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	51	
Datasets	and	Method	52	
(1) GIMMS LAI3g and GEOLAND2 LAI data	53	
The Global Inventory Modeling and Mapping Studies (GIMMS) LAI3g1 dataset, spanning 54	
from July 1981 to December 2011 at the temporal resolution of 15 days and covering the 55	
globe at 1/12 degree spatial resolution, has been recently published. This product was 56	
generated using a neural network trained by GIMMS NDVI3g and filtered MODIS Leaf 57	
Area Index (LAI) products during the overlapping years. The GEOLAND2 project 58	
(http://www.copernicus.eu/projects/geoland2) developed a 30-year LAI product (1982 to 59	
present) with 10-day temporal resolution and 1/122° (about 1 km at the equator) spatial 60	
resolution2. Based on the neural network approach, this product was obtained from a 61	
combination of two sensors, NOAA-AVHRR (1982~1999) and SPOT-VGT 62	
(1999~present). The first component of the product was obtained from NOAA-AVHRR. 63	
The second component of the product, GEOLAND2/BioPar GEOV1 LAI, was developed 64	
from the SPOT/VGT sensor; it is distributed at http://land.copernicus.eu/global/. Both the 65	
LAI3g and GEOLAND2 LAI have been extensively evaluated with field measurements 66	
and other remote-sensing-based products, in terms of the mean states, multiyear 67	
variations, and responses to climate change. For model evaluations, environmental 68	
monitoring and assessment, and vegetation dynamics studies, the suitability of each has 69	
also been well documented and assessed1-7.  70	
 71	
To more easily compare satellite LAI time series with earth system model (ESM) 72	
simulations, which have no gaps, and to consistently apply the growing season definition 73	
for observed and modeled LAI, we filled the gaps of the two LAI products. Gaps in both 74	
remote-sensing LAI time series resulting from the cloud coverage, algorithm failure, or 75	
low quality of source reflectance were filled following common practice published in 76	
previous work8,9. Generally, the short gaps (shorter than one year) were first filled using a 77	
cubic curve fitting according to the following criteria: (1) at least 35.0% of the data for the 78	
year are not missing, and (2) the gap is not located at the beginning or ending of the year. 79	
A 12-month window starting at any day of a year, instead of January 1 to December 31, 80	
was moved around the gap to be filled to obtain a “best” location for curve fitting. The 81	
“best” here refers to the condition that satisfies the above criteria and that contains the 82	
highest percentage of non-missing values. Long gaps were then filled using the 83	
climatological mean. Resultant data were then remapped to a coarser spatial resolution 84	
(2°×2°) for detection and attribution. The decrease of pixel size toward the poles due to 85	
the curvature of the earth was considered in the spatial resampling process. Similar to that 86	
documented in ref. 10, the annual growing season LAIs were derived by averaging the 87	
LAIs of growing-season months, which are defined as April–October, May–October, or 88	
May–September within a given year. 89	
 90	
(2) Prognostic LAI of CMIP5 models   91	
We used monthly mean LAI results from 19 fully-coupled ESMs participating in the 92	
CMIP5 project11 (Table S1). They comprise a set of simulations: ALL, with historical 93	
anthropogenic and natural forcings (solar variability and volcanic aerosols as well as well-94	
mixed greenhouse gases plus other anthropogenic factors such as aerosols, land use/land 95	
cover change (LULCC) and/or ozone), GHG, with greenhouse gases forcing only 96	
(anthropogenic well-mixed greenhouse gases), NAT, with natural forcings only (solar 97	
variability and volcanic aerosols), and unforced preindustrial control simulations (CTL, 98	
internal variability only). 99	
 100	

© 2016 Macmillan Publishers Limited. All rights reserved. 

 



