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2L-1 2L
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Braiding processes for the final three-fermions system 

A
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2L-3 2L-22L-5 2L-4
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2L-3 2L-22L-5 2L-4
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B

initial Hamiltonian

braiding
process (1)

braiding
process (2)

braiding
process (3)

Supplementary Figure 1: The braiding process for L-fermions in the Kitaev Chain model (KCM). It can be reduced to the

process for the final three-fermions, which is represented by the dark blue dashed panes. The spheres with numbers at their

centers represent the Majorana fermions at the corresponding sites. A pair of Majorana fermions bounded by an enclosing ring

represents a normal fermion. The wavy lines between different sites represent the interactions between them.
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Supplementary Figure 2: The mapping of the braiding process. In the Kitaev Chain model (KCM), the braiding is determined

by a set of Hamiltonian, HMF
0 , HMF

1 , · · · , HMF
n , HMF

n+1 = HMF
0 . The geometric phases obtained during the process can be

uniquely determined by these Hamiltonians through Bargmann invariants. Under the Jordan-Wigner (JW) transformation,

the geometric phases can be determined in the transverse-field Ising model (TFIM). The states |mLf〉 and |kLs〉 are a basis of

the ground-state space defined in the KCM and in the TFIM (m and k=0 or 1), respectively.

H HR

u
input output

measure0

Supplementary Figure 3: The circuit of one step cooling algorithm. H represents the Hadamard gate operation. R represents

a local phase gate and U is the unitary operation which is dependent on the Hamiltonian Hs.
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JW transformation

KCM

TFIM

Z  symmetry2

Supplementary Figure 4: The one-to-one mapping between different models. The mapping can be constructed between Kitaev

Chain model (KCM) and the Z2 symmetry subspace of transverse-field Ising model (TFIM) through the Jordan-Wigner (JW)

transformation. In the Z2 symmetry subspace, the degeneracy of the ground state of TFIM is protected. However, the

degeneracy can be lifted by noises that do not respect the Z2 symmetry.

Supplementary Figure 5: Spatial modes of the output states for simulating the exchange of Majorana zero modes. The solid

magenta rings represent the preserved optical modes, and the dashed magenta rings represent the discarded optical modes.

The states indicated near the optical modes represent the corresponding preserved basis in the eight-dimensional space.
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input state H0 (initial)

flip error(final)

xxx xxx xxx xxx

xxx xxx xxx xxx

xxx

xxx

xxx xxx

xxx xxx

xxx xxx

xxx xxx

xxx

xxx

H0

Supplementary Figure 6: Spatial modes of the output states for the investigation of the flip-error immunity. The solid magenta

rings represent the preserved optical modes, and the dashed magenta rings represent the discarded optical modes. The states

indicated near the optical modes represent the corresponding preserved basis in the eight-dimensional space.

Supplementary Figure 7: Spatial modes of the output states for the investigation of the phase-error immunity. The solid

magenta rings represent the preserved optical modes, and the dashed magenta rings represent the discarded optical modes.

The states indicated near the optical modes represent the corresponding preserved basis in the eight-dimensional space.
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Supplementary Figure 8: Experimental image of the eight optical modes.
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Supplementary Figure 9: Experimental results on simulating local noises immunity. a. and d. The six experimental initial

states (after the first dissipative evolution DE0) with the dark green dots labeled as 1, cyan dots labeled as 2, magenta dots

labeled as 3, dark yellow dots labeled as 4, violet dots labeled as 5 and navy dots labeled as 6 in the Bloch spheres. b.

and e. The corresponding experimental final states (after the second dissipative evolution DE0) with the dark green dots

labeled as 1′, cyan dots labeled 2′, magenta dots labeled as 3′, dark yellow dots labeled as 4′, violet dots labeled as 5′, and

navy dots labeled as 6′ in the Bloch spheres for the cases of flip-error protection and phase-error protection, respectively.

The black dots in the poles of the Bloch spheres represent the corresponding theoretical predictions with the states |xxx〉 (+Z

direction), 1√
2

(|xxx〉−i|x̄x̄x̄〉) (-Y direction), |x̄x̄x̄〉 (-Z direction), 1√
2

(|xxx〉+ |x̄x̄x̄〉) (+X direction, |03s〉), 1√
2

(|xxx〉+i|x̄x̄x̄〉)

(+Y direction), and 1√
2

(|xxx〉 − |x̄x̄x̄〉) (-X direction, |13s〉), respectively. Due to the experimental errors, the coloured dots

(experimental results) are slightly separated from the corresponding black dots. c. and f. the comparison between the fidelities

of the final states (dark yellow columns) and the theoretical prediction (identity, cyan columns) for the cases of flip-error

protection and phase-error protection, respectively.
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Supplementary Figure 10: More experimental results. a. Theoretical predictions (black dots) and experimental results (ma-

genta dots) for the chosen nigh-ground states of H0 (after the first dissipative evolution DE0) in a Bloch sphere. The corre-

sponding theoretical states (corresponding numbers from 1 to 9) are represented as |xxx〉, 3√
10
|xxx〉 + 1√

10
|x̄x̄x̄〉, 2√

5
|xxx〉 +

1√
5
|x̄x̄x̄〉, 1√

2
(|xxx〉 + |x̄x̄x̄〉), 1√

5
|xxx〉 + 2√

5
|x̄x̄x̄〉, 1√

10
|xxx〉 + 3√

10
|x̄x̄x̄〉, |x̄x̄x̄〉, 1√

2
(|xxx〉 + i|x̄x̄x̄〉), and 1√

2
(|xxx〉 − i|x̄x̄x̄〉),

respectively. b. The corresponding fidelities of the states in a. c. Theoretical predictions (black dots) and experimental results

(magenta dots) for the nigh-ground states of H1 (after dissipative evolution DE1) in a Bloch sphere. The corresponding theoret-

ical states (corresponding numbers from 1 to 9) are represented as |z̄xx〉, 3√
10
|z̄xx〉− 1√

