
Himalayas exhibit statistically significant decreasing trends at the 99% confidence
level (Figure S18). The series numbered as 9-13 are not as significant as those of 5-8
and 14-16, but still show obvious decreasing trends.

239 Figure S19 shows the seasonality of the precipitation at Linzhi, Bomi and Zayu 240 stations in the Indian monsoon-dominated Himalayas and at Taxkorgen station in the 241 westerlies-dominated Pamir regions, indicating strong seasonality characterized by 242 high precipitation in the summer and low precipitation in the winter. Figure S20 243 shows the spatial features of GPCP seasonal precipitation trend in the summer and 244 winter during 1979-2010. The results show a similar spatial pattern of the seasonal 245 precipitation to that of annual precipitation (Figure 4a) in the text, demonstrating 246 decreasing precipitation in the eastern Himalayas and increasing precipitation in the 247 eastern Pamir regions. The decreasing trend is more intensive in the summer in the 248 Indian monsoon-dominated Himalayas (Figure S20a), confirming the weakening 249 Indian monsoon; while the increasing trend is more intensive in the winter in the 250 westerlies-dominated Pamir regions (Figure S20b), confirming the strengthening 251 westerlies.

## 252 Supplementary Tables

Supplementary Table S1. Distribution of Glaciers in the TP and surroundings calculated from Yao et al<sup>1</sup>
 and Dyurgerov<sup>32</sup>

| Region            | Glacier area (km <sup>2</sup> ) |
|-------------------|---------------------------------|
| Pamir             | 12,260                          |
| Qilian            | 1,931                           |
| Kunlun            | 12,267                          |
| Karakoram         | 16,600                          |
| Qiangtang Plateau | 2,581                           |
| Tanggula          | 2,213                           |
| Gangdise          | 1,760                           |
| Nyainqingtanglha  | 9,120                           |
| Hengduan          | 1,579                           |
| Himalayas         | 33,050                          |
| Gindukush         | 3,200                           |
| Hinduradash       | 2,700                           |
| Total             | 99,261                          |

|                 |                                                      | Data      |                                     |                            |                                |  |  |  |  |  |
|-----------------|------------------------------------------------------|-----------|-------------------------------------|----------------------------|--------------------------------|--|--|--|--|--|
| Studied regions | Basin                                                | Periods   | 1970s                               | 2000s                      | Methods                        |  |  |  |  |  |
| _               | Boshula Mountain Range*                              | 1975-2001 | Topographic Map                     | ALOS AVNIR-2               | Manual Delineation (MD)        |  |  |  |  |  |
| I               | Southeastern Tibet*                                  | 1980-2001 | Topographic Map/Landsat TM          | Landsat ETM +/ASTER GDEM   | Band ratio TM3/TM5, TM4/TM5    |  |  |  |  |  |
|                 |                                                      |           | Hexangon KH-9/ Landsat MSS          | Landsat FTM+ / Terra ASTER | & Manual Adjustment (MA)       |  |  |  |  |  |
|                 | Nam Co Basin* <sup>59</sup>                          | 1976-2001 |                                     |                            | Band ratio TM3/TM5 & MA        |  |  |  |  |  |
| II              | Southeast of West Nyainqentanglha <sup>60</sup>      | 1970-2000 | Aerial Photography                  | Landsat ETM+               | MD                             |  |  |  |  |  |
|                 |                                                      |           | Topographic map/Landsat MSS         | Landsat TM/ ASTER GDEM     |                                |  |  |  |  |  |
|                 | Mt.Qomolangma National Nature Preserve <sup>61</sup> | 1976-2006 |                                     |                            | NDSI&NDWI&MA                   |  |  |  |  |  |
| 111             | Koshi Basin Nepal*                                   | 1976-2000 | Topographic map/Landsat MSS         | Landsat ETM+/USGS SRTM     | Band ratio TM3/TM5, TM4/TM5    |  |  |  |  |  |
|                 |                                                      |           | Topographic map                     | Landsat FTM+ / Terra ASTER | & MA                           |  |  |  |  |  |
|                 | Mapam Yumco Basin* <sup>62</sup>                     | 1974-2003 |                                     |                            | MD                             |  |  |  |  |  |
| IV              | Naimona'Nyi Region <sup>63</sup>                     | 1976-2003 | Topographic Map/Landsat MSS         | Landsat EIM+/ Terra ASTER  | Supervised classification & MA |  |  |  |  |  |
|                 | Himachal Pradesh <sup>64</sup>                       | 1962-2001 | Topographic map                     | LISS-III/LISS-IV           | MD                             |  |  |  |  |  |
|                 | Muztag Ata <sup>65</sup>                             | 1965-2001 | Topographic Map                     | Terra ASTER                | MD                             |  |  |  |  |  |
| V               | Yurungkax River <sup>66</sup>                        | 1970-2001 | Aerial Photography                  | Landsat ETM +              | NDSI&MD                        |  |  |  |  |  |
|                 | Karamilan-Keriya River <sup>67</sup>                 | 1970-1999 | Topographic Map                     | Landsat ETM +              | MD & Band ratio TM3/TM5        |  |  |  |  |  |
|                 | Dongkemadi Region <sup>68</sup>                      | 1969-2001 | Aerial Photography                  | Landsat ETM +              | MD                             |  |  |  |  |  |
| VI              | Geladandong*                                         | 1969-2000 | Aerial Photography/ Topographic map | Landsat TM                 | MD                             |  |  |  |  |  |
|                 | Xinqingfeng Ice Cap <sup>69</sup>                    | 1971-2000 | Aerial Photography                  | Landsat ETM +              | MD                             |  |  |  |  |  |
| VII             | Shulenan Mountain*                                   | 1970-1999 | Topographic map                     | Landsat ETM +              | MD                             |  |  |  |  |  |

## 255 Supplementary Table S2.Data and method for analyzing glacial area reduction in each basin

256 Note: \* represent our studies.

|                 |                                                                            |           | 1970s           |                     | 2000s           |                     | Total Area                   | Percentage of               |                    | Regional         |
|-----------------|----------------------------------------------------------------------------|-----------|-----------------|---------------------|-----------------|---------------------|------------------------------|-----------------------------|--------------------|------------------|
| Studied regions | Basin                                                                      | Periods   | Total<br>number | Total area<br>(km²) | Total<br>number | Total area<br>(km²) | Change<br>(km <sup>2</sup> ) | Annual Area<br>Change (%/y) | Regional<br>Number | Average<br>(%/y) |
|                 | Boshula Mountain Range*                                                    | 1975-2001 | 150             | 167.5               | 150             | 155.0               | -12.5                        | -0.276                      |                    |                  |
| I               | Southeastern Tibet*                                                        | 1980-2001 | 129             | 217.9               | 154             | 174.6               | -43.3                        | -0.903                      | 279                | -0.57            |
|                 | Nam Co Basin* 59                                                           | 1976-2001 | 305             | 212.5               | 305             | 198.1               | -14.4                        | -0.261                      |                    |                  |
| II              | Southeast of West Nyainqentanglha <sup>60</sup>                            | 1970-2000 | 612             | 682.4               | 612             | 646.6               | -35.8                        | -0.169                      | 917                | -0.20            |
|                 | Mt.Qomolangma National Nature Preserve <sup>61</sup><br>Koshi Basin Nepal* | 1976-2006 | 2196            | 3212.1              | 2196            | 2710.2              | -501.9                       | -0.504                      |                    |                  |
| III             | × ×                                                                        | 1976-2000 | 840             | 1121.6              | 840             | 1079.3              | -42.3                        | -0.151                      | 3036               | -0.41            |
|                 | Mapam Yumco Basin* <sup>62</sup>                                           | 1974-2003 | 242             | 107.4               | 242             | 100.1               | -7.3                         | -0.227                      |                    |                  |
| IV              | Naimona'Nyi Region <sup>63</sup>                                           | 1976-2003 | 98              | 87.0                | 98              | 79.4                | -7.6                         | -0.312                      |                    |                  |
|                 | Himachal Pradesh <sup>64</sup>                                             | 1962-2001 | 466             | 2077.0              | 466             | 1628.0              | -449                         | -0.540                      | 806                | -0.42            |
|                 | Muztag Ata <sup>65</sup>                                                   | 1965-2001 | 128             | 377.2               | 128             | 373.0               | -4.2                         | -0.030                      |                    |                  |
| V               | Yurungkax River <sup>66</sup>                                              | 1970-2001 | 372             | 1777.0              | 365             | 1772.0              | -5                           | -0.009                      |                    |                  |
|                 | Karamilan-Keriya River <sup>67</sup>                                       | 1970-1999 | 895             | 1374.2              | 890             | 1334.9              | -39.3                        | -0.095                      | 1395               | -0.07            |
|                 | Dongkemadi Region <sup>68</sup>                                            | 1969-2001 | 124             | 179.4               | 124             | 167.4               | -12                          | -0.203                      |                    |                  |
| VI              | Geladandong*                                                               | 1969-2000 | 190             | 899.3               | 190             | 884.4               | -14.9                        | -0.052                      |                    |                  |
|                 | Xinqingfeng Ice Cap <sup>69</sup>                                          | 1971-2000 | 64              | 442.7               | 64              | 436.2               | -6.5                         | -0.049                      | 378                | -0.10            |
| VII             | Shulenan Mountain*                                                         | 1970-1999 | 279             | 428.3               | 279             | 391.5               | -36.88                       | -0.287                      | 279                | -0.29            |
|                 | Total                                                                      |           | 7090            | 13363.5             | 7103            | 12130.7             | -1232.88                     |                             | 7090               | -0.30            |

