
1 
 

 1 

Supplementary Figure 1: Illustration of the graphene layer and its surrounding dielectrics. 2 
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Supplementary Note 1 4 

Introducing graphene plasmons and their spinor-polarization coupling terms 5 

We begin with the graphene Hamiltonian near the Dirac cone 6 = ℏ ∙ 																																																																(1) = 0 11 0 , 0 −0 																																																												(2) 
using the same definitions as in the main text, with the Fermi velocity ≈ 10 	 	  and the 7 

charge carrier momentum ℏ  satisfying a conical dispersion relation =	 | ℏ | .  8 

 is a 2D vector of Pauli matrices. The eigenstates are [1] 9 

, ( ) = 1√ ∙√2 = 1√ √2 																																					(3) 
with the area  introduced for normalization purposes and the angle = ∢ = arctan / . 10 

The sign = 1 ( = −1) denotes the conduction (valence) band. 11 

To add an electromagnetic interaction (describes either a photon or a plasmon) we substitute 12 ℏ → ℏ + 																																																																					(4) 
where we choose the gauge for which the scalar potential is zero. This way we can write  13 

directly from the in-plane electric field of the graphene plasmon  = − /  14 

 15 
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This approach of treating an “effective photon” (in our case a plasmon) by the electron-photon 16 

QED interaction, derives from Ginzburg’s quantum description of the ČE [2], which has also 17 

been developed by many authors for different dispersion relations [3] 18 

Next, we present the electric and magnetic fields that compose the graphene plasmon. This 19 

determines the polarization in the interaction Hamiltonian, and also gives the normalization of a 20 

single plasmon quantum state. Most interactions of graphene with an electromagnetic excitation 21 

consider free space photons, which has a negligible momentum in the plane of the graphene, so 22 

the interaction is typically fully described by a time harmonic term with no space dependence. In 23 

contrast, the graphene plasmon has large momentum that cannot be neglected. Moreover, the 24 

graphene plasmon has longitudinal polarization in the graphene plane, making the interaction 25 

term different from conventional light-matter interaction scenarios involving an electron and a 26 

photon. 27 

The fields that compose the plasmon are obtained by matching boundary conditions of the 28 

electromagnetic fields that satisfy the Maxwell’s equations both above and below the graphene 29 

(denoted by a and b sides respectively, as illustrated in the Supplementary Fig.1): 30 , = , + ( ̂ cos( ) + sin( )) ǁ , 																																									(5) , = ( cos( ) − ̂ sin( )) ǁ , 																																																(6) 
ǁ , = , 																																														(7) 

, = ǁ , , 														 ǁ , = ǁ , ,, 																																				(8) 
 is the vacuum permittivity, ,  is the relative permittivity above (a) and below (b) the 31 

graphene sheet. ⊥ denotes the polarization component that is perpendicular to the plane ( ) and ǁ 32 

denotes the in-plane polarization component(s) ( ,  plane). ,  is the decay rate perpendicular 33 

to the graphene sheet coming from the (imaginary part of the) wavevector in the  axis. The 34 

wavevector constituents are: 35 = sin( )										 = cos( )																																																			(9) 
, = , = ± − , 																																																					(10) 
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(for the geometry where a is above ( > 0) and b is below ( < 0) we have  real and positive 36 

while  real and negative). The field normalization coefficient FNC  is an arbitrary complex 37 

coefficient according to the classical electromagnetic theory, but is given a fixed value below in 38 

the process of the field second quantization used for the quantum formalism of plasmon emission.  39 

* In contrast with the above, the other polarization mode leads to a different plasmonic 40 

dispersion that does not have the same properties, and in particular does not have high 41 

confinement (and high momentum), therefore its interaction is negligible compared to the above 42 

polarization choice. 43 

To determine the expression in the interaction Hamiltonian, we only need the in-plane 44 

polarization component of the electric field on the graphene plane ( = 0), giving: 45 

ǁ = FNC− ∙ 																																																										(11) 
Therefore the interaction Hamiltonian has the spinor-polarization term ∙ : 46 = ∙ ǁ = ∙ FNC− ∙ 																						(12) 
 47 

We define the spinor-polarization term SP  by the following:  48 

, ( ∙ ) , = SP ( )∙ / 																																														(13) 
The indices i and f denote initial and final charge carrier in the process. 49 