10
|z̄x̄x̄〉, 2√

5
|z̄xx〉− 1√

5
|z̄x̄x̄〉, 1√

2
(|z̄xx〉−

|z̄x̄x̄〉), 1√
5
|z̄xx〉− 2√

5
|z̄x̄x̄〉, 1√

10
|z̄xx〉− 3√

10
|z̄x̄x̄〉, |z̄x̄x̄〉, 1√

2
(|z̄xx〉+ i|z̄x̄x̄〉), and 1√

2
(|z̄xx〉− i|z̄x̄x̄〉), respectively. d. The cor-

responding fidelities of the states in c. e. Theoretical predictions (black dots) and experimental results (magenta dots) for

the final output states in a Bloch sphere for the investigation of non-trivial statistics (after the second dissipative evolution

DE0). The theoretical states in e are obtained by rotating the corresponding states in a counterclockwise along the X axis

through an angle of π/2. f. The corresponding fidelities of the states in e. Due to the experimental errors, the magenta dots

(experimental results) are slightly separated from the corresponding black dots. The error bars for fidelities, which correspond

to the counting statistics, are smaller than the size of the symbols.
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Supplementary Figure 11: The theoretical (solid columns) and experimental (open columns) density matrices of the output

states after dissipative evolution DE2. The corresponding initial states after the first dissipative evolution DE0 are a. |xxx〉,

b. 3√
10
|xxx〉 + 1√

10
|x̄x̄x̄〉 c. 2√

5
|xxx〉 + 1√

5
|x̄x̄x̄〉, d. 1√

2
(|xxx〉 + |x̄x̄x̄〉), e. 1√

5
|xxx〉 + 2√

5
|x̄x̄x̄〉, f. 1√

10
|xxx〉 + 3√

10
|x̄x̄x̄〉,

g. |x̄x̄x̄〉, h. 1√
2

(|xxx〉+ i|x̄x̄x̄〉) and i. 1√
2

(|xxx〉 − i|x̄x̄x̄〉). The left- and right-hand columns in each pane represent the real

(Re) and imaginary (Im) parts of the corresponding density matrices. j. The fidelities of the four-mode output states. The

numbers from 1 to 9 represent the cases from a to i.
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final
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DE 0
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Pre: state Preparation

DE: Dissipative Evolution 

TM: Two-Mode measurement 

Logi: Logical diagram
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V

H

V  H

R  D
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HWP
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BS

DE0

final

flip error

Supplementary Figure 12: Experimental setup for the investigation of the flip-error immunity. The process follows the logical

diagram provided in the pane enclosed by the black solid line, denoted by Logi. The polarization of photons is rotated using

half-wave plates (HWPs), and the spatial modes are separated by beam displacers, each with a beam displacement of either 3.0

mm (BD30) or 6.0 mm (BD60). The state preparation is illustrated in the pane labeled Pre. The dissipative evolution DE0 is

illustrated in the pane that contains HWPs and a polarization beam splitter (PBS), the output states of which are treated as

the initial states. The flip-error operation is achieved by six HWPs, a BD30 and a BD60. Two of the eight output modes are

preserved after the second DE0. The initial and final states are measured in the two-mode measurement (TM) setup, in which

the spatial information contained in the states is transformed into polarization information. Four polarization measurements are

required: horizontal polarization (H), vertical polarization (V ), right-hand circular polarization (R) and diagonal polarization

(D). A beam splitter (BS) is used to send the photons to different measurement instruments. A quarter-wave plate (QWP), a

HWP and a PBS are used for polarization analysis. Finally, photons are detected by single-photon detectors (SPDs).
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Supplementary Figure 13: Experimental setup for the investigation of the phase-error immunity. The process follows the logical

diagram provided in the pane enclosed by the black solid line, denoted by Logi. The polarization of photons is rotated using

half-wave plates (HWPs), and the spatial modes are separated by beam displacers, each with a beam displacement of either

3.0 mm (BD30) or 6.0 mm (BD60). The state preparation is illustrated in the pane labeled Pre. The dissipative evolution DE0

is illustrated in the pane that contains HWPs and a polarization beam splitter (PBS), the output states of which are treated

as the initial states. The phase-error operation is achieved by two HWPs and a BD60. Two of the four output modes, with

the first particle rotated by σz , are discarded after the second DE0. The other output modes are preserved. The initial and

final states are measured in the two-mode measurement (TM) setup, in which the spatial information contained in the states is

transformed into polarization information. Four polarization measurements are required: horizontal polarization (H), vertical

polarization (V ), right-hand circular polarization (R) and diagonal polarization (D). A beam splitter (BS) is used to send the

photons to different measurement instruments. A quarter-wave plate (QWP), a HWP and a PBS are used for polarization

analysis. Finally, photons are detected by single-photon detectors (SPDs).
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Supplementary Table 1: Comparison between the Kitaev chain and the spin chain

Models Kitaev Chain Model Transverse Field Ising Model

Hamiltonian i(J
∑L−1

i=1 γ2iγ2i+1 + µ
∑L

i=1 γ2i−1γ2i) J
∑L−1

i=1 σ
x
i σ

x
i+1 + µ

2

∑L
i=1 σ

z
i

Symmetry Z2 (degeneracy when J > µ ≥ 0) Z2 (degeneracy in the ferromagnetic

region)

Degeneracy Topological protected Can be lifted by operators without Z2

symmetry

Topological order Yes No

Basis in the

ground space of a

3-particle system

|13f〉 = 1
2(|000〉 + |011〉 + |101〉 + |011〉)

|03f〉 = 1
2(|001〉+ |010〉+ |100〉+ |111〉)

|13s〉 = 1
2(| ↓↓↓〉+| ↓↑↑〉+| ↑↓↑〉+| ↑↑↓〉)

|03s〉 = 1
2(| ↓↓↑〉+| ↓↑↓〉+| ↑↓↓〉+| ↑↑↑〉)

Prepared

initial states Fixed fermion parity (|03f〉 or |13f〉) Any superposition of |03s〉 and |13s〉

Flip error c†ici+1
1
4(iσyi σ

x
i+1 +σyi σ

y
i+1 +σxi σ

x
i+1− iσxi σ

y
i+1)

Phase error c†ici (σzi + 1)/2
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SUPPLEMENTARY NOTE 1. THE EXCHANGE OF MAJORANA ZERO