| 258 | Supplementar | v Table S3. Glac | ial area reduction duri | ng the past three | decades from remo | te sensing images | s in the TP and su | urroundings |
|-----|--------------|------------------|-------------------------|-------------------|-------------------|-------------------|--------------------|-------------|
|-----|--------------|------------------|-------------------------|-------------------|-------------------|-------------------|--------------------|-------------|

259 Note:\* represent our studies. Regional average is calculated by  $RA = \sum_{i=1}^{n} P \times (\frac{T}{R})$ ; RA is regional weighted average; P is the percentage of annual area change on each basin; T is number

260 of glaciers on each basin in 1970s, R is number of regional glaciers in 1970s; *n* is the number of basins on each region.

| Studied regions | Mountains            | Glacial<br>Numbe<br>r | Glaciers                       | Latitude<br>(N) | Longitu<br>de<br>(E) | Area<br>(km <sup>2</sup> ) | Len<br>gth<br>(km) | Orientati<br>on | Location               | Periods       | Total<br>change<br>(m) | Annua<br>l<br>change<br>(m/a) | Regiona<br>l<br>average<br>(m/a) |
|-----------------|----------------------|-----------------------|--------------------------------|-----------------|----------------------|----------------------------|--------------------|-----------------|------------------------|---------------|------------------------|-------------------------------|----------------------------------|
|                 |                      | 1                     | Ata*                           | 29°10′          | 96°48′               | 13.8                       | 16.7               | S               | Southeast TP           | 1973-200<br>5 | -1795                  | -56.1                         |                                  |
| Ι               | Southeast TP         | 2                     | Parlung No.4*                  | 29°14′          | 96°55′               | 11.7                       | 8                  | N               | Southeast TP           | 1980-200<br>5 | -406                   | -15.6                         | -48.2                            |
|                 |                      | 3                     | Yanong <sup>70</sup>           | 29°19′          | 96°42′               | 191                        | 32.5               | E/SE            | Southeast TP           | 1980-200<br>1 | -1534                  | -73                           |                                  |
|                 |                      | 4                     | Lanong <sup>71</sup>           | 30°26′          | 90°34′               | 7.46                       | 3.5                | N               | Nyainqentanglha<br>Mt. | 1970-200<br>7 | -401.7                 | -13.2                         |                                  |
|                 |                      | 5                     | Panu <sup>71</sup>             | 30°23′          | 90°31′               | 12.92                      | 8.4                | SE              | Nyainqentanglha<br>Mt. | 1970-199<br>9 | -179.6                 | -10.2                         |                                  |
| II              | Nyainqentanglh<br>a  | 6                     | Xibu <sup>71</sup>             | 30°23′          | 90°36′               | 31.6                       | 10.6               | Е               | Nyainqentanglha<br>Mt. | 1970-199<br>9 | -1130.<br>2            | -39                           | -16.3                            |
|                 |                      | 7                     | Zhadang*                       | 30°29′          | 90°39′               | 2                          | 2.5                | NW              | Nyainqentanglha<br>Mt. | 1970-200<br>7 | -410.5                 | -10.8                         |                                  |
|                 |                      | 8                     | Gurenhekou*                    | 30°11′          | 90°27′               | 1.4                        | 2.9                | SE              | Nyainqentanglha<br>Mt. | 1974-200<br>4 | -252                   | -8.1                          |                                  |
|                 |                      | 9                     | Middle<br>Rongbu <sup>72</sup> | 28°03′          | 85°50′               | 85.4                       | 22.4               | N/NW            | Central Himalayas      | 1966-200<br>1 | -315                   | -8.8                          |                                  |
|                 |                      | 10                    | East Rongbu <sup>72</sup>      | 28°03′          | 85°57′               | 46.3                       | 12.8               | NW              | Central Himalayas      | 1966-200<br>1 | -198                   | -5.5                          |                                  |
|                 |                      | 11                    | Kangwure*                      | 28°28′          | 85°49′               | 1.9                        | 3.1                | NE              | Central Himalayas      | 1976-200<br>7 | -294                   | -9.2                          |                                  |
| III             | Central<br>Himalayas | 12                    | Dasuopu*                       | 28°25′          | 85°41′               | 43.98                      | 14.3               | NE              | Central Himalayas      | 1968-200<br>7 | -166                   | -4.1                          | -6.3                             |
|                 |                      | 13                    | Qiangyong*                     | 28°51′          | 90°13′               | 7.98                       | 5.5                | Ν               | Central Himalayas      | 1975-200<br>1 | -66                    | -2.4                          |                                  |
|                 |                      | 14                    | Rikha Samba <sup>73</sup>      | 28°50′          | 83°31′               | 4.62                       | -                  | -               | Nepal Himalayas        | 1974-199<br>4 | -200                   | -10                           |                                  |
|                 |                      | 15                    | AX010 <sup>74</sup>            | 27°42′          | 86°34′               | 0.38                       | 1.7                | E/SE            | Nepal Himalayas        | 1978-199<br>9 | -150                   | -6.9                          |                                  |

261 Supplementary Table S4 Glacial length fluctuation in the TP and surroundings in the past three decades. \* represent our studies.