	 3	

Since not all models provide historical simulations extending to year 2011, the 101	
Representative Concentration Pathway (RCP) 4.5 simulations were used to extend the 102	
ALL simulations over the years 2006 to 2011. To discuss the possible impacts of CO2 103	
fertilization and greenhouse gas radiative effects on the LAI dynamics, we also analyzed 104	
the esmFixClim2 (radiation code sees constant CO2 concentration of year 1850, but 105	
carbon cycle sees historical followed by RCP4.5 rise in CO2) and esmFdbk2 (carbon cycle 106	
sees constant CO2 concentration of year 1850, but radiation sees historical followed by 107	
RCP4.5 rise in CO2) experiments. Results were shown from 18 models and 43 runs for 108	
ALL, 6 models and 17 runs for NAT, 5 models and 15 runs for GHG, 6 models and 6 runs 109	
for esmFixClim2, and 4 models and 4 runs for esmFdbk2.  110	
 111	
The multi-realization mean of each model/forcing was used for analysis. The simulations 112	
were resampled to a 2°×2° spatial resolution. The regional mean growing-season LAIs 113	
were calculated for each model/forcing group according to the growing season definition 114	
using the same approach as the satellite observations for all historical simulations. Based 115	
on the annual time series of the regionally averaged growing-season LAIs, 3-year 116	
averaged LAIs were calculated, resulting in 10 time steps for the 1982–2011 period. The 117	
CTL simulations contain LAI time series with different lengths up to 1000 years, 118	
corresponding to multiple 30-year segments.	119	
 120	
(3) Comparison of observed and simulated LAI trends	121	
The statistical tests used to compare observed and simulated trends (the fourth paragraph 122	
of the main text) are chi-square tests constructed as follows. We assume n simulations 123	
(either unforced 30-year segments or individual historical simulations) x1,..., xn are 124	
available, independent, and identically distributed, following a Gaussian distribution. We 125	
wonder whether the observed value y is consistent with the distribution of the xi. The 126	
statistical test we used is derived from	127	

𝑦 − 𝑥 ∽ 𝑁 0, 1+ 1 𝑛 𝜎! 	

where x̅ is the sample mean of the (xi). This test is based on the statistic	128	

𝑠 =
𝑛

𝑛 + 1
𝑦 − 𝑥 !

𝜎! ∼ 𝐹 1,𝑛 − 1 	

Confidence intervals on model-simulated trends are computed with the same approach, at 129	
the 90% level. 130	
 	131	
(4) Robustness of detection to inflated IV assumptions	132	
The rejection of the residual consistency test (RCT), which was found in most cases, 133	
might be related to an underestimation of IV by current ESMs. In order to address this 134	
possible weakness of our analysis, we investigated the robustness of our results to using 135	
inflated estimates of IV. In that investigation, the covariance structure is still estimated 136	
from climate model CTL simulations, but its magnitude is revised and inflated.  137	
 138	
This test is done in a simplified statistical framework where the response pattern is 139	
assumed to be known and linear in time (i.e., the response pattern simulated by climate 140	
models is not used). In this way, we study the significance of the linear trend. The multi-141	
model mean response shown in Fig. 2 is very close to being linear over the 30-year period. 142	
The statistical regression model is then fitted using an ordinary least square (OLS) 143	
algorithm12,13 where the expected response X* is considered as being known, related to the 144	
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following two reasons. First, one approach used here (case Lin_Σobs) is to estimate the 145	
magnitude of the variance in ∑ directly from the observed data. This cannot be done under 146	
total least square (TLS), as TLS requires the ratio of variances in ∑ and ∑X to be known14. 147	
Second, the use of the TLS approach is not required if a fixed response pattern is assumed, 148	
as is done here with a time-linear response. Such a parametric assumption is, at worst, 149	
suboptimal, and may reduce the chance to successfully detect a change. 150	
 151	
The results obtained with this sensitivity analysis are shown in Fig. S5 for the April to 152	
October mean LAI (consistent with the main text and Fig. 4), and in Fig. S6 for alternative 153	
seasons. In terms of attributable trend, the results obtained using this simpler method, and 154	
an estimate of IV derived from model simulations (Lin_Σmod in Fig. S5), are very close 155	
to those found with the Multi1 ALL response (Fig. 4). When the magnitude of IV is 156	
estimated from observations instead of from climate models (Lin_Σobs, Fig. S5), the 157	
estimated variance is about 2.5 times larger, and the confidence intervals on the scaling 158	
factors are widened. However, the detection of the response to external forcings (i.e., β ≠ 159	
0) remains very clear. The most important difference caused by the inflated IV comes 160	
from the RCT, which is then well passed. This enhances confidence in our result, as 161	
detection is shown to be robust if a higher, observationally based estimate of IV is 162	
considered. To further our investigation, we apply the same method using a simulated 163	
variance inflated by a factor of 8 (Lin_8×Σmod, Fig. S5). With such a large inflation of 164	
IV, the (2-sided) RCT is rejected again, but this time because the regression residuals are 165	
found to be significantly smaller than expected when such a large IV is assumed. In this 166	
way, we are dealing with an upper bound of internal variability. Detection is still found to 167	
be significant, although barely. This again strengthens confidence in the detection of 168	
recent LAI changes. 	169	
 170	
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Table S1. The coupled model name, modeling center information, name of the land surface model in the coupled 
model, horizontal resolution (latitude/longitude) of the land surface model, nitrogen dynamics information of the land 
surface model, prognostic vegetation coverage information of the land surface model, length (years) of the preindustrial 
unforced control (CTL) simulations, the availability of CMIP5 simulations (historical) with anthropogenic and natural 
forcings (ALL), the availability of CMIP5 simulations (historicalNat) with natural forcings alone (NAT), the 
availability of CMIP5 simulations (historicalGHG) simulations with greenhouse gases forcings (GHG), the availability 
of CMIP5 simulations (esmFixClim2) with radiation code seeing constant CO2 concentration of year 1850, but carbon 
cycle seeing historical followed by RCP4.5 rise in CO2, the availability of CMIP5 simulations (esmFdbk2) carbon 
cycle seeing constant CO2 concentration of year 1850, but radiation seeing historical followed by RCP4.5 rise in CO2, 
and the availability of CMIP5 simulations (historicalMisc) with Land Use/Land Cover Change (LULCC) for 1982-
2011. 