MODES IN THE KITAEV CHAIN MODEL

The typical Hamiltonian in the KCM [1] reads as follows: H = ω
∑L

j=1(cj−c†j)(cj+1+c†j+1),

where ω represents an experimental parameter and cj (c†j) represents the fermionic anni-

hilation (creation) operator. If we introduce the Majorana operators, γ2j−1 = c†j + cj

and γ2j = i(c†j − cj), the Hamiltonian becomes H = iω
∑L−1

j=1 γ2jγ2j+1 (ω is set to

1 in the main text). It can be seen that the Majorana fermions γ2j and γ2j+1 are

paired by interactions, but γ1 and γ2L, which correspond to two Majoranas, remain

free. The basis of the two-fold-degenerate ground-state space of this system can be

defined as the eigenstates of the operator c̃†f c̃f (c̃f = 1
2
(γ1 + iγ2L)), explicitly, |0Lf〉 =

1
2(L−1)/2

∑b(L−1)/2c
p=0

∑L
i1<i2<···<i2p+1

c†i2p+1
· · · c†i1|vac〉 (for the superposition of states with odd-

fermion parity) and |1Lf〉 = 1
2(L−1)/2 [1 +

∑bL/2c
p=1

∑L
i1<i2<···<i2p c

†
i2p
· · · c†i1 ]|vac〉 (for the su-

perposition of states with even-fermion parity). The Z2 symmetry and the ground-state

degeneracy of this system are topologically protected. The braiding of the MZMs in a L-site

KCM can be completed by a set of adiabatic processes, as shown in the Supplementary

Figure 1.

For a general L-site KCM model with MZMs (A and B), at the sites 1 and 2L, we can

easily drive the isolated Majorana mode A from site 1 to the site 2K−1 (K < L determined

by the minimal fermions system to demonstrate the braiding, here K = L−2) by employing

a set of such adiabatic process:

Had(λ) = i
[m−1∑
j=1

1

2
γ2j−1γ2j +

L∑
j=m+1

γ2jγ2j+1 + (1− λ)γ2mγ2m+1 +
λ

2
γ2m−1γ2m

]
. (1)

The parameter λ adiabatically changes from 0 to 1, the Hamiltonian will change from

Hm = i
(m−1∑
j=1

1

2
γ2j−1γ2j +

L∑
j=m

γ2jγ2j+1

)
, (2)

with Majorana mode A located at the site 2m− 1 to the Hamiltonian

Hm+1 = i
( m∑
j=1

1

2
γ2j−1γ2j +

L∑
j=m+1

γ2jγ2j+1

)
, (3)

with Majorana mode A located at the site 2m+1. As a result, the Majorana mode A moves
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a step from left to right. With K such processes, Majorana mode A moves from the left

boundary to the site 2K − 1.

As shown in Supplementary Figure 1, the box in the right denotes a small system to

demonstrate the braiding. A four-fermion system has been proposed with a superconducting

wire [2]. After that, more theoretical schemes for an implementation or simulation of the

Kitaev model are proposed [3–5]. Here, without considering a concrete physical realization,

we theoretically proposed that the three-fermion system is also possible to complete the

braiding (details of the braiding processes in the box will be introduced in Supplementary

Note 5).

When the braiding process in the box is finished, Majorana mode B will be located at

2K − 1 and Majorana mode A is located at 2L. Finally, Majorana mode B at site 2K − 1

can be driven back to site 1 to complete the entire braiding process by a set of the inverse

adiabatic evolutions introduced before.

It has been shown that the braiding transformations will introduce different geometric

phases in the basis of the ground-space of the initial system. Measuring the geometric phases

in this basis is a key part in demonstrating the statistical property of the MZMs [6]. Here, we

propose to measure the geometric phases by a set of projective measurements P1, P2, · · · , Pn
[7]. The projective measurement Pi is uniquely determined by the Hamiltonian Hi as e−Hit

with a large time t. The operator e−Hit preserves the fermion parity of the initial state which

guarantees the adiabatic condition during the braiding. The projective measurements can

be realized by an imaginary time evolution algorithm, such as, the cooling algorithm in [8].

Unfortunately, in the one-chain fermionic system, the braiding effect (geometric phase

as an overall phase) in this process can not be directly measured, because of the fixed

fermion parity. However, through the Jordan-Wigner (JW) transformation, a general KCM

can be transformed into a 1D transverse-field Ising model (TFIM) [9, 10] whose ground

states can be prepared in any superposition state and the relative geometric phases can be

finally measured. The method to probe the geometric phases in the KCM is presented in

Supplementary Figure 2.
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SUPPLEMENTARY NOTE 2. PRINCIPLE OF THE IMAGINARY TIME

EVOLUTION

Here we explain in detail the basic idea of the imaginary time evolution (ITE) algorithm

based on the cooling algorithm [8]. Each ITE operator can be realized by this method. A

ITE operator can be successfully realized by a set of basic steps with some probability which

is dependent on the character of the Hamiltonian and the initial state. Fortunately, in the

braiding process for the KCM, the ITE operator can be efficiently realized.

The circuit for one step of the imaginary time evolution is shown in Supplementary Figure

3. The key components of the quantum circuit consists of four gates [8]: (a) two Hadamard

gates

H ≡ 1√
2

(|0〉+ |1〉) 〈0|+ 1√
2

(|0〉 − |1〉) 〈1| , (4)

applying to the ancilla qubit (|0〉 and |1〉 are the corresponding two levels) at the beginning

and at the end of the quantum circuit; (b) a local phase gate,

R (α) ≡ |0〉 〈0| − ieiα |1〉 〈1| , (5)

where the parameter α is chosen to optimize the efficiency of the algorithm; (c) a two-qubit

controlled unitary operation,

11⊗ |0〉 〈0|+ U⊗ |1〉 〈1| , (6)

where 11 is the identity operator, and

U (t) = e−iHst (7)

is the real time evolution operator for the system. Hs is the Hamiltonian of the considered

system (L-site KCM here), and t is the time of evolution which is another parameter we can

use to optimize the efficiency of the algorithm. For a many-body Hamiltonian, we can well

approximate the unitary evolution operator U(t) by the product of a set of local unitary

operators through the Trotter-Suzuki expansion [11].