|     |                   | 16                                                                                                | Yala <sup>75</sup>                        | 28°14′                  | 85°37′                 | 1.88                    | -         | -                           | Nepal Himalayas   | 1987-199<br>6     | -86               | -3.9              |               |       |               |                             |                                      |        |        |      |      |                                                      |                                                                                 |               |       |      |  |
|-----|-------------------|---------------------------------------------------------------------------------------------------|-------------------------------------------|-------------------------|------------------------|-------------------------|-----------|-----------------------------|-------------------|-------------------|-------------------|-------------------|---------------|-------|---------------|-----------------------------|--------------------------------------|--------|--------|------|------|------------------------------------------------------|---------------------------------------------------------------------------------|---------------|-------|------|--|
|     |                   | 17                                                                                                | Dokriani <sup>76</sup>                    | 30°50′                  | 78°50′                 | 7                       | 5.5       | W                           | Garhwal Himalayas | 1962-199<br>5     | -550              | -16.6             |               |       |               |                             |                                      |        |        |      |      |                                                      |                                                                                 |               |       |      |  |
|     |                   | 18                                                                                                | Pindari <sup>77</sup>                     | 30°15′                  | 80°02′                 | -                       | 5         | SW                          | Kumaun Himalayas  | 1958-200<br>7     | -323              | -6.5              |               |       |               |                             |                                      |        |        |      |      |                                                      |                                                                                 |               |       |      |  |
|     |                   | 19                                                                                                | Samudra Tapu <sup>78</sup>                | 32°30′                  | 77°30′                 | 73                      | 17.7      | Е                           | Himachal Pradesh  | 1962-200<br>0     | -741              | -19.5             |               |       |               |                             |                                      |        |        |      |      |                                                      |                                                                                 |               |       |      |  |
|     |                   | 20                                                                                                | Chhota Shigri <sup>78</sup>               | 32°10′                  | 77°31′                 | 15.7                    | 9         | Ν                           | Himachal Pradesh  | 1963-200<br>3     | -995              | -23.7             |               |       |               |                             |                                      |        |        |      |      |                                                      |                                                                                 |               |       |      |  |
|     |                   | 21                                                                                                | Naimona'nyi*                              | 30°27′                  | 81°20′                 | 7.8                     | 7.7       | Ν                           | West Himalayas    | 1976-200<br>6     | -155              | -5                |               |       |               |                             |                                      |        |        |      |      |                                                      |                                                                                 |               |       |      |  |
|     |                   | 22                                                                                                | Milam <sup>79</sup>                       | 30°26′                  | 80°03′                 | 37                      | 16.7      | SE                          | Kumaon Himalayas  | 1954-200<br>3     | -1328             | -26.6             |               |       |               |                             |                                      |        |        |      |      |                                                      |                                                                                 |               |       |      |  |
|     |                   | 23                                                                                                | Shaune Garang <sup>80</sup>               | 30°50′                  | 78°46′                 | 5.6                     | 6.1       | Ν                           | Garhwal Himalayas | 1962-199<br>9     | -1500             | -40.5             |               |       |               |                             |                                      |        |        |      |      |                                                      |                                                                                 |               |       |      |  |
| IV  | West Himalayas    | 24                                                                                                | Tipra Bank <sup>81</sup>                  | 30°52′                  | 78°52′                 | 7.4                     | -         | -                           | Garhwal Himalayas | 1962-200<br>8     | -535              | -13.4             | -16.6         |       |               |                             |                                      |        |        |      |      |                                                      |                                                                                 |               |       |      |  |
| 1 V | IV West Himalayas | West Himalayas         25           26         27           28         29           30         30 | 25     26       27     28       29     30 | 25                      | Dunagiri <sup>81</sup> | 30°54′                  | 78°51′    | 2.56                        | -                 | -                 | Garhwal Himalayas | 1992-199<br>7     | -15           | -3    | 10.0          |                             |                                      |        |        |      |      |                                                      |                                                                                 |               |       |      |  |
|     |                   |                                                                                                   |                                           | 26                      | 26                     | Satopanth <sup>81</sup> | 30°56′    | 78°53′                      | 12                | -                 | -                 | Garhwal Himalayas | 1962-200<br>5 | -1157 | -26.9         |                             |                                      |        |        |      |      |                                                      |                                                                                 |               |       |      |  |
|     |                   |                                                                                                   |                                           | Chorabari <sup>81</sup> | 30°56′                 | 78°53′                  | 6.9       | -                           | -                 | Garhwal Himalayas | 1962-200<br>7     | -237              | -5.2          |       |               |                             |                                      |        |        |      |      |                                                      |                                                                                 |               |       |      |  |
|     |                   |                                                                                                   |                                           |                         |                        | 28<br>29<br>30          | 28        | No.13 Glacier <sup>82</sup> | 33°39′            | 76°21′            | -                 | 14.7              | _             |       | 1975-200<br>3 | 24                          | 0.8                                  |        |        |      |      |                                                      |                                                                                 |               |       |      |  |
|     |                   |                                                                                                   |                                           |                         |                        |                         |           |                             |                   |                   |                   |                   |               |       | 29            | 29                          | Drang Drung <sup>82</sup><br>(No.11) | 33°47′ | 76°19′ | -    | 23.5 | -                                                    | Between Nun Kun<br>Massif and Zanskar<br>Massif in Greater<br>Himelaya Panga in | 1975-200<br>3 | -224  | -7.7 |  |
|     |                   |                                                                                                   |                                           |                         |                        |                         |           |                             |                   |                   |                   |                   |               |       | 30            | No.10 Glacier <sup>82</sup> | 33°50′                               | 76°18′ | -      | 9.99 | -    | - Himalaya Range in<br>Zanskar, southern<br>- ladakh | 1975-200<br>3                                                                   | -1786         | -61.6 |      |  |
|     |                   | 31                                                                                                | No.9 Glacier <sup>82</sup>                | 33°55′                  | 76°12′                 | -                       | 14.4<br>5 | -                           |                   | 1975-200<br>3     | -813              | -28               |               |       |               |                             |                                      |        |        |      |      |                                                      |                                                                                 |               |       |      |  |

|   |               | 32 | No.8 Glacier <sup>82</sup>        | 33°46′ | 76°07′ | -      | 6.98 | -     |                     | 1975-200<br>3 | -16   | -0.6   |      |
|---|---------------|----|-----------------------------------|--------|--------|--------|------|-------|---------------------|---------------|-------|--------|------|
|   |               | 33 | No.7 Glacier <sup>82</sup>        | 33°46′ | 76°08′ | -      | 7.5  | _     |                     | 1975-200<br>3 | -229  | -7.9   |      |
|   |               | 34 | No.4 Glacier <sup>82</sup>        | 33°55′ | 76°17′ | -      | 6.6  | -     |                     | 1975-200<br>3 | -745  | -25.7  |      |
|   |               | 35 | Parkachik<br>(No.2) <sup>82</sup> | 33°53′ | 76°10′ | -      | 12.9 | -     |                     | 1979-200<br>4 | 91    | 3.6    |      |
|   |               | 36 | Gangotri <sup>83</sup>            | 30°50′ | 79°10′ | 37.8   | 8.1  | SE    | Garhwal Himalayas   | 1971-200<br>4 | -565  | -17.15 |      |
|   |               | 37 | Maztag Ata*                       | 38°14′ | 75°03′ | 1      | 1.8  | W     | Maztag Ata          | 2002-201<br>0 | -13.6 | -1.7   |      |
|   |               | 38 | Baltoro <sup>84</sup>             | 35°50′ | 76°30′ | 1500   | 60   | -     | Karakoram           | 1985-200<br>4 | 32    | 1.6    |      |
|   |               | 39 | Raikot <sup>85</sup>              | 35°15′ | 74°55′ | 39     | 15   | -     | Nanga Parbat region | 1954-200<br>7 | 178   | 3.3    |      |
|   |               | 40 | Siachen <sup>86</sup>             | 35°30′ | 77°00′ | 987.1  | 70   | NW-SE | Karakorum Mts       | 1958-200<br>5 | 0     | 0      |      |
|   |               | 41 | 5Y654D42 <sup>87</sup>            | 35°53′ | 76°13′ | 97.8   | 29.4 | NE    |                     | 1976-200<br>0 | -478  | -19.1  |      |
| V | Pamir regions | 42 | 5Y654D48 <sup>87</sup>            | 35°58′ | 76°18′ | 10.2   | 6.1  | NE    |                     | 1976-200<br>0 | 2050  | 82     | -0.9 |
|   |               | 43 | 5Y654D53 <sup>87</sup>            | 36°09′ | 76°01′ | 158.11 | 42   | NE/E  |                     | 1968-200<br>0 | 0     | 0      |      |
|   |               | 44 | 5Y654D77 <sup>87</sup>            | 36°07′ | 76°18′ | 8.79   | 5.3  | NE    | Muztag Ata and      | 1968-200<br>0 | 910   | 27.6   |      |
|   |               | 45 | 5Y654D78 <sup>87</sup>            | 36°07′ | 76°18′ | 1.5    | 2.8  | NE    | Konggur Mts.        | 1968-200<br>0 | 140   | 4.3    |      |
|   |               | 46 | 5Y654D97 <sup>87</sup>            | 36°11′ | 76°08′ | 15.79  | 10.7 | NE    |                     | 1968-200<br>0 | 1998  | 60.5   |      |
|   |               | 47 | 5Y654C81 <sup>87</sup>            | 35°34′ | 77°25′ | 32.6   | 10   | NE    |                     | 1976-200<br>0 | 0     | 0      |      |
|   |               | 48 | 5Y654C92 <sup>87</sup>            | 35°34′ | 77°20′ | 42.14  | 14.5 | N/NW  |                     | 1976-200<br>0 | 0     | 0      |      |

