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Supplementary Figure 1. Details of the Shubnikov-de Haas analysis. The longitudinal resistivity (ρxx) is plotted against
magnetic field (B) at low temperatures for five of the samples studied in this work. For each sample, ρxx vs B is plotted in
(a), where the dotted line depicts a fourth order polynomial which serves as a smooth background. The background subtracted
data ∆ρxx are plotted vs. B in (b) and vs. 1/B in (c), where quantum oscillations of the resistivity are clearly visible. Insets in
(c) show the same data plotted with a smaller range of the vertical axis, so that lower-amplitude oscillations are visible. Each
column of plots is labeled by the corresponding value of the Hall density nHall; columns are arranged in order of decreasing
nHall. All measurements were taken at T = 25 mK, with the exception of the sample having nHall = 3.57 × 1017 cm−3, which
was measured at T = 300 mK.



2

-0.4

-0.2

0

0.2

0.4

-2 -1 0 1 2

7.67 x 1015 cm-3 

3.44 x 1016 cm-3 

6.10 x 1016 cm-3 

1.05 x 1017 cm-3 

2.57 x 1017 cm-3 

3.57 x 1017 cm-3 

1.58 x 1018 cm-3

R
xy
(Ω
)

H (T)

Supplementary Figure 2. Low temperature Hall data for the series of doped SrTiO3 samples studied in this work. All samples
are n-type, and curves are labeled by the extracted value of the Hall carrier density. All measurements were taken at T = 25 mK,
with the exception of those corresponding to nHall = 3.57× 1017 cm−3 and nHall = 7.67× 1015 cm−3. The former was measured
at T = 300 mK, and the latter was measured at T = 2 K.
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Supplementary Figure 3. Zero-field resistivity for our lowest-density sample as a function of temperature. The inset shows
a detailed view of the data around T = 105 K. There is no sign of any anomaly in the transport at this temperature, which
corresponds to a structural transition in the STO lattice.
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Supplementary Figure 4. Scaling of the differential resistance with bias current and bias voltage. The normalized differential
resistance, (dV/dI)/(dV/dI)|I=0, is plotted versus (a) bias current I and (b) bias voltage V at T = 20 mK for a range of
magnetic field values. The nonlinearity becomes stronger as the magnetic field is increased. For small values of the bias voltage
V , the curve dV/dI versus V acquires a nearly universal shape, independent of the magnetic field strength.
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Supplementary Figure 5. Independence of the nonlinearity on the field direction. The differential resistance, dV/dI, is plotted
as a function of the bias current I and normalized to the value of dV/dI at I = 0. The green curve corresponds to the case
where the applied magnetic field is perpendicular to the bias current, while the orange curve corresponds to the case where the
magnetic field and current are parallel. Measurements in this plot correspond to T = 25 mK and B = 35.1 T.
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SUPPLEMENTARY NOTE 1: ZERO-FIELD MOBILITY AND ESTIMATE OF IMPURITY
CONCENTRATION

As mentioned in the main text, as-grown STO crystals generally have a relatively large number of impurities
that act as deep acceptors.[1, 2] We therefore expect that the concentration of impurities Ni significantly exceeds
the concentration n of free electrons. Here we show that this expectation is consistent with measurements of the
zero-field, low-temperature mobility.

In particular, at low enough temperatures that the mobility saturates at a constant value, one can expect that
the electron mobility µe is limited primarily by scattering from ionized impurities (Rayleigh scattering). For such
scattering processes, screening of the impurity potential by conduction electrons is essentially irrelevant in our samples.
This can be seen by examining the Thomas-Fermi screening radius

rs =

√
ε0ε

e2ν
, (1)

where ν is the electron density of states. In our samples rs ∝
√
aB/n1/3 ∼ 60 nm, which is much longer than the

distance between electrons or between charged impurities. (Here, aB denotes the effective Bohr radius at zero magnetic
field.) Consequently, the screening of impurities can be ignored for calculating the scattering cross section. In this
case,[3]

µe =
9πena2B

2~Ni ln(3π5na3B)
. (2)

Solving Supplementary Eq. (2) for Ni gives an estimate of the impurity concentration for a given mobility µe and
carrier density n. For the samples presented here, this estimate yields values of Ni of a few times 1018 cm−3, which
is consistent with our assumptions in the main text and with previous studies.[1, 2, 4]

Of course, this value can be considered an upper-bound estimate for Ni, since the presence of other, short-ranged
scatterers will also decrease the mobility. The Coulomb potential created by impurities is also not perfectly described
by a constant dielectric function ε, since the dielectric function is dispersive and thus the dielectric response is not
fully developed at short distances from the impurity. Hence, scattering by impurities may be somewhat stronger than
implied by Supplementary Eq. (2), which would further reduce the estimate for Ni. Theoretical estimates for the
dispersive nature of the dielectric function, however, suggest that this effect is not too large for isolated monovalent
charges.[5]

SUPPLEMENTARY NOTE 2: SHUBNIKOV-DE HAAS ANALYSIS

In the main text we present the results of a Shubnikov-de Haas (SdH) analysis of our doped STO samples. In
particular, in this analysis we identify oscillations of the longitudinal resistivity ρxx that are periodic in 1/B. As
mentioned in the main text, this is done by subtracting a smooth, fourth-order polynomial from the curve ρxx(B)
and identifying the field values BN corresponding to the maxima of the background-subtracted curve ∆ρxx(B).