For any given initial state of the system, |ψin〉 =
∑Ns

k=1

√
pk
∑nk

l=1 βk,l |ek,l〉, where Ns is the

number of the eigenvector subspace of Hamiltonian Hs, nk (
∑Ns

k=1 nk = 2L) is the degeneracy

of the k-th eigenvector subspace of the Hamiltonian Hs with eigenvalue Ek, and |ek,l〉 is the

l-th eigenvector in this subspace. The probability to find the state in the k-th eigenvector
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subspace is denoted by pk. For each k,
∑nk

l=1 βk,l |ek,l〉 is normalized, i.e.
∑nk

l=1 |βk,l|2 = 1.

Generally, we do not need to know the exact form of |ek,l〉 and the phase between different

eigenvector subspaces are not important in the algorithm.

The quantum circuit then produces the following output state:

1

2

Ns∑
k=1

√
pk(1− ie−i(Ekt−α))

nk∑
l=1

βk,l|ek,l〉 |0〉+
1

2

Ns∑
k=1

√
pk(1 + ie−i(Ekt−α))

nk∑
l=1

βk,l|ek,l〉 |1〉 . (8)

A measurement on the ancilla qubit in the computational basis {|0〉 , |1〉} yields the states

A0

Ns∑
k=1

√
pk(1− ie−i(Ekt−α))

nk∑
l=1

βk,l|ek,l〉, (9)

and

A1

Ns∑
k=1

√
pk(1 + ie−i(Ekt−α))

nk∑
l=1

βk,l|ek,l〉, (10)

respectively, where A0 (A1) is the normalization factor. It is clear that the coefficient of the

eigenvector subspace is modified by the factor (1− ie−i(Ekt−α)) or (1+ ie−i(Ekt−α)) depending

on the results of the ancilla qubit. As a result, the weight of the eigenvector subspace,

especially the weight of the ground-state subspace, will be modified. To clarify this point,

let us consider the module of the factor (1± ie−i(Ekt−α)),

|(1± ie−i(Ekt−α))|2 = 2 [1± sin(Ekt− α)] . (11)

If the parameters α and t are properly chosen, such that,

−π/2 ≤ Ekt− α ≤ π/2, (12)

for all the eigenvalue Ek, the function sin(Ekt−α) will increase with the energy. Therefore,

1−sin(Ekt−α) (1+sin(Ekt−α)) will decrease (increase) with the increase of the eigenvalue.

As a result, the weight of ground state of the system will increase along with the measurement

result |0〉 on the ancilla qubit, and the weight of the ground state will decrease along with

the the measurement result |1〉 on the ancilla qubit.

To make the parameters satisfy the condition introduced before, we normalize the Hamil-

tonian of the system to make the eigenvalues of the Hamiltonian in the range [−1, 1]. The

general Hamiltonian in our braiding processes of MZMs in the L-site KCM can be easily

normalized as

H ′ = i[
m∑
j=1

1

2
γ2j−1γ2j +

L∑
j=m+1

γ2jγ2j+1]/L. (13)
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By setting α = 0 and supposing the parameter t satisfies the condition: Ekt� 1, the weight

of the eigenvectors of the Hamiltonian change as

1− sin(Ekt) ≈ e−Ekt, (14)

which is the imaginary time evolution operator for small time t.

To realize a ITE with a large t, we divide it into k steps, where each step satisfies the

condition introduced before. Thus, a total of k steps of ITE introduced before are applied

on the initial state (we make no measurement during the cooling; we measure the qubits at

the end of the manipulation). The final state we obtain is

|ψfin〉 =
k∑
j=0

√
Cj
k

( Ns∑
i=1

√
pi(1/2 + ai)k−j(1/2− ai)j

ni∑
l=1

βi,l|ei,l〉|ϕji〉
)
, (15)

where |ϕji〉 is a properly normalized state of the ancilla. ai = 1
2

sin(Eit − α) and α = 0.

After the manipulations, we make measurement on the ancilla. The probability to get j |0〉

(the number of the success cooling manipulation) is,

Cj
k

2n∑
i=1

pi(1/2 + ai)
k−j(1/2− ai)j. (16)

This is a mixture of several binomial distributions with the first one corresponding to the

ground state. For a standard binomial distribution: Cj
kp

j(1−p)k−j, the expected value is kp

and the variance is np(1− p). Thus, the concentration interval of the binomial distribution

is between k((1
2
− ai)− 1√

k

√
1
4
− a2

i ) and k((1
2
− ai) + 1√

k

√
1
4
− a2

i ). In order to prepare the

ground state of the system, the intersection between different binomial distribution should

be very small. In other words

k((
1

2
− a1)− 1√

k

√
1

4
− a2

1)� k((
1

2
− a2) +

1√
k

√
1

4
− a2

2), (17)

which is equivalent to
√
k(a2 − a1)� 1

2
− (a2

1 + a2
2). (18)

It should be noted that the other binomial distribution corresponding to higher energy have

much less intersection with the distribution corresponding to ground states. Under the

condition Ekt� 1 (k = 1, 2, · · · , 2L), we have

1

2
− (a2

1 + a2
2) ≈

1

2
, a2 − a1 ≈

1

2
∆t, (19)
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and the intersection condition can be simplify to

√
k∆t� 1, (20)

where ∆ is the gap of the system. If this condition is satisfied, the binomial distribution of

the ground state is sufficiently separated from the others, and the number of |0〉 outcomes

during the measurement on the ancilla will be concentrated at k(1− 1
2
a1) with probability

p1. Thus, the number of measurements that successfully obtain the ground state of the

system scale as
1

p1(∆t)2
. (21)

The gap of the Hamiltonian during the braiding decreases polynomially with L. In addition,

the overlap between the ground state of HMF
i and HMF

i+1 is independent on L. Therefore, the

ITE operator e−Hit with large t is polynomial scaled with L in the KCM Braiding situation.

SUPPLEMENTARY NOTE 3. THE RELATION BETWEEN KITAEV CHAIN

MODEL AND TRANSVERSE-FIELD ISING MODEL

The Jordan-Wigner transformation gives a one-to-one mapping between the Kitaev chain

model (KCM) and a subspace of the transverse-field Ising model (TFIM) which consists of

all the operators with Z2 symmetry. As mentioned in the main text, the geometric phase

due to the braiding in the KCM can be directly mapped into this subspace. In addition, the

information encoded on the ground space of the TFIM is robust against the local noise in

this subspace.

