Emerging Vibrio risk at high latitudes in response to ocean warming

Supplementary Fig. 1. Warming trends in the Baltic region. A, maximum (red) and average (blue) summer SST from 1982 and the corresponding linear regression lines. B, monthly linear regression slopes for SST calculated using a 10-year step since 1854 showing a strong warming signal for analysis comprising a higher percentage of recent SST fields.

Supplementary Fig. 2. Histogram of observed distribution of *vibrio* infections observed annually. Solid line shows best fit prediction based on a negative binomial distribution, k = shape parameter, mu = average number of cases.

Supplementary Fig. 3. Remote sensing analysis of the Baltic during an 'at risk' period: A: 27th July 2006: SST field over the Baltic Sea region. Peak temperatures in the region were maximum during this month and B: average conditions for that date between 1982-2010. C: SST anomaly map showing the high, abnormal temperatures in the Baltic during this period, and D: corresponding daily risk analysis.

Supplementary Fig. 4. Risk maps showing the highest (summer) values for selected years over the period 1988-2010. The risk model for *V. vulnificus* infections was constructed based on observed SST and salinity. Low salinity areas (< 25 ppt NaCl) allows to delineate the region suitable for the occurrence of *V. vulnificus,* while SST acts as a predictor of risk, which is defined from the number of cases in relation to changes in SST according to the GLM model.

Supplementary Fig. 5. Average sea surface salinity conditions in the Western Atlantic and Euro-Asiatic border obtained from the World Ocean Atlas (NOAA/NODC). Salinity fields are based on average decadal (1955-2006) datasets that include salinity profile data from multiple sources, such as bottle samples, ship-deployed Conductivity-Temperature-Depth (CTD) sensors, profiling floats, and moored and drifting buoys.

Supplementary Table 1.

Cases ~ Year + Maxtemp, family = quasipoisson, link function = ln) Deviance Residuals: Min 10 Median 3Q Max -2.901 -1.34 -0.41 0.91 3.87 Coefficients: Estimate exp(Estimate) Std. Error t value Pr(>|t|)0.0001 Intercept -187.47 3.83e-82 41.64 -4.50 1.09 0.0003 Year 0.09 0.02 4.23 0.66 0.13 Max SST 1.93 5.15 2.54e-05 Dispersion parameter for quasipoisson family taken to be 3.65 Null deviance: 402.08 on 27 degrees of freedom Residual deviance: 69.72 on 25 degrees of freedom Reduction in deviance = 332, Df = 2, P(>|Chi|) < 2.2e-16Number of Fisher Scoring iterations: 5

Supplementary Table 1. GLM results investigating the relationship between observed wound associated *Vibrio* infections in the Baltic Sea region and maximum SST and time (years).

Supplementary Table 2

Year	Countries reporting cases	Number of cases	Species of infections
1985-1993	Finland, Denmark, (Netherlands, Belgium)	9	V. vulnificus, V. cholerae (non O1)
1994	Germany, Sweden, Denmark, Finland	21	V. vulnificus, V. cholerae (non O1), V. alginolyticus
1995	Denmark, Finland, Estonia	8	V. vulnificus, V. cholerae (non O1)
1996	Denmark, Finland	2	V. cholerae (non O1)
1997	Sweden, Finland, Denmark	21	V. vulnificus, V. cholerae (non O1), V. alginolyticus, V. damsela
1998	Finland, Denmark	6	V. cholerae (non O1)
1999	Finland	8	V. cholerae (non O1), V. fluvialis
2000	Finland	5	V. cholerae (non O1), V. parahaemolyticus
2001	Finland, Sweden	11	V. cholerae (non O1), V. parahaemolyticus, V. vulnificus
2002	Germany, Finland	10	V. cholerae (non O1), V. vulnificus
2003	Finland, Germany, Sweden	19	V. cholerae (non O1), V. vulnificus
2004	Finland, Sweden	6	V. cholerae (non O1), V. parahaemolyticus, Vibrio spp*
2005	Finland, Sweden	9	V. cholerae (non O1), V. parahaemolyticus, Vibrio spp*
2006	Germany, Denmark, Sweden, Poland,	67	V. vulnificus, V. cholerae (non O1), V. alginolyticus
	Finland, Estonia, (Netherlands)		V. parahaemolyticus, Vibrio spp*
2007	Finland, Sweden	14	V. cholerae (non O1), Vibrio spp*
2008	Sweden, Finland, (Netherlands)*	13	V. vulnificus, Vibrio spp*
2009	Finland, Sweden, Germany, (Netherlands)	15	V. cholerae (non O1), V. parahaemolyticus, V. alginolyticus, Vibrio spp.
2010	Finland, Sweden, Germany, (Netherlands)	36	V. cholerae (non O1), V. parahaemolyticus, V. alginolyticus, V. vulnificus Vibrio spp*.

Supplementary Table 2. Vibrio cases reported per year in the Baltic Sea region, 1985-2010.

Supplementary Table 3

Year	Countries reporting cases	Number of fatalities	Species responsible
1994	Germany, Denmark,	2	V. vulnificus.
1997	Sweden	2	V. vulnificus,
2003	Finland, Germany	2	V. cholerae (non O1), V. vulnificus
2006	Sweden, Germany	5	V. cholerae (non O1), V. vulnificus
2009	Germany	1	V.alginolyticus/V. parahaemolyticus
2010	Germany	2	V. cholerae (non O1), V. vulnificus

Supplementary Table 3. Reported fatalities in the Baltic Sea region associated with vibrios, 1994-2010

Figure S1

Figure S2