| $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                    | 1 | I  | 1                       | I      | I      | I      | i i  |       | 1               | 1076 200      | l     | 1     |
|--------------------------------------------------------------------------------------------|---|----|-------------------------|--------|--------|--------|------|-------|-----------------|---------------|-------|-------|
| $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                    |   | 49 | 5Y654C116 <sup>87</sup> | 35°34′ | 77°13′ | 105.6  | 20.8 | N/NW  |                 | 1976-200<br>0 | 0     | 0     |
| $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                    |   | 50 | 5Y654C128 <sup>87</sup> | 35°37′ | 76°06′ | 124.5  | 28   | NE/NW |                 | 1976-200<br>0 | 0     | 0     |
| $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                    |   | 51 | 5Y654C145 <sup>87</sup> | 35°39′ | 76°55′ | 83.5   | 27.8 | NW    |                 | 1976-200<br>0 | 0     | 0     |
| $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                    |   | 52 | 5Y654C163 <sup>87</sup> | 35°49′ | 76°38′ | 119.8  | 26   | NE    |                 | 1976-200<br>0 | 0     | 0     |
| $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                    |   | 53 | 5Y653K72 <sup>87</sup>  | 35°31′ | 77°25′ | 70.7   | 20.7 | SE/NE |                 | 1976-200<br>0 | 0     | 0     |
| $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                    |   | 54 | 5Y653Q185 <sup>87</sup> | 36°04′ | 76°48′ | 2.45   | 4.4  | SE    |                 | 1976-200<br>0 | -278  | -11.1 |
| $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                    |   | 55 | 5Y663E14 <sup>87</sup>  | 38°15′ | 75°06′ | 14.6   | 8.6  | W/NW  |                 | 1963-200<br>1 | 1758  | -45   |
| $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                    |   | 56 | 5Y663E1 <sup>87</sup>   | 38°19′ | 75°07′ | 12.12  | 8.6  | N/W   |                 | 1963-200<br>1 | -758  | -19.4 |
| $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                    |   | 57 | 5Y663E8 <sup>87</sup>   | 38°18′ | 75°05′ | 8.91   | 9.4  | W     |                 | 1963-200<br>1 | 437   | 11.2  |
| $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                    |   | 58 | 5Y663D87 <sup>87</sup>  | 38°14′ | 75°10′ | 86.5   | 20.7 | E/NE  |                 | 1963-200<br>1 | -226  | -5.8  |
| $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                    |   | 59 | 5Y663B7 <sup>87</sup>   | 38°26′ | 75°18′ | -      | 6.5  | -     |                 | 1963-200<br>1 | -669  | -17   |
| $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                    |   | 60 | 5Y662D35 <sup>87</sup>  | 38°32′ | 75°19′ | 103.17 | 21   | SE/E  | Karakorum Mts   | 1964-200<br>1 | -1832 | -48   |
| $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                    |   | 61 | 5Y656I27 <sup>87</sup>  | 38°12′ | 75°12′ | 7.41   | 6.5  | SW    |                 | 1976-200<br>1 | 940   | 37    |
| $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                    |   | 62 | 5Y656I22 <sup>87</sup>  | 38°12′ | 75°12′ | 1.98   | 2.1  | SW    |                 | 1976-200<br>1 | 1410  | 56.4  |
| $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                    |   | 63 | 5Y663D24 <sup>87</sup>  | 38°22′ | 75°21′ | 5.91   | 6    | SW    |                 | 1963-200<br>1 | -514  | -13   |
| $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                    |   | 64 | 5Y663D36 <sup>87</sup>  | 38°15′ | 75°27′ | 11.08  | 7    | NE/NW |                 | 1963-200<br>1 | 1130  | 29    |
| $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                    |   | 65 | 5Y663B25 <sup>87</sup>  | 38°37′ | 75°17′ | 128.15 | 20.3 | Ν     |                 | 1963-200<br>1 | 0     | 0     |
| 67 5Y641F70 <sup>88</sup> 35°27′ 81°16′ 30.09 14.2 NE West Kunlun Mts 1970-200 1-790 -24.7 |   | 66 | 5Y641F49 <sup>88</sup>  | 35°25′ | 81°24′ | 42.33  | 13.1 | NE    |                 | 1970-200<br>1 | 141   | 4.4   |
|                                                                                            |   | 67 | 5Y641F70 <sup>88</sup>  | 35°27′ | 81°16′ | 30.09  | 14.2 | NE    | west Kunlun Mts | 1970-200<br>1 | -790  | -24.7 |

|     |          | 68 | 5Y641F73 <sup>88</sup>              | 35°29′ | 81°41′ | 23.5   | 14.9 | N/NE  |            | 1970-200<br>1 | 446   | 13.9  |      |
|-----|----------|----|-------------------------------------|--------|--------|--------|------|-------|------------|---------------|-------|-------|------|
|     |          | 69 | 5Y641H67 <sup>88</sup>              | 35°33′ | 80°35′ | 41.7   | 15.1 | N/NW  |            | 1970-200<br>1 | -1431 | -44.7 |      |
|     |          | 70 | 5Y641F46 <sup>88</sup>              | 35°23′ | 81°31′ | 92.8   | 18.5 | NE/N  |            | 1970-200<br>1 | -616  | -19.3 |      |
|     |          | 71 | 5Y641H74 <sup>88</sup>              | 35°33′ | 80°29′ | 131.8  | 18.5 | NE    |            | 1970-200<br>1 | -511  | -16   |      |
|     |          | 72 | 5Y641G38 <sup>88</sup>              | 35°30′ | 81°52′ | 90.8   | 19   | Ν     |            | 1970-200<br>1 | -903  | -28.2 |      |
|     |          | 73 | 5Y641F98 <sup>88</sup>              | 35°30′ | 81°07′ | 64.27  | 20   | NW    |            | 1970-200<br>1 | -1176 | -36.8 |      |
|     |          | 74 | 5Y641G55 <sup>88</sup><br>(Kunlun)  | 35°26′ | 80°47′ | 200    | 23.6 | NE    |            | 1970-200<br>1 | 875   | 27.3  |      |
|     |          | 75 | 5Y641F85 <sup>88</sup>              | 35°28′ | 81°12′ | 84.3   | 26.1 | NE/N  |            | 1970-200<br>1 | -1146 | -35.8 |      |
|     |          | 76 | 5Y641F63 <sup>88</sup><br>(Yulong)  | 35°24′ | 81°18′ | 139.07 | 30.9 | NE/NW |            | 1970-200<br>1 | 522   | 16.3  |      |
|     |          | 77 | 5Y641G23 <sup>88</sup><br>(Duofeng) | 35°25′ | 80°58′ | 251.7  | 31   | NE    |            | 1970-200<br>1 | -883  | -27.6 |      |
|     |          | 78 | Xiao<br>Dongkemadi*                 | 33°10′ | 92°08′ | 1.8    | 2.8  | S/SW  |            | 1992-200<br>2 | -38   | -3.4  |      |
| VI  | Tanggula | 79 | Malan*                              | 35°50′ | 90°47′ | 37.8   | 8.1  | SE    | Inner TP   | 1970-200<br>0 | -31   | -1    | -2   |
|     |          | 80 | Purogangri*                         | 33°57′ | 89°06′ | 18.5   | 9.1  | SW    |            | 1974-200<br>0 | -46   | -1.7  |      |
| VII | Oilian   | 81 | Laohu No.12 <sup>89</sup>           | 39°27′ | 96°32′ | 21.9   | 10.1 | N/NW  | Oilian Mts | 1977-200<br>5 | -157  | -5.4  | -4.2 |
|     |          | 82 | Qiyi*                               | 39°15′ | 97°45′ | 2.8    | 3.8  | N     |            | 1970-200<br>8 | -114  | -3    |      |