The Z2-invariant Ising model has two-degenerate ground states. There are two zero modes

which are topologically protected by the boundary condition [9, 10]. As an example, the

Ising model J
∑L−1

i=1 σ
x
i σ

x
i+1 without Z direction magnetic field has two basis in its ground

state space: | →→ · · · →〉 and | ←← · · · ←〉. If a local small Z direction magnetic field is

introduced, the local flip of the basis of σx is occurred. These two basis can be connected

in the following manner: | →→ · · · →〉99K| → · · · →←〉 99K | → · · · →←←〉 99K · · · 99K

| →→← · · · ←〉 99K | →← · · · ←←〉 99K | ←← · · · ←〉. Thus the transformation between

these two basis states can be induced and the tunneling rate is about e−L/ζ where L is the

length of the chain and ζ is the correlation length. When the length of the chain is very

large, the degeneracy of the spin will be topologically protected.
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Although the KCM and TFIM share the same mathematical structure they are governed

by different physics. The major differences between them include: the initial state in the

TFIM can be prepared in the superposition of |0Ls〉 and |1Ls〉; the degeneracy in the TFIM

can be lifted by noises without Z2 symmetry (such as
∑

j σ
x
j ) and the excitations in the

TFIM that corresponds to the MZMs in the KCM are non-local. The relation between

KCM and TFIM is given schematically in Supplementary Figure 4. We further summarize

the similarities and differences between them in Supplementary Table 1.

With the well controlled spin model, the whole system can always be in the degenerate

subspace. Generally, the local noise can induce the tunneling between the MZMs whose

amplitude is exponentially decaying with the distance. In our simulated spin system, the

distance is very short. The tunneling between the MZMs will be induced if all the local

noises are present. Fortunately, the noises in the optical system can be well controlled and

the tunneling can be well suppressed by reducing some local noises. The robustness of

the information encoded in the degenerate subspace against single local noises have been

demonstrated in our experiment.

SUPPLEMENTARY NOTE 4. BARGMANN INVARIANTS AND THE

GEOMETRIC PHASE

Generally, the angle (ϕB) obtained from the Bargmann invariant [12] associated with the

three states ρ1, ρ2 and ρ3 in the ray space is arg(tr(ρ1ρ2ρ3)) [13–15]. ϕB is gauge invariant

and is equal to the negative geometric phase of ϕg which is associated with the geodesic

triangle of the three states [13]. Actually, following the line of Pancharatnam [16], it can be

extended to the situation with many states.

In KCM system, the geometric phase, associated with the basis |igf〉 of the ground-state

space of HMF
0 , obtained during the braiding can be determined by [7]

ϕg0 = −arg(〈03f |e−H
MF
2 te−H

MF
1 t|03f〉) ,

ϕg1 = −arg(〈13f |e−H
MF
2 te−H

MF
1 t|13f〉) ,

(22)

where ϕg0 (ϕg1) is the geometric phase of the basis |0〉 (|1〉) in the ground space of

Hamiltonian HMF
0 and t is a large number, such as 5. The ITE operators e−H

MF
1 t and

e−H
MF
2 t both preserve the fermion parity of the initial state which guarantees the adia-

batic condition during the braiding. Introducing the Jordan-Wigner (JW) transformation
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UJW as: UJWγ1U
−1
JW = σx1 , UJWγ2U

−1
JW = −σy1 , UJWγ3U

−1
JW = −σz1σx2 , UJWγ4U

−1
JW =

σz1σ
y
2 , UJWγ5U

−1
JW = σz1σ

z
2σ

x
3 , UJWγ6U

−1
JW = −σz1σz2σ

y
3 where γi represents the corre-

sponding Majorana operator. The geometric phases become

ϕg0 = −arg(〈03f |U−1
JWUJWe

−HMF
2 tU−1

JWUJWe
−HMF

1 tU−1
JWUJW|03f〉) ,

ϕg1 = −arg(〈13f |U−1
JWUJWe

−HMF
2 tU−1

JWUJWe
−HMF

1 tU−1
JWUJW|13f〉) .

(23)

It can be expressed in the spin model as

ϕg0 = −arg(〈03s|e−H2te−H1t|03s〉) ,

ϕg1 = −arg(〈13s|e−H2te−H1t|13s〉) ,
(24)

where |03s〉 (|13s〉) is the mapping of |03f〉 (|13f〉) under JW transformation, and it is the basis

of the ground space of H0. All the physical quantities have been transformed into a spin

system.

To determine the geometric phases, we prepare the initial state in |φ0〉 = α|03s〉+ β|13s〉

with α and β representing the complex numbers (not normalized). We then apply the

operator Uex = e−H2te−H1t to this state. The final state is determined and the relative

geometric phase are obtained. If we prepare the initial state as |03s〉 or |13s〉, the state after

the operator Uex is still the same which can be used to determine the off-diagonal elements of

the braiding matrix [7]. In this experiment, we perform a tomography to measure the effect

of the operator Uex in the ground space of H0, and the information of the braiding matrix

is thus determined [7]. A benefit of this method is that we can also prepare the initial state

by the imaginary evolution method which needs only the Hamiltonian H0.

SUPPLEMENTARY NOTE 5. THE ADIABATIC EXCHANGE PROCESS IN

THE SIMPLEST KITAEV CHAIN MODEL

As mentioned in the main text and above, the braiding of two MZMs can be completed

in the three-fermion KCM [10]. Now, we explicitly illustrate the adiabatic braiding process

in this system (see Figure 1 in the main text). Throughout the entire braiding process, the

Hamiltonian can be described in the general form

HF = −t12(c+
1 − c1)(c+

2 + c2)− t23(c+
2 − c2)(c+

3 + c3)− it13(c+
1 − c1)(c+

3 − c3) + µ1c
+
1 c1, (25)
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where c+
i and ci represent the creation and annihilation fermionic operators at position i. tij

represents the interaction amplification between the particles in positions i and j. µ1 (≥ 0)

represents the chemical potential at site 1.

The Majorana operators can be introduced as follows:

γ1 = c1 + c+
1 ,

γ2 = i(c+
1 − c1) ,

γ3 = c2 + c+
2 ,

γ4 = i(c+
2 − c2) ,

γ5 = c3 + c+
3 ,

γ6 = i(c+
3 − c3) .