 50 

For a transition inside the same band =  (intraband) we get: 51 SP = ± ( )⁄ cos ( + ) + sin ( + )  = ± ( )⁄ cos( − ( + )/2)																																									(14) 
For a transition between the bands = −  (interband) we get: 52 SP = ± ( )⁄ cos ( + ) − sin ( + )  = ± ( )⁄ sin( − ( + )/2)																																								(15) 
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Without loss of generality, we choose the incoming charge carrier along the  axis so that 53 = ̂ /(ħ ) . The angles are then ∢ = = 0  and ∢ = = . This gives the 54 

expressions we use in the main text: 55 |SP| = cos ( − /2)  |SP| = sin ( − /2)																												(16) 56 

 57 

 58 

 59 

Supplementary Note 2 60 

The matrix elements and their normalization 61 

The matrix elements describing the plasmon emission process (Fig.1 in the main text) is: 62 

→ = , ∙ ǁ , 																																(17) 
→ = FNC SP ( )∙ 																											(18) 

Next we find the normalization used in the quantization of the graphene plasmon field FNC , 63 

derived from the Poynting theorem for the energy carried by the field [3,4]. The energy stored in 64 

the electromagnetic field is: 65 

= | | 12 ( )																																											(19) 
We assume no dispersion in the dielectrics on both sides of the graphene sheet. To calculate the 66 

energy we first have to consider the contribution of the graphene surface conductivity, because 67 

the energy stored in the 2D surface can be significant: 68 = + = + ( ) = −2 0 ̅r p ( )		 	 		
																										(20) 

Substituting: 69 

= 12 ( ) | ǁ | + | | + 12 ǁ +  
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− 12 2 0 ̅r p ǁ + | | 																																										(21) 
Where the parallel field component ǁ = ǁ ( = 0 ) = ǁ ( = 0 ), per the continuity relation, 70 

while the perpendicular field component is not continuous and averages to zero on the surface. 71 

Next, we apply an approximation that is typically used with graphene plasmons (the same 72 

approximation used in the main text): ≈ ≈ . This is a good approximation because of the 73 

large confinement factor, or in other words, ≫ /  (free space wavelength >> graphene 74 

plasmon wavelength). It allows us to write: 75 

= 2 |FNC| 12 (2 ̅r) − |FNC| 12 2 0 ̅r p 								(22) 
= 2 ̅r|FNC| 2 12 − 0 ̅r|FNC| 1 p 																														(23) 

= ̅r|FNC| 2 − 1 p = ̅r| | 																							(24) 
The last step uses the following: 76 1 p = 1 = 2 − = 2 − 																													(25) 
At last, comparing the energy to ħ , we get the normalization coefficient |FNC| : 77 ̅r|FNC| = ħ 																																																							(26) 
With the definition = ̅ ∙ = ̅ ∙   (as we had in the main text), we can write: 78 

|FNC| = ℏ 																																																												(27) 
Substituting FNC  back to the matrix element we get: 79 

→ = ℏ SP ( )∙ 																											(28) 
 80 

 81 

Supplementary Note 3 82 

Solving for the graphene Čerenkov effect with plasmonic losses 83 
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In this section we consider complex plasmonic momenta (taking losses into account) in the 84 

matrix elements, which we substitute into a Fermi golden rule calculation to find the rate of 85 

plasmon emission of the graphene ČE. 86 

The ,  integrals in the matrix element give sinc functions that will become delta functions or 87 

Lorentzians when we take the normalization area  to infinity. To find the exact coefficient, we 88 

write  as  so: 89 

( )∙ = /
/

/
/ ( )∙  

= sinc 2 + sinc 2 ( − − ) 																												(29) 
The matrix element is modulo-squared hence we use the following delta function limit: 90 sinc 2 ( − − ) → 2 ( − − )																									(30) 
We consider losses as an imaginary part added to the plasmon wavevector [5], denoting =91 +  and = + . In this case the limit of infinite area can be shown to give a 92 

Lorentzian. 93 ( − − ) → | |/( − − ) + | | 																																(31) 
 94 

Recalling the Fermi’s golden rule (Eq.1 from the main text) 95 

= 2 2ℏ ∙
	 → − ℏ ( ) − ( ) (2 ) / 	(2 ) / 												(32) 