In Fig. 1 we show full details of this data analysis procedure for five of our studied samples, each of which is driven
into the extreme quantum limit at large field. In particular, for each sample we show the raw curve ρxx(B), the
background-subtracted curve ∆ρxx(B), and the same data ∆ρxx plotted against the inverse field 1/B.

SUPPLEMENTARY NOTE 3: NONLINEAR TRANSPORT

A. Resistivity Scaling

At high magnetic fields, the resistivity ρ exhibits a significant nonlinearity, such that ρ is a function of both the
bias voltage V and the magnetic field B. We observe that the resistivity can in fact be scaled in such a way that
different curves for the differential resistance, dV/dI, as a function of V collapse on top of each other at small V .
This is shown in Fig. 4(b). The collapse of the curves suggests that one can write dV/dI = f(V )h(B), where f and
h are scaling functions.

From the data in Supplementary Fig. 4 one can extract a characteristic electric field scale F0 for the nonlinearity
in multiple different ways. For example, one can define F0 as the value of the electric field above which the scaling
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shown in Supplementary Fig. 4(b) is lost. This definition gives F0 ≈ 10 mV cm−1. Alternatively, one could define F0

as the value for which the differential resistance drops to half its V = 0 value. Such a definition gives F0 on the order
of ≈ 100 mV cm−1, depending on the value of B.

B. Nonlinearity in the perpendicular versus parallel field directions

Our analysis of the nonlinearity has largely focused on the case where the magnetic field direction is perpendicular
to the current direction. Here we briefly show results for the case where the magnetic field and current directions are
co-linear. As one can see in Supplementary Fig. 5, the two cases give essentially identical results for the nonlinear
differential resistance.

C. Tetragonal domain walls

At temperatures below T = 105 K, STO is known to undergo a transition from cubic to tetragonal crystal
symmetry.[6] Consequently, at T < 105 K the sample contains domain walls between differently-oriented tetrago-
nal domains, and these can potentially influence the electron transport. (For example, such influence has recently
been studied at the STO-LaAlO3 interface.[7, 8]) These domains are typically tens of microns in size, and the domain
walls have a width of about 2 nm and are associated with an electronic energy scale of about 3.2 meV.[9]

In our experiments, however, we find it unlikely that these domain walls are related to the observed nonlinearity
in the electron transport. Most tellingly, the features we observe in the electron transport are strongly magnetic
field-dependent, while the domain structure at fixed low temperature is completely insensitive to magnetic field. In
addition, we see no sign of any anomalies in the resistivity at T = 105 K, at which the structural transition occurs.
This is shown in Supplementary Fig. 3.

D. Nonlinearity in the Electron Puddle Picture

In the picture of “electron puddles” presented in the main text, there is a natural electric field scale for the
nonlinearity of the resistivity, which can be derived as follows.

For an almost-completely-compensated semiconductor in the EQL, electrons become localized in wells of the disorder
potential with typical radius[10]

rp ' (2π4)2/7(aB`
6
B)1/7(Ni`

2
BaB)1/6 (3)

and typical concentration np given by Eq. (4) of the main text. One can estimate the typical distance R between
puddles by noting that the total number of electrons within a puddle is equal to Qp ' (4π/3)npr

3
p, and therefore the

volume-averaged concentration of electrons is n ' Qp/R
3. Rearranging this expression for R gives a typical distance

between puddles R ' (4πnp/3n)1/3rp.
In the absence of a bias electric field, the typical activation energy between neighboring puddles is Ea = cγ, where

γ is the typical amplitude of the disorder potential [see Eq. (2) of the main text] and c is a numerical factor that is
typically ≈ 0.15.[11] One can define the typical field scale F0 as the value of the electric field for which the difference
in electric potential between puddles due to the applied field becomes equal to the activation energy Ea. In other
words, eF0R ' Ea. Rearranging this equation for F0 and substituting R ' (4πnp/3n)1/3rp gives

F0 ' c
(

3

4π

)1/3
eN

2/3
i

4πε0εn
1/3
p rp

' 0.10c
e

4πε0ε

(
N3

i

aB`4B

)1/7

, (4)

where the second equality is reached by substituting Eq. (4) from the main text and Supplementary Eq. (3) into
Supplementary Eq. (4).

For our samples, Supplementary Eq. (4) gives F0 ≈ 50 mV cm−1 to 80 mV cm−1 for B between 15 T and 45 T. This
range can be compared to the empirical values of F0, which are between 10 mV cm−1 and 100 mV cm−1.
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