(26)

The inverse relations between the Fermi operators and the Majorana operators are

c1 = (γ1 + iγ2)/2 ,

c+
1 = (γ1 − iγ2)/2 ,

c2 = (γ3 + iγ4)/2 ,

c+
2 = (γ3 − iγ4)/2 ,

c3 = (γ5 + iγ6)/2 ,

c+
3 = (γ5 − iγ6)/2 .

(27)

The general Hamiltonian can be rewritten in terms of Majorana operators as (overall

constants are ignored)

HMF = i(t12γ2γ3 + t23γ4γ5 + t13γ2γ6 +
µ1

2
γ1γ2). (28)

The initial Hamiltonian is defined by setting t13 = 0, t12 = t23 = 1 and µ1 = 0 as follows:

HMF
0 = i(γ2γ3 + γ4γ5) . (29)

The ground state of the Hamiltonian HMF
0 is two-fold degenerate. The basis denoted by

|03f〉 and |13f〉 consist of the eigenstates of the operator c̃†f c̃f (c̃f = 1
2
(γ1 + iγ6)). Explicitly,

|03f〉 = 1
2
(c†1 + c†2 + c†3 + c†3c

†
2c
†
1)|Vac〉 and |13f〉 = 1

2
(1 + c†2c

†
1 + c†3c

†
1 + c†3c

†
2)|Vac〉 where |Vac〉

denotes the vacuum of cis [2, 17]. The Majorana zero modes (MZMs) γ1 and γ6 are located

at the endpoints of the chain.
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Now we will show that the two isolated MZMs denoted by A and B, located at sites 1

and 6, in the KCM can be driven to complete the braiding transformation. The process

is accomplished by adiabatically tuning the parameters in equation (28), where different

geometric phases will be added to the states |03f〉 and |13f〉. The entire braiding process can

be divided into the following three components:

(1) Let the parameters in the Hamiltonians described by equations (28) be

µ1 = λ ,

t12 = 1− λ ,

t13 = 0 ,

t23 = 1 .

(30)

The Hamiltonian then becomes

HMF = i[(1− λ)γ2γ3 + γ4γ5 +
λ

2
γ1γ2]. (31)

When the parameter λ adiabatically changes from 0 to 1, the Hamiltonian will be trans-

formed from HMF
0 to

HMF
1 = i[γ4γ5 +

1

2
γ1γ2]. (32)

At the same time, the Majorana mode A will move from site 1 to site 3.

(2) Let

µ1 = 1− λ ,

t23 = 1 ,

t13 = λ ,

t12 = 0 .

(33)

The Hamiltonians described by equations (28) becomes

HMF = i[γ4γ5 + λγ2γ6 +
1− λ

2
γ1γ2]. (34)

When λ adiabatically changes from 0 to 1, the Hamiltonian will be transformed from HMF
1

to

HMF
2 = i(γ4γ5 + γ2γ6). (35)

The Majorana mode B, initially located at site 6, will be driven to site 1. This adiabatic

process is the key element of the braiding.
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(3) Let

µ1 = 0 ,

t13 = 1− λ ,

t23 = 1 ,

t12 = λ .

(36)

The Hamiltonians described by equations (28) becomes

HMF = i[λγ2γ3 + γ4γ5 + (1− λ)γ2γ6]. (37)

When λ adiabatically changes from 0 to 1, the Hamiltonian will be transformed from HMF
2

back to HMF
0 , and the Majorana mode A will be driven from site 3 to site 6. The braiding

of the MZMs A and B is thus completed. The basis of the ground-state space will develop

various geometric phases, which correspond to the non-Abelian characteristics of MZMs [2,

17].

Currently, the direct implementation of braiding in fermionic systems remains a consid-

erable challenge. In addition, the geometric phases obtained in one chain model can not

be directly measured in fermionic system. By employing the Jordan-Wigner (JW) trans-

formation, we can transform the fermionic Hamiltonian into a spin-1/2 system. In the

three-fermionic KCM, the JW transformation can be written as follows:

c+
1 = σ+

1 /2 ,

c1 = σ−1 /2 ,

c+
1 c1 = σz1/2 + 1/2 ,

c+
2 = eiπ(σz

1+1/2)σ+
2 /2 = −σz1σ+

2 /2 ,

c2 = e−iπ(σz
1+1/2)σ−2 /2 = −σz1σ−2 /2 ,

c+
2 c2 = σz2/2 + 1/2 ,

c+
3 = eiπ(σz

1/2+σz
2/2+1)σ+

3 /2 = σz1σ
z
2σ

+
3 /2 ,

c3 = e−iπ(σz
1/2+σz

2/2+1)σ−3 /2 = σz1σ
z
2σ
−
3 /2 ,

c+
3 c3 = σz3/2 + 1/2 ,

(38)

where σ+
i (= σxi + iσyi ) and σ−i (= σxi − iσ

y
i ) represent the raising and lowering operators

of the spin at site i. After the JW transformation, a general KCM will be transformed into
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a transverse-field Ising model (TFIM). The ground-state degeneracy in the ferromagnetic

phase of the TFIM correspond to that of MZMs at both ends of the chain [10]. However,

because of the non-local nature of the JW transformation, the MZMs in the KCM correspond

to nonlocal excitations in the spin model, that is,

γ1 = σx1 ,

γ2 = −σy1 ,

γ3 = −σz1σx2 ,

γ4 = σz1σ
y
2 ,

γ5 = σz1σ
z
2σ

x
3 ,

γ6 = −σz1σz2σ
y
3 .

(39)

The braiding of non-local excitations is not well defined. However, the geometric phases and

the braiding matrix corresponding to the braiding of two MZMs in the KCM is invariant

under the JW transformation, and it can be also determined in the spin model (see the

next section). To determine the matrix, the Hamiltonians, corresponding to HMF
0 , HMF

1 and

HMF
2 , become

H0 = −(σx1σ
x
2 + σx2σ

x
3 ) ,

H1 = −σx2σx3 +
1

2
(σz1 + 1) ,

H2 = −(σx2σ
x
3 + σx1σ

z
2σ

y
3) .