| Region | Glacier<br>number | Glaciers                    | Latitude<br>(N) | Longitude<br>(E) | Area<br>(km <sup>2</sup> ) | Maximum<br>elevation<br>(m a.s.l.) | Minimum<br>elevation<br>(m a.s.l.) | Length (km) | Orientation | Locations                |
|--------|-------------------|-----------------------------|-----------------|------------------|----------------------------|------------------------------------|------------------------------------|-------------|-------------|--------------------------|
|        | 1                 | Parlung No.10               | 29°17′          | 96°54′           | 2.1                        | 5625                               | 4910                               | 3.5         | NE          | Southeast TP             |
| 1      | 2                 | Parlung No.12               | 29°18′          | 96°54′           | 0.2                        | 5265                               | 5130                               | 0.6         | NE          | Southeast TP             |
| 1      | 3                 | Parlung No.94               | 29°23′          | 96°59′           | 2.5                        | 5635                               | 5000                               | 2.9         | NW          | Southeast TP             |
|        | 4                 | Parlung No.390              | 29°21′          | 97°01′           | 0.5                        | 5460                               | 5160                               | 1.2         | SE          | Southeast TP             |
|        | 5                 | Gurenhekou                  | 30°11′          | 90°28′           | 1.4                        | 6040                               | 5525                               | 2.9         | SE          | Nyainqentanglha Mountain |
| II     | 6                 | Zhongxi                     | 30°52′          | 91°27′           | 1.6                        | 6210                               | 5376                               | 2.6         | Ν           | Nyainqentanglha Mountain |
|        | 7                 | Kangwure                    | 28°28′          | 85°49′           | 1.9                        | 6060                               | 5690                               | 3.1         | NE          | Central Himalayas        |
| Ш      | 8                 | AX010 <sup>90</sup>         | 27°42′          | 86°34′           | 0.4                        | 5302                               | 4968                               | 1.7         | E/SE        | Central Himalayas        |
|        | 9                 | Yala <sup>90</sup>          | 28°14′          | 85°37′           | 1.9                        | 5642                               | 5086                               | 1.5         | SW          | Central Himalayas        |
|        | 10                | Naimona'nyi                 | 30°27′          | 81°20′           | 7.8                        | 7520                               | 5465                               | 7.7         | Ν           | West Himalayas           |
| IV     | 11                | Hamtah <sup>91</sup>        | 32°21′          | 81°22′           | -                          | -                                  | -                                  | -           | -           | West Himalayas           |
|        | 12                | Chhota Shigri <sup>92</sup> | 32°12′          | 81°30′           | 15.7                       | 6263                               | 4050                               | 9           | Ν           | West Himalayas           |
| V      | 13                | Muztag Ata                  | 38°14′          | 75°03′           | 1                          | 5940                               | 5235                               | 1.8         | W           | West Kunlun Mountain     |
| VI     | 14                | Xiaodongkemadi              | 33°10′          | 92°08′           | 1.8                        | 5926                               | 5380                               | 2.8         | S/SW        | Tanggula Mountain        |
| VII    | 15                | Qiyi                        | 39°15′          | 97°45′           | 2.8                        | 5088                               | 4295                               | 3.8         | Ν           | Qilian Mountain          |

263 Supplementary Table S5 Detailed information on the glaciers for recent mass balance measurement in the TP and surroundings

| Regions | Glaciers                    | 2002/03 | 2003/04 | 2004/05 | 2005/06 | 2006/07 | 2007/08 | 2008/09 | 2009/10 | Average | Regional average |
|---------|-----------------------------|---------|---------|---------|---------|---------|---------|---------|---------|---------|------------------|
|         | Parlung No.10               | -       | -       | -       | -675    | -283    | -593    | -1575   | -       | -781    |                  |
|         | Parlung No.12               | -       | -       | -       | -1449   | -1112   | -1410   | -2476   | -2046   | -1698   | 1105             |
| I       | Parlung No.94               | -       | -       | -       | -913    | -254    | -1079   | -2018   | -347    | -922    | -1105            |
|         | Parlung No.390              | -       | -       | -       | -       | -170    | -1250   | -1673   | -982    | -1019   |                  |
| п       | Gurenhekou                  | -       | -       | -       | -319    | -196    | 497     | -839    | -703    | -312    | 418              |
| 11      | Zhongxi                     | -       | -       | -       | -       | -       | 264     | -1045   | -789    | -523    | -418             |
|         | Kangwure                    | -       | -       | -       | -1023   | -392    | -487    | -1092   | -300    | -660    |                  |
| III     | AX010 <sup>90</sup> *       |         |         |         | -810    |         |         |         | -       | -810    | -757             |
|         | Yala <sup>90</sup> *        |         |         |         | -800    |         |         |         | -       | -800    |                  |
|         | Naimona'nyi                 | -       | -       | -       | -6      | 58      | -718    | -472    | -276    | -556    |                  |
| IV      | Hamtah <sup>91</sup>        | -       | -1857   | -1856   | -790    | -       | -       | -       | -       | -1501   | -908             |
|         | Chhota Shigri <sup>92</sup> | -1400   | -1227   | 144     | -1400   | -980    | -930    | 130     | 330     | -667    |                  |
| V       | Muztag Ata                  | -       | -       | -       | -237    | 956     | 79      | 22      | 20      | 248     | 248              |
| VI      | Xiaodongkemadi              | -       | -       | -       | -917    | -591    | -80     | -91     | -1066   | -549    | -549             |
| VII     | Qiyi                        | -       | -       | -       | -955    | -513    | -105    | -74     | -648    | -459    | -459             |

267 Supplementary Table S6 Recent annual mass balances in different regions in the TP.

268 \*The average mass balances AX010 (1999-2008) and Yala Glacier (1996-2009) were taken to represent the recent mass balance since 2002/03. The red color numbers for the Kangwure Glacier were reconstructed following the method in Section 3.2.

- 270 Supplementary Table S7 Mass balance of Long-time series for the Qiyi, Xiaodongkemadi and
- 271 Kangwure Glaciers in the TP.

| Years | Qiyi | Xiaodongkemadi | Kangwure |
|-------|------|----------------|----------|
| 1975  | 35   | -              | -        |
| 1976  | 384  | -              | -        |
| 1977  | 350  | -              | -        |
| 1978  | -1   | -              | -        |
| 1979  | 241  | -              | -        |
| 1980  | 130  | -              | -        |
| 1981  | -51  | -              | -        |
| 1982  | 197  | -              | -        |
| 1983  | 292  | -              | -        |
| 1984  | 226  | -              | -        |
| 1985  | -31  | -              | -        |
| 1986  | -165 | -              | -        |
| 1987  | 38   | -              | -        |
| 1988  | -49  | -              | -        |
| 1989  | -205 | 525            | -        |
| 1990  | 183  | 45             | -        |
| 1991  | -405 | -180           | -        |
| 1992  | 132  | 375            | -250     |
| 1993  | 441  | 210            | -640     |
| 1994  | -285 | -510           | -484     |
| 1995  | -273 | -570           | -460     |
| 1996  | -615 | -495           | -308     |
| 1997  | -293 | 345            | -251     |
| 1998  | 46   | -690           | -507     |
| 1999  | -778 | -315           | -397     |
| 2000  | -612 | -90            | -229     |
| 2001  | -666 | -195           | -685     |
| 2002  | -810 | -583           | -496     |
| 2003  | -361 | 4              | -574     |
| 2004  | -634 | -153           | -479     |
| 2005  | -476 | -177           | -728     |
| 2006  | -955 | -917           | -1023    |
| 2007  | -513 | -591           | -392     |
| 2008  | -105 | -80            | -487     |
| 2009  | -74  | -91            | -1092    |
| 2010  | -648 | -1066          | -300     |

\* The red color numbers are the reconstructed mass balance.