	
	

Model Modeling Group Land 
Component 

Land 
Resolutio

n 

N-
cycle 

Dynamic 
vegetation 

piControl 
Length 

historical 
(43)  

historical
Nat (17) 

historical
GHG (15)  

esmFixClim2 
(6) 

 
esmFdbk2 

(4) 

historical
Misc (5) Reference 

bcc-csm1-1 
Beijing Climate Center, 
China Meteorological 

Administration, CHINA 
BCC_AVIM1.0 

 
2.875° × 
2.875° 

N N 500 3 1 1 1 1 
 

Wu et al., 2013 

bcc-csm1-1-m 
Beijing Climate Center, 
China Meteorological 

Administration, CHINA 
BCC_AVIM1.0 2.875° × 

2.875° N N 400 3     
 

Wu et al., 2013 

CanESM2 
Canadian Center for 

Climate Modelling and 
Analysis, CANADA 

CLASS2.7&CT
EM1 

2.81° × 
2.81° N N 996 5 5 5 1 1 

 
5 Arora et al., 

2011 

CCSM4 
National Center for 

Atmospheric Research 
(NCAR), USA 

CLM4 0.9° 
×1.25° Y N 1051 6     

 
Gent et al., 2011 

CESM1-BGC 
Community Earth System 
Model Contributors, NSF-

DOE-NCAR, USA 
CLM4 0.9° 

×1.25° Y N  1     
 Hurrell et al., 

2013; Lindsay et 
al., 2014 

CESM1-CAM5 
Community Earth System 
Model Contributors, NSF-

DOE-NCAR, USA 
CLM4 0.9° 

×1.25° Y N 319 3     
 Meehl et al., 

2013 

CESM1-
WACCM 

Community Earth System 
Model Contributors, NSF-

DOE-NCAR, USA 
CLM4 0.9° 

×1.25° Y N 200 3     
 Marsh et al., 

2013 

GFDL-ESM2M NOAA Geophysical Fluid 
Dynamics Laboratory, USA LM3 2.5° ×2.5° N Y 500    1   Dunne et al., 