(40)

It is noted that all the interactions in the KCM are local (three-body next-nearest-

neighbor interaction at most). The ground state of the Hamiltonian H0 is also two-fold

degenerate and the basis in the degenerate space is denoted by |03s〉 and |13s〉. Explicitly,

|03s〉 = 1
2
(| ↑↓↓〉 + | ↓↑↓〉 + | ↓↓↑〉 + | ↑↑↑〉) and |13s〉 = 1

2
(| ↓↓↓〉 + | ↑↑↓〉 + | ↑↓↑〉 + | ↓↑↑),

where | ↓〉 and | ↑〉 represent spin up and spin down, respectively.
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SUPPLEMENTARY NOTE 6. THE IMAGINARY-TIME EVOLUTION FOR

STATES ENCODED IN OPTICAL SPATIAL MODES

For a given Hamiltonian H with a complete set of eigenstates |ek〉 and the corresponding

eigenvalues Ek, any arbitrary pure state |φ〉 can be expressed as

|φ〉 =
∑
k

qk|ek〉, (41)

with qk representing the corresponding complex amplitude. Here, we focus on pure states,

but the argument is also valid for mixed states. The corresponding imaginary-time evolution

(ITE) operator (U) [18] on the state becomes

U |φ〉 = exp(−H ∗ t)
∑
k

qk|ek〉 = exp(−H ∗ 5)
∑
k

qk|ek〉 =
∑
k

qk exp(−5Ek)|ek〉. (42)

The evolution time t is chosen to be 5, which is long enough to drive the input state to

the ground state of H in our analysis. After the ITE, the amplitude qk is changed to

be qk exp(−5Ek). We can see that the decay of the amplitude is strongly (exponentially)

dependent on the energy: the higher energy, the faster the decay of the amplitude. Therefore,

only the ground states (with lowest energy) survives this evolution. Furthermore, due to the

fact that the Hamiltonian H0, H1 and H2 can be diveded into two commuted parts, we can

separate the ITE operator to two ITE operators whose eigenvectors are very easy to obtain

(see equation (2) in the main text).

We then show the detailed processes to probe the geometric phases and braiding matrix,

and demonstrate the local noises immunity of MZMs.

Geometric phases and braiding matrix

(1) In our experiment, the state information is encoded in the optical spatial modes. The

basis of a two-level system can be expressed in the eigenstates of σz (denoted by |z〉, with

an eigenvalue of 1, and |z̄〉, with an eigenvalue of -1), σy (denoted by |y〉, with an eigenvalue

of 1, and |ȳ〉, with an eigenvalue of -1) or σx (denoted by |x〉, with an eigenvalue of 1, and

|x̄〉, with an eigenvalue of -1). The eigenstates of H0(= −(σx1σ
x
2 +σx2σ

x
3 )) can be expressed as

{|xxx〉, |xxx̄〉, |xx̄x〉, |xx̄x̄〉, |x̄xx〉, |x̄xx̄〉, |x̄x̄x〉, |x̄x̄x̄〉}. For the term of −σx1σx2 , the largest

factor e5 is obtained when the products of eigenvalues for particles 1 and 2 are equal to 1,

according to the ITE (equation (42)). For the other cases the products of eigenvalues for

particles 1 and 2 are equal to −1. Hence, the added amplitude factor becomes e−5, which is



25

negligible compared to e5 (for any state with nonzero ground state probability, we can always

increase its amplitude to arbitrary high level by increasing the efficiency of the ITE, i.e., by

increasing the evolution time from 5 to ∞). As a result, only the terms involving the basis

of {|xxx〉, |xxx̄〉, |x̄x̄x〉, |x̄x̄x̄〉} are preserved after the projection of e−σ
x
1σ

x
2 ∗5. Similarly, after

the projector e−σ
x
2σ

x
3 ∗5, the largest factor e5 is obtained when the products of eigenvalues

for particles 2 and 3 are equal to 1 and the preserved state would ivolve in the basis of

{|xxx〉, |x̄x̄x̄〉}. As a result, the ITE for H0 can be written as

|φ0〉 = U0|φ〉 =
∑
k

qk exp(−H0 ∗ 5)|ek〉

=
∑
k

qk exp(σx2σ
x
3 ∗ 5) exp(σx1σ

x
2 ∗ 5)|ek〉

' α|xxx〉+ β|x̄x̄x̄〉,

(43)

which is normalized with complex coefficients α and β (|α|2 + |β|2 = 1). For simplicity, we

would omit below the normalization of the output states.

(2) |φ0〉 is then subjected to the follow ITE

U1 = exp(−H1 ∗ 5), (44)

withH1 = −σx2σx3 +1
2
(σz1+1). The eigenstates ofH1 can be expressed as {|zxx〉, |zxx̄〉, |zx̄x〉, |zx̄x̄〉,

|z̄xx〉, |z̄xx̄〉, |z̄x̄x〉, |z̄x̄x̄〉}. The largest amplitudes are obtained when the product of eigen-

values of σx2σ
x
3 is 1 (for the projector of e−σ

x
2σ

x
3 ∗5) and the eigenvalue of σz1 is −1 (for the

projector of e−
1
2

(σz
1+1))∗5), which refer to the terms of |z̄xx〉 and |z̄x̄x̄〉. The input state can

be written as (basis rotation)

|φ0〉 = α|xxx〉+ β|x̄x̄x̄〉 = α|zxx〉+ α|z̄xx〉+ β|zx̄x̄〉 − β|z̄x̄x̄〉, (45)

where the first particle is expressed in the basis |z〉 and |z̄〉. After the ITE, the state becomes

|φ1〉 = α|z̄xx〉 − β|z̄x̄x̄〉. (46)

(3) The state is then subjected to the ITE of

U2 = exp(−H2 ∗ 5), (47)

with H2 = −(σx2σ
x
3 + σx1σ

z
2σ

y
3). We express the first particle back to the basis |x〉 and |x̄〉.