## 273 Supplementary Figures



275

**Supplementary Figure S1**. The distribution of glaciers for analyzing area reduction studies in the seven regions.



277 in R I (-0.54) in K I (-0.17)
 278 Supplementary Figure S2 Comparison of the change of glacier with different sizes in different
 279 regions. The absolute area changes (km<sup>2</sup>) are shown on top of each column. The number in the
 280 parentheses is the percentage of annual area change of this region.



**Supplementary Figure S3** The Parlung No. 10 Glacier. a) Photo of the Parlung No.10 Glacier, b) variation of ELAs and c) spatial mass balance distribution in past four balance years



290 291 Supplementary Figure S4 The Parlung No. 12 Glacier. a) Photo of the Parlung No.12 Glacier,

292 c) spatial mass balance distribution in past five balance years

293



294 295

Supplementary Figure S5 The Parlung No. 94 Glacier. a) Photo of the Parlung No.94 Glacier, b)

296 variation of ELAs and c) spatial mass balance distribution in past five balance years



297

298 Supplementary Figure S6 The Parlung No. 390 Glacier. a) Photo of the Parlung No.390 Glacier, b)

299 variation of ELAs and c) spatial mass balance distribution in past four balance years



301 Supplementary Figure S7 The Gurenhekou Glacier. a) Photo of the Gurenhekou Glacier, b)
 302 variation of ELAs and c) spatial mass balance distribution in past six balance years





304 Supplementary Figure S8 The Zhongxi Glacier. a) Photo of the Zhongxi Glacier, b) variation of

305 ELAs and c) spatial mass balance distribution in past three balance years





307 Supplementary Figure S9 The Kangwure Glacier. a) Photo of the Kangwure Glacier, b) variation

308 of ELAs and c) spatial mass balance distribution in past three balance years



- 310
- 311

312 Supplementary Figure S10 The Naimona'nyi Glacier. a) Photo of the Naimona'nyi Glacier, b)

313 variation of ELAs and c) spatial mass balance distribution

314



316 Supplementary Figure S11 The Muztag Ata Glacier. a) Photo of the Muztag Ata Glacier, b)

#### 317 variation of ELAs and c) spatial mass balance distribution



318

319 Supplementary Figure S12 The Xiaodongkemadi Glacier. a) Photo of the Xiaodongkemadi

320 Glacier, b) variation of ELAs and c) spatial mass balance distribution in past four balance years



321



323 and c) spatial mass balance distribution in past four balance years



325Measured mass balance (mm w.e.)326Supplementary Figure S14 Comparison between measured and simulated mass balance for the

327 Qiyi Glacier.

328



- 330 Supplementary Figure S15 Comparison between measured and simulated mass balances for the
- 331 Kangwure Glacier.
- 332





334 Supplementary Figure S16 Distinctive features of glacial mass balance under different climate 335 dominances. (No. 10, 12, 94, 390-Parlung No. 10, 12, 94, 390; NN-Naimona'nyi; QY-Qiyi; KW-

336 Kangwure; XD-Xiaodongkemadi; ZX-Zhongxi; GH-Gurenhekou; MA-Muztag Ata)

338





Supplementary Figure S17 The linear trends of GPCP precipitation (mm day<sup>-1</sup>) for 1979–2010 341 from the grids numbered as 1-4 in Figure S4g. All the positive trends are statistically significant at 342 the 99% confidence level using the Mann-Kendall test.



348 statistically significant at the 99% confidence level using the Mann-Kendall test.



Month Month
 Supplementary Figure S19 The monthly mean precipitation at the meteorological stations of
 Linzhi, Zayu, Bomi and Taxkorgan during 1970-2009. The precipitation at all the four stations
 shows a strong seasonality characterized by high precipitation in the summer and low precipitation
 in the winter.

355



356

**Supplementary Figure S20** The spatial feature of GPCP precipitation (mm day<sup>-1</sup>) trend in the summer (a) and winter (b) seasons in the TP and surroundings during 1979-2010. Similar to the annual spatial trends in Figure 4a in the text, the summer and winter spatial trends demonstrate decreasing precipitation in the eastern Himalayas and increasing precipitation in the eastern Pamir regions, with more intensive decreasing in the summer in the Indian monsoon-dominated Himalayas and more intensive increasing in the winter in the westerlies-dominated Pamir regions.

## 365 Supplementary References

| 366 | (for | references 1 to 30 see main text)                                                                  |
|-----|------|----------------------------------------------------------------------------------------------------|
| 367 |      |                                                                                                    |
| 368 | 31.  | Shi, Y. et al. Concise Glacier Inventory of China (in Chinese) (Shanghai Popular Science           |
| 369 |      | Press, Shanghai, China, 2008).                                                                     |
| 370 | 32.  | Dyurgerov, M. B. Glacier mass balance and regime: Data of measurements and analysis,               |
| 371 |      | INSTAAR Occas. Pap. 55, edited by M. Meier and R. Armstrong, Inst. of Arct. and Alp. Res.,         |
| 372 |      | Boulder, Colo (2000).                                                                              |
| 373 | 33.  | Shi, Y. & Liu, S. Estimation on the response of glaciers in China to the global warming in the     |
| 374 |      | 21st century. Chin. Sci. Bull. 45, 668-672 (2000).                                                 |
| 375 | 34.  | Yao, T. et al. Recent glacial retreat in High Asia in China and its impact on water resource in    |
| 376 |      | Northwest China. Sci. China Ser. D 47(12), 1065-1075 (2004).                                       |
| 377 | 35.  | Yao, T. et al. Glacial distribution and mass balance in the Yarlung Zangbo River and its           |
| 378 |      | influence on lakes. Chin. Sci. Bull. 55(20), 2072-2078 (2010).                                     |
| 379 | 36.  | Yang, W. et al. Characteristics of recent temperate glacier fluctuations in the Parlung Zangbo     |
| 380 |      | River basin, southeast Tibetan Plateau. Chin. Sci. Bull. 55(20), 2097-2102 (2010).                 |
| 381 | 37.  | Ma, L., Tian, L., Pu, J. & Wang, P. Recent area and ice volume change of Kangwure Glacier          |
| 382 |      | in the middle of Himalayas. Chin. Sci. Bull. 55(20), 2088-2096 (2010).                             |
| 383 | 38.  | Jiang, X., Wang, N., He, J., Wu, X. & Song, G. A distributed surface energy and mass balance       |
| 384 |      | model and its application to a mountain glacier in China. Chin. Sci. Bull. 55(20), 2079-2087       |
| 385 |      | (2010).                                                                                            |
| 386 | 39.  | Wang, N., He, J., Pu, J., Jiang, X. & Jing, Z. Variations in equilibrium line altitude of the Qiyi |
| 387 |      | Glacier, Qilian Mountains, over the past 50 years. Chin. Sci. Bull. 55(33), 3810-3817 (2010).      |
| 388 | 40.  | Yang, W. et al. Quick ice mass loss and abrupt retreat of the maritime glaciers in the Kangri      |
| 389 |      | Karpo Mountains, southeast Tibetan Plateau. Chin. Sci. Bull. 53, 2547-2551(2008).                  |
| 390 | 41.  | Xin, X., Yao, T., Ye, Q., Guo, L. & Yan, W. Study of the Fluctuations of Glaciers and Lakes        |
| 391 |      | around the Ranwu Lake of Southeast Tibetan Plateau using Remote Sensing. J. Glaciol.               |
| 392 |      | <i>Geocryol.</i> <b>31</b> (1), 19-26 (2009).                                                      |
| 393 | 42.  | Li, Z., Yao, T., Ye, Q., Tian, L. & Wang, W. Glaciers in the upstream Manla Reservoir in the       |
| 394 |      | Nianchu River basin, Tibet: shrinkage and impact. J. Glaciol. Geocryol. 32(4), 650-658             |
| 395 |      | (2010).                                                                                            |
| 396 | 43.  | Pu, J., Yao, T., Wang, N., Su, Z. & Shen, Y. Fluctuations of the glaciers on the                   |
| 397 |      | Qinghai-Tibetan Plateau during the past century. J. Glaciol. Geocryol. 26(5), 517-522 (2004).      |
| 398 | 44.  | Ren, J. et al. Glacier variations and climate warming and drying in the central Himalayas.         |
| 399 |      | Chin. Sci. Bull. 49, 65-69 (2004).                                                                 |
| 400 | 45.  | Qin, D. Map of Glacial Resource in the Himalayas (in Chinese) (Science Press, Beijing,             |
| 401 |      | China, 1999).                                                                                      |
|     |      |                                                                                                    |