We substitute the Lorentzians and get the following 96 

= ℏ	 ( )̅ 	 ( )/ − ℏ ± |SP|  

∙ /+ + | |/( − − ) + | | 																(33) 
 ( ) is the group (phase) velocity of the graphene plasmom.  97 
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The integrals over the plasmon momentum are changed to 98 = = / 																																												(34) 
The integrals over the momentum of the outgoing charge carrier are used to solve the delta 99 

function over energy 100 − ℏ ± = | − ℏ |(ℏ ) ,																																						(35) 
which restricts the energy of the outgoing charge carrier to = | − ℏ |. The absolute value 101 

is necessary because the charge carrier energies (incoming and outgoing) are defined relative to 102 

the tip of the Dirac cone. Therefore while intraband transitions will have > ℏ , interband 103 

transitions can have < ℏ . In both cases we can substitute: 104 = | ℏ |ℏ cos( )  = | ℏ |ℏ sin( )																																(36) 105 

Eventually obtaining Eq.6 from the main text (defining ( ) = ( )/ ( )): 106 

, = ̅ ( ) ℏ − 1 					 cos ( − /2)					 	sin ( − /2)					 	  

∙ sin( )( )( ) ℏ − 1 sin( ) + sin( ) + sin( )( ) 																																						(37) 
∙ |cos( ) / ( )|( ) ℏ − 1 cos( ) + cos( ) − ( ) ℏ + |cos( ) / ( )|  

 107 

Supplementary Note 4 108 

The graphene Čerenkov effect in its lossless limit and compared to the conventional theory 109 

We consider the limit case of low losses, since then further analytical simplifications can be 110 

achieved. By taking the delta function limit of the Lorentzians Eq.1 translates into 111 

= ℏ	 ( )̅ 	 ( )/ − ℏ ( ) ± |SP| 																																(38) 
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= 	ℏ / ( )̅ 	 ( )/ − ℏ ± ( , ) |SP| 																												(39) 
Changing the integration variable  to  gives the following Jacobian 112 

2 1 − ℏℏ sin( Č) ,																																																																(40) 
which we substitute back to get: 113 

= 2̅ ( ) 1 − ℏsin( Č) |SP| 																																																							(41) 
The delta function forces the conservation of energy ( , ) = | − ħ |, which gives the 114 

modified Čerenkov angle: 115 − ℏ = ± ℏ| |																																																														(42) ( − ℏ ) = (ℏ ) | | + | | − 2 ∙ 																																								(43) ( − ℏ ) = + ℏ / − 2 ℏ / cos( Č)																													(44) 2 ℏ cos( Č) = (ℏ ) − 1 + 2 ℏ 																																	(45) 
cos( Č) = 1 + ℏ2 − 1 																																																	(46) 

Therefore the equation for the Čerenkov angle in the quantum 2D ČE (Eq.4 from the main text): 116 cos( Č) = 1 − ℏ2 1 − 																																																(47) 
Notice that when taking ħ → 0 (or ≫ ℏ ), we get the well-known equation cos( Č) = /  117 

for the conventional Čerenkov angle [3]. 118 

 119 

To find the total rate of plasmon emission we need to explicitly find the spinor-polarization term 120 |SP|  by substituting the angles of the plasmon ( Č) and of the outgoing charge carrier ( ). The 121 

latter can be found from the delta functions on the momenta in the  axis + : 122 sin( ) = − sin( )ℏ − 1 ,																																																										(48) 
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or from the delta function on the momenta in the  axis ( − − ): 123 cos( ) = 1ℏ − 1 − cos( )ℏ − 1 																																															(49) 
We write |SP|  in the following way capturing both interband and intraband transitions: 124 |SP| = 1 ± cos(2 Č − )2 ,																																																					(50) 
which we can translate to the following form: 125 

|SP| = 1 − ℏ2 1 + cos( Č)1 − ℏ 																																							(51) 
or further simplify to get the following: 126 |SP| = 11 − ℏ sin ( Č)1 − ⁄ 																																																	(52) 
Giving the equation for the rate of plasmon emission per unit frequency from a single hot carrier 127 

in graphene (Eq.5) 128 

= 2 ̅ 1 − ℏ2 1 + cos( Č)|sin( Č)| = 2 ̅ sin( Č)1 − ⁄ 																										(53) 
Notice that in the limit of ħ → 0 (or ≫ ℏ ) we get the following 129 = 2 ̅ 1|sin( Č)| = 2 ̅ 11 − ⁄ ,																																									(54) 
which is the classical limit of the Čerenkov Effect for a free charge particle (relativistic or not) 130 

moving outside graphene and parallel to it with velocity  (here there are no quantum corrections 131 

hence the regular Čerenkov threshold >  is required for the emission of plasmons). The 132 

same expression can be derived from the Maxwell equations. 133 

 134 
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