2012, 2013 

HadGEM2-CC Met Office Hadley Centre, 
UNITED KINDOM JULES 1.25° 

×1.875° N Y 240 1     
 Collins et al., 

2011; Jones et 
al., 2011 

HadGEM2-ES Met Office Hadley Centre, 
UNITED KINDOM JULES 1.25° 

×1.875° N Y 576 4 4 4 1 1 
 Collins et al., 

2011; Jones et 
al., 2011 

IPSL-CM5A-
LR 

Institut Pierre-Simon 
Laplace, FRANCE ORCHIDEE 3.75° 

×1.9° N N 1000 4 3 4 1 1  Dufresne et al., 
2013 

IPSL-CM5A-
MR 

Institut Pierre-Simon 
Laplace, FRANCE ORCHIDEE 2.5° 

×1.25° N N 300 1 3     Dufresne et al., 
2013 

IPSL-CM5B-
LR 

Institut Pierre-Simon 
Laplace, FRANCE ORCHIDEE 3.75° 

×1.9° N N 300 1      Dufresne et al., 
2013 

MIROC-ESM-
CHEM 

JAMSTEC, University of 
Tokyo, and NIES, JAPAN 

MATSIRO & 
SEIB-DGVM 

2.875° 
×2.875° N Y 255 1      Watanabe et al., 

2011 

MIROC-ESM JAMSTEC, University of 
Tokyo, and NIES, JAPAN 

MATSIRO & 
SEIB-DGVM 

2.875° 
×2.875° N Y 630 1   1   Watanabe et al., 

2011 

MPI-ESM-LR Max Planck Institute for 
Meteorology, GERMANY JSBACH 1.9° ×1.9° N Y 1000 3      Giorgetta et al., 

2013 

MPI-ESM-MR Max Planck Institute for 
Meteorology, GERMANY JSBACH 1.9° ×1.9° N Y 1000 1      Giorgetta et al., 

2013 

NorESM1-ME Norwegian Climate Centre, 
NORWAY CLM4 1.9° ×2.5° Y N 252 1    

  Bentsen et al., 
2013; Iversen et 

al., 2013 

NorESM1-M Norwegian Climate Centre, 
NORWAY CLM4 1.9° ×2.5° Y N 501 1 1 1  

  Bentsen et al., 
2013; Iversen et 

al., 2013 
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Figure S1. This figure is similar to Fig. 1, but it considers different definitions of the 
growing season LAI (a–f for May–October [M2O], g–l for May–September [M2S]).	
	
	
	
	
	
	
	

a	 b
a	

c
a	

d	 e
b

f	

g	 h	 i	
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© 2016 Macmillan Publishers Limited. All rights reserved. 

 



	 3	

	
	
Figure S2. This is similar to Fig. 2, but it considers different definitions of the growing 
season LAI (a, for May–October [M2O], b for May–September [M2S]). 
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Figure S3.Observed and simulated 1982-2011 time series of LAI anomalies. The 3-year mean Growing Season (a–c 
for April–October [A2O], d–f for May–October [M2O], and g–i for May–September [M2S]) LAI anomalies (m2/m2) 
over land of the northern-extratropical latitudes (NEL) for the LAI3g product, GEOLAND2 product, mean of LAI3g 
and GEOLAND2, individual CMIP5 simulations accounting for solely natural forcings (NAT), and both anthropogenic 
and natural forcings (ALL), as well as CMIP5 simulations accounting for greenhouse gas forcings (GHG). Specific 
information on the model name and ensemble size of each model can be referred to Table S1. 

	
	
	
	
	
	

NAT	(A2O)	 ALL	(A2O)	 GHG	(A2O)	

NAT	(M2O)	 ALL	(M2O)	 GHG	(M2O)	

NAT	(M2S)	 ALL	(M2S)	 GHG	(M2S)	

	 	 	

	 	 	

	 	 	
a	 b	 c	

d	 e	 f	

g	 h	 i	
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Figure S4. This is similar to Fig. 3, but considers different definitions of the growing season LAI (a and b for May–
October [M2O], c and d for May–September [M2S]). 
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Figure S5: Sensitivity of optimal D&A to inflated variance assumptions. The optimal D&A analysis shown in Fig. 
4 of the main text (Multi1 and Multi3 response patterns) is compared to results obtained considering a simplified 
method (linear trend and OLS fit, see text) and assuming an inflated IV. IV is estimated from unforced preindustrial 
simulations (Lin_Σmod), the observations (Lin_Σobs), or inflated arbitrarily by a factor of 8 (Lin_8xΣmod). Scaling 
factors, attributable trends, and the p-value of the residual consistency test are shown as being consistent with those in 
the Fig. 4.	

	

a	

b	

c	

© 2016 Macmillan Publishers Limited. All rights reserved. 