402 46. Liu, S., et al. Glacier Variations since the Early 20th Century in the Gangrigabu Range,

| 403 |     | Southeast Tibetan Plateau. J. Glaciol. Geocryol. 27, 55-63 (2005). (In Chinese)                |
|-----|-----|------------------------------------------------------------------------------------------------|
| 404 | 47. | Jin, R., Che, T., Li, X. & Wu, L. Glacier Variation in the Pumqu Basin Derived from Remote     |
| 405 |     | Sensing Data and GIS Technique. J. Glaciol. Geocryol. 26, 261-266 (2004). (In Chinese)         |
| 406 | 48. | Liu, C., Kang, E., Liu, S., Chen, J. & Liu, Z. Study on the glacier variation and its runoff   |
| 407 |     | responses in the arid region of Northwest China. Sci. China Ser. D 42(supp), 64-71 (1999).     |
| 408 | 49. | Su, Z. & Shi, Y. Response of monsoonal temperate glaciers in China to global warming since     |
| 409 |     | the Little Ice Age. J. Glaciol. Geocryol. 22(3), 223-229 (2000).                               |
| 410 | 50. | Shi, Y. et al. Glaciers and related environments in China. Science Press, Beijing, 2008.       |
| 411 | 51. | Yang, W., Yao, T., Xu, B. & Zhou, H. Influence of supraglacial debris on the summer ablation   |
| 412 |     | and mass balance in the 24K Glacier, southeastern Tibetan Plateau. Geogr. Ann. Ser. A-Phys.    |
| 413 |     | Geogr. 92, 353-360 (2010).                                                                     |
| 414 | 52. | Bolch, T., Pieczonka, T. & Benn, D. I. Multi-decadal mass loss of glaciers in the Everest area |
| 415 |     | (Nepal Himalaya) derived from stereo imagery. Cryosphere, 5, 349-358 (2011).                   |
| 416 | 53. | Fujita, K. & Ageta, Y. Effect of summer accumulation on glacier mass balance on the Tibetan    |
| 417 |     | Plateau revealed by mass-balance model. J. Glaciol. 46, 244-252 (2000).                        |
| 418 | 54. | Kang, S. et al. Review of climate and cryospheric change in the Tibetan Plateau. Environ.      |
| 419 |     | Res. Lett. 5, doi:10.1088/1748-9326/5/1/015101 (2010).                                         |
| 420 | 55. | Andreassen, L. M., Paul, F., Kääb, A. & Hausberg, J. E. Landsat-derived glacier inventory for  |
| 421 |     | Jotunheimen, Norway, and deduced glacier changes since the 1930s. Cryosphere. 2, 131-145       |
| 422 |     | (2008).                                                                                        |
| 423 | 56. | Paul, F., Kääb, A., Maisch, M., Kellenberger, T., & Haeberli, W., The new                      |
| 424 |     | remote-sensing-derived Swiss glacier inventory: I. Methods. Ann. Glaciol. 34,                  |
| 425 |     | 355-361(2002).                                                                                 |
| 426 | 57. | Bolch, T. & Kamp, U. Glacier mapping in high mountains using DEMs, Landsat and ASTER           |
| 427 |     | data. In Kaufmann, V. and W. Sulzer, eds. Proceedings of the 8th International Symposium on    |
| 428 |     | High Mountain Remote Sensing Cartography. Graz, Karl Franzens University, 13-24 (2006).        |
| 429 |     | (Grazer Schriften der Geographie und Raumforschung 41)                                         |
| 430 | 58. | Bhambri, R., Bolch, T., Chaujar, R.K. & Kulshreshtha, S. C. Glacier changes in the Garhwal     |
| 431 |     | Himalaya, India, from 1968 to 2006 based on remote sensing. J. Glaciol. 57(203), 543-556       |
| 432 |     | (2011).                                                                                        |
| 433 | 59. | Bolch, T. et al. A glacier inventory for the western Nyainqêntanglha Range and the Nam Co      |
| 434 |     | Basin, Tibet, and glacier changes 1976-2009. Cryosphere 4, 419-433 (2010).                     |
| 435 | 60. | Shangguan, D. et al. Variation of glaciers in the Western Nyainqentanglha Range of Tibetan     |
| 436 |     | Plateau during 1970-2000. J. Glaciol. Geocryol. 30(2), 204-210 (2008). (In Chinese)            |
| 437 | 61. | Nie, Y., Zhang, Y., Liu, L. & Zhang, J. Monitoring glacier change based on remote sensing in   |
| 438 |     | the Mt. Qomolangma National Nature Preserve, 1976-2006. Acta. Geogr. Sin. 65(1), 13-28         |
| 439 |     | (2010). (In Chinese)                                                                           |
|     |     |                                                                                                |

440 62. Guo, L. Ye, Q., Yao, T., Chen. F. & Cheng, W. The glacial landforms and the changes of

441 glacier and lake area in the Mapam Yumco basin in Tibetan Plateau based on GIS. J. Glaciol. 442 Geocryol. 29(4), 517-524 (2007). (In Chinese) 443 63. Ye, Q., Chen, F., Stein, A. & Zhongz. Use of a multi-temporal grid method to analyze 444 changes in glacier coverage in the Tibetan Plateau. Prog. Nat. Sci. 19, 861-872 (2009). 445 64. Kulkarni, A. et al. Glacial retreat in Himalaya using Indian Remote Sensing satellite data. 446 Curr. Sci. 92(1), 69-74 (2007). 447 65. Cai, D. Ma, J., Nian, Y., Liu, S. & Shangguan D. The study of glacier change using remote 448 sensing in Mt.Muztagta. J. Lanzhou University (Natural Sciences) 42(1), 13-17 (2006). (In 449 Chinese) 450 66. Shangguan, D., Liu, S., Ding, Y., Ding, L. & Li, G. Glacier changes at the head of Yurungkax 451 River in the west Kunlun Mountains in the past 32 years. Acta. Geogr. Sin. 59(6), 855-862 452 (2004). (In Chinese) 453 67. Xu, J. Liu, S., Zhang, S. & Shangguan, D. Glaciers fluctuations in the Karamilan-Keriya 454 River Watershed in the past 30 years. J. Glaciol. Geocryol. 28, 312-318 (2006). (In Chinese) 455 68. Qiao, C. Remote sensing monitoring of glacier changes in Dongkemadi region of Tanggula 456 Mountain. J. Anhui Agri. Sci. 38(14), 7703-7705 (2010). (In Chinese) 457 69. Liu, S. et al. Variation of glaciers studied on the basis of RS and GIS-A reassessment of the 458 changes of the Xinqingfeng and Malan ice caps in the northern Tibetan Plateau. J. Glaciol. 459 Geocryol. 26(3), 244-252 (2004). (In Chinese) 460 70. Liu, S. et al. Glacier change during the past century in the Gangrigabu mountains, southeast 461 Oinghai-Xizang (Tibetan) Plateau, China. Ann. Glaciol. 43, 187-193 (2006). 462 71. Kang, S. et al. Glacier retreating dramatically on the Mt. Nyainqentanglha during the last 40 463 years. J. Glaciol. Geocryol. 29, 869-873 (2007). (In Chinese) 464 72. Ren, J., Jing, Z., Pu, J. & Qin, X. Glacier variations and climate change in the central 465 Himalaya over the past few decades. Ann. Glaciol. 43, 218-222 (2006). 466 73. Fujita, K., Nakawo, M., Fujii, Y. & Paudyal, P. Change in glaciers in Hidden Valley, Mukut 467 Himal, Nepal Himalayas, from 1974 to 1994. J. Glaciol. 43, 583-588 (1997). 468 74. Fujita, K., Kadota, T., Rana, B. Kayastha, R. B. & Agata, Y. Shrinkage of Glacier AX010 in 469 Shorong region, Nepal Himalayas in the 1990s. Bull. Glaciol. Res. 18, 51-54 (2001). 470 75. Fujita, K., Takeuchi, N. & Seko, K. Glaciological observations of Yala Glacier in Langtang 471 Valley, Nepal Himalayas, 1994 and 1996. Bull. Glaciol. Res. 16, 75-81 (1998). 472 76. Dobhal, D., Gergan, J.T. & Thayyen, R.J. Recession and morphogeometrical changes of 473 Dokriani glacier (1962-1995) Garhwal Himalaya, India. Curr. Sci. 86, 692-696 (2004). 474 77. Rameshwar, B., Agarwal, K. K., Sheikh, N. A. & Purnima, S. Is the recessional pattern of 475 Himalayan glaciers suggestive of anthropogenically induced global warming? Arab. J. 476 Geosci. 4, 1087-1093 (2011). 477 78. Kulkarni, A. V., Dhar, S., Rathore, B. P., Babu, G. R. K. & Kalia, R. Recession of Samudra 478 Tapu glacier, Chandra River basin, Himachal Pradesh. J. Indian Soc. Remote Sens. 34, 39-46

479 (2006).

- 480 79. Raj, K. Recession and reconstruction of Milam Glacier, Kumaon Himalaya, observed with
  481 satellite imagery. *Curr. Sci.* 100, 1420-1425 (2011).
- 482 80. Philip, G. & Prasad, M. Mapping repeated surges and retread of glaciers using IRS-1C/1D
  483 data: a case study of Shaune Garang glacier, northwestern Himalaya. *Int. J. Appl. Earth*484 *Observ. Geoinf.* 6,127-141 (2004).
- 485 81. Dobhal, D. Climate change and Himalayan glaciers: Observations and facts. South Asia
  486 Media Briefing Workshop on Climate Change. 24-25, November, 2010.
- 487 82. Kamp, U., Byrne, M. & Bolch, T. Glacier fluctuations between 1975 and 2008 in the Greater
  488 Himalaya Range of Zanskar, Southern Ladakh. J. Mt. Sci. 8, 374-389 (2011).
- 489 83. Kumar, K. Dumka, R.K., Miral, M.S., Satyal, G.S. & Pant, M. Estimation of retreat rate of
  490 Gangotri glacier using rapid static and kinematic GPS survey. *Curr. Sci.* 94(2), 258-261
  491 (2008).
- 492 84. Mayer, C., Lambrecht, A., Belò, M., Smiraglia, C. & Diolaiuti, G. Glaciological
  493 characteristics of the ablation zone of Baltoro glacier, Karakoram, Pakistan. *Ann. Glaciol.*494 43(1), 123-131 (2006).
- 495 85. Schmidt, S. & Nüsser, M. Fluctuations of Raikot Glacier during the past 70 years: a case
  496 study from the Nanga Parbat massif, north Pakistan. J. Glaciol. 55, 949-959 (2009).
- 497 86. Raina, V. & Sangewar, C. Siachen Glacier of Karakoram mountains, Ladakh–its secular
  498 retreat. J. Geol. Soc. India. 70, 11-16 (2007).
- 499 87. Shangguan, D., Liu, S., Ding, Y. & Ding, L. Monitoring results of glacier change in China
  500 Karakorum and Muztag Ata-Konggur Mountains by remote sensing. *J. Glaciol. Geocryol.* 26,
  501 374-375 (2004). (In Chinese).
- Shangguan, D., Liu, S., Ding, Y., Ding, L. & Li, G. Glacier changes at the head of Yrungkax
  river in the West Kunlun Mountains in the past 32 years. *Acta. Geogr. Sin.* 59, 855-862
  (2004). (In Chinese)
- 505 89. Du, W., Qin, X., Liu, Y. & Wang, X. Variation of the Laohugou Glacier No.12 in the Qilian
  506 Mountains. J. Glaciol. Geocryol. 30(3), 373-379 (2008). (In Chinese)
- 507 90. Fujita, K. & Nuimura, T. Spatially heterogeneous wastage of Himalayan glaciers. *Proc. Natl.*508 *Acad. Sci. USA.* 108, 14011-14014 (2011).
- 509 91. Haeberli, W., Gärtner-Roer, I., Hoelzle, M., Paul, F. & Zemp, M. G. Glacier mass balance
  510 bulletin no. 10 (2006-2007). *IAHS (ICSI), Zürich* (2009).
- 511 92. Azam, M.F. *et al.* From balance to imbalance: a shift in the dynamic behaviour of Chhota
  512 Shigri glacier, western Himalaya, India. *J. Glaciol.* 58, 315-324 (2012).
- 513 93. Kehrwald, N. *et al.* Mass loss on Himalayan glacier endangers water resources. *Geophys. Res.*514 *Lett.* 35, doi:10.1029/2008GL035556 (2008).
- Wang, N., He, J., Pu, J., Jiang, X. & Jing, Z. Variations in equilibrium line altitude of the Qiyi
  Glacier, Qilian Mountains, over the past 50 years. *Chin. Sci. Bull.* 55, 3810-3817 (2010).

- 519 96. Yao, T.,
- Frauenfeld, O. W., T. Zhang, and M. C. Serreze (2005), Climate change and variability using
  European Centre for Medium-Range Weather Forecasts reanalysis (ERA-40) temperatures on
  the Tibetian Plateau, Journal of Geophysical Reseach, 110, doi:10.1029/2004JD005230.
- 523 98. You, Q., et al. (2010), Relationship between temperature trend magnitude, elevation and
  524 mean temperature in the Tibetan Plateau from homogenized surface stations and reanalysis
  525 data, Global and Planetary Change, 71, 124-133.
- Adler, R. *et al.* The Version 2 Global Precipitation Climatology Project (GPCP) Monthly
   Precipitation Analysis (1979-Present). *J. Hydrometeor.* 4, 1147-1167 (2003).
- 528

<sup>517 95.</sup> Liu, S., Xie, Z., Song, G., Ma, L. & Ageta, Y. Mass balance of Kangwure (flat-top) Glacier on
518 the north side of Mt. Xixiabangma, China. *Bull. Glaciol. Res.* 14, 37-43 (1996).