 



	 7	

						 	
 

Figure S6. Results for the optimal D&A using alternative growing season definitions. This is similar to the merged 
Figs. 4 and S5, but considers different definitions of the growing season LAI (a, c, and e for May–October [M2O], b, d, 
and f for May–September [M2S]).	
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Figure S7. Spatial distribution of LAI trends for 1982–2011. Spatial distribution of the linear trends in the growing 
season (April–October) LAI (m2/m2/30yr) in  
(a) CMIP5 simulations with anthropogenic and natural forcings for those models having dynamic nitrogen process 

(i.e., having the CLM4 model [ALL_N]),  
(b) CMIP5 simulations with anthropogenic and natural forcings for those models having no dynamic nitrogen process 

(ALL_noN),  
(c) CMIP5 simulations with anthropogenic and natural forcings for those models having esmFixClim2 (CO2-induced 

physiological effects, radiation code sees constant CO2 concentration of year 1850, but carbon cycle sees historical 
followed by RCP4.5 rise in CO2) or esmFdbk2 (GHG-induced climate effects, carbon cycle sees constant CO2 
concentration of year 1850, but radiation sees historical followed by RCP4.5 rise in CO2) experiments (ALL_esm),  

(d) CMIP5 simulations with greenhouse gases forcings for those models having esmFixClim2 or esmFdbk2 
experiments (GHG_esm),  

(e) CanESM2 simulations with land use/land cover change only (LULCC_CanESM2),  
(f) the esmFixClim2 simulations (CO2fert_esm), and  
(g) the esmFdbk2 simulations (GHGclim_esm).  
The hatched area indicates at least 90% of the simulation members agree on the increasing trend of LAI, and area with 
black crosses indicates at least 90% percent of the simulation members agree on the decreasing trend of LAI. These 
figures are designed to provide insights on the possible processes behind the anthropogenic impacts (e.g., nitrogen 
deposition, land use/land cover change, and the CO2-induced physiological vs. GHG-induced climate effects) on the 
vegetation growth. 

	
	
	
	
	
	
	
	
	
	
	

a	 b	 c	 d	

e	 f	 g	
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Figure S8. Spatial distribution of LAI, precipitation and temperature trends for 1982–2011. Spatial distribution of 
the trends in the growing season (April–October)  
(a) climate-induced LAI (m2/m2/30yr),  
(b) precipitation (mm/day/30yr), and  
(c) temperature (°C/30yr) from the CMIP5 esmFdbk2 simulations (GHG-induced climate effects, carbon cycle sees 

constant CO2 concentration of year 1850, but radiation sees historical followed by RCP4.5 rise in CO2).  
The hatched area indicates at least 90% of the simulation members agree on the increasing trends, and area with black 
crosses indicates at least 90% percent of the simulation members agree on the decreasing trends. The (a) is identical to 
that of Fig. S7g. These figures are designed to provide insights on the possible climatic drivers of LAI changes for the 
GHG-induced climate change shown in Fig. S7g.  
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Figure S9. Regional summaries of LAI trends for 1982-2011. Linear trends in the growing season (April–October) 
LAI (m2/m2/30yr) of CMIP5 simulations with anthropogenic and natural forcings (ALL) CMIP5 simulations with 
anthropogenic and natural forcings for those models having dynamic nitrogen process, which means having the CLM4 
model (ALL_N), CMIP5 simulations with anthropogenic and natural forcings for those models having no dynamic 
nitrogen process (ALL_noN), CMIP5 simulations with anthropogenic and natural forcings for those models having 
esmFixClim2 (CO2-induced physiological effects, radiation code sees constant CO2 concentration of year 1850, but 
carbon cycle sees historical followed by RCP4.5 rise in CO2) or esmFdbk2 (GHG-induced climate effects, carbon cycle 
sees constant CO2 concentration of year 1850, but radiation sees historical followed by RCP4.5 rise in CO2) 
experiments (ALL_esm), CMIP5 simulations with greenhouse gases forcings for those models having esmFixClim2 or 
esmFdbk2 experiments (GHG_esm), CanESM2 simulations with land use/land cover change only 
(LULCC_CanESM2), the esmFixClim2 simulations, and the esmFdbk2 simulations over land of northern-extratropical 
latitudes (NEL), western North America (WNA), eastern North America (ENA), Europe (EU) and western Asia 
(WAS), and eastern Asia (EAS). Boxes indicate 10% and 90% percentiles and bars represent the minimum and 
maximum value of all ensemble runs. Median and mean values are shown by the bar and dot inside each box. Stars 
above/below bars indicate at least 90% of ensemble runs agree on positive/negative trends. In addition, the asterisks 
above/below bars indicate at least 90% of ensemble runs agree on significantly positive/negative trends. The two red 
dashed lines indicate the trends from LAI3g (short dash) and GEOLAND2 (long dash), and the solid red line shows the 
average trend of the two observations. A star is shown to the right end of each red dashed line if the trend is 
significantly positive. The grey solid line is the reference line across zero. 
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