The input state becomes

|φ1〉 = α|z̄xx〉 − β|z̄x̄x̄〉 = α|xxx〉 − α|x̄xx〉 − β|xx̄x̄〉+ β|x̄x̄x̄〉. (48)
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The state |φ1〉 remains unchanged after the ITE exp(−σx2σx3 ∗5), for all of the corresponding

amplitudes are imposed with an equal factor of e5. For the Hamiltonian −σx1σz2σ
y
3 , the cor-

responding eigenstates are {|xzȳ〉, |xzy〉, |xz̄ȳ〉, |xz̄y〉, |x̄zȳ〉, |x̄z̄ȳ〉, |x̄z̄y〉, |x̄zy〉}. The input

state of |φ1〉 expresses on such basis becomes

|φ1〉 = α|xxx〉 − α|x̄xx〉 − β|xx̄x̄〉+ β|x̄x̄x̄〉

= α|x〉|z + z̄〉[(1 + i)|ȳ〉+ (1− i)|y〉]

− α|x̄〉|z + z̄〉[(1 + i)|ȳ〉+ (1− i)|y〉]

− β|x〉|z − z̄〉[(1− i)|ȳ〉+ (1 + i)|y〉]

+ β|x̄〉|z − z̄〉[(1− i)|ȳ〉+ (1 + i)|y〉].

(49)

The ITE process preserves the terms with the product of eigenvalues of particles 1, 2 and 3

being 1. As a result, the final state becomes

|φ2〉 = U2|φ1〉 ' [α(1− i)− β(1 + i)]|xzy〉

+ [α(1 + i) + β(1− i)]|xz̄ȳ〉

+ [−α(1 + i) + β(1− i)]|x̄zȳ〉

+ [−α(1− i)− β(1 + i)]|x̄z̄y〉.

(50)

(4) We now come to the final ITE, where the Hamiltonian turns back to H0. We need

to express the state |φ2〉 on the basis {|xxx〉, |xxx̄〉, |xx̄x〉, |xx̄x̄〉, |x̄xx〉, |x̄xx̄〉, |x̄x̄x〉, |x̄x̄x̄〉}

and keep only the terms |xxx〉 and |x̄x̄x̄〉. The final state becomes

|φ3〉 = U0|φ2〉 ' (α− iβ)|xxx〉+ (β − iα)|x̄x̄x̄〉. (51)

It is more clear if we express the initial state |φ0〉 and the final state |φ3〉 in the basis

|z〉 and |z̄〉. |φ0〉 = [α + β, α − β, α − β, α + β, α − β, α + β, α + β, α − β] and |φ3〉 =

[−i(α + β), α − β, α − β,−i(α + β), α − β,−i(α + β),−i(α + β), α − β], which shows the

non-Abelian character.

Robustness against perturbation operation of 1
4
(iσy1σ

x
2 + σy1σ

y
2 + σx1σ

x
2 − iσx1σ

y
2)

(1) For any input state with nonzero amplitude on the ground states of H0, when it

is subjected to the ITE U0, the output state is the ground state of H0 with the form of

|φ0〉 = α|xxx〉+ β|x̄x̄x̄〉.



27

(2) After the perturbation operation of 1
4
(iσy1σ

x
2 +σy1σ

y
2 +σx1σ

x
2−iσx1σ

y
2), the state becomes

|φ′0〉 =
1

4
(iσy1σ

x
2 + σy1σ

y
2 + σx1σ

x
2 − iσx1σ

y
2)(α|xxx〉+ β|x̄x̄x̄〉)

=
1

4
[(α|xxx〉+ β|x̄x̄x̄〉)− (α|xx̄x〉+ β|x̄xx̄〉) + (α|x̄xx〉+ β|xx̄x̄〉)− (α|x̄x̄x〉+ β|xxx̄〉)].

(52)

The simulation of the perturbation operation is realized by the rotation of the half-wave

plates in the corresponding spatial modes.

(3) The same ITE U0 is applied to the state |φ′0〉, where only the terms |xxx〉 and |x̄x̄x̄〉

are preserved. As a result, the final state becomes

|φf〉 = α|xxx〉+ β|x̄x̄x̄〉, (53)

which is the same as the initial state and the protection of local site flip is shown.

Robustness against perturbation operation of (σz + 1)/2

(1) For any input state with nonzero amplitude of ground states ofH0, when it is subjected

to the ITE U0, the output state is the ground state of H0 with the form of |φ0〉 = α|xxx〉+

β|x̄x̄x̄〉.

(2) The perturbation operation 1
2
(σz1 +1) means that there is a probability of 0.5 to rotate

the particle 1 along σz direction and a probability of 0.5 to do nothing. As a result, the

state would becomes

|φ′0〉 = (α|xxx〉+ β|x̄x̄x̄〉)np + (α|x̄xx〉+ β|xx̄x̄〉)pe, (54)

where the subscripts np and pe represent the cases without and with perturbation, re-

spectively. The setup is similar to the case of transforming the basis of particle 1 from

σx to σz, as expressed in equation (45). However, the four output modes are denoted by

{|xxx〉, |x̄x̄x̄〉, |x̄xx〉, |xx̄x̄〉} for the perturbation operation and {|zxx〉, |z̄xx〉, |zx̄x̄〉, |z̄x̄x̄〉}

for the basis rotation.

(3) The same ITE U0 is applied to the state |φ′0〉, where only the terms |xxx〉 and |x̄x̄x̄〉

are preserved. As a result, the final state becomes

|φf〉 = α|xxx〉+ β|x̄x̄x̄〉, (55)

which is the same as the initial state and the property of local phase-error immunity is

shown.
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To illustrate the encoding process more clearly, the cross sections of the output spatial

modes of each process are presented in Supplementary Figure 5 (exchange of MZMs), Sup-

plementary Figure 6 (immunity against flip error) and Supplementary Figure 7 (immunity

against phase error). The solid magenta rings represent the preserved optical modes, and

the dashed magenta rings represent the discarded optical modes. The states indicated n-

ear the optical modes represent the corresponding preserved basis in the eight-dimensional

space. The mapping between the basis of initial states and the optical modes is chosen

to make the measurement of the final states (interference between different spatial modes)

more convenient.

SUPPLEMENTARY NOTE 7. EXPERIMENTAL IMAGE OF THE EIGHT

OPTICAL MODES AND THE DETECTION PROCESS

Supplementary Figure 8 presents an experimental images of the eight optical modes of

equal amplitude. The image was obtained as the output of the Pre setup using a laser with

a central wavelength of 800 nm and a repetition rate of 76 MHz. To investigate the braiding

transformation, the input photon pulses are attenuated and filtered by a single-mode fiber

and a 3 nm interference filter. Two of the eight output modes are preserved and the pho-

tons are detected by single-photon detectors. The number of counts for each measurement

in our experiment is approximately 100K counts/s. The errors on the measured quantities

related to the counting statistics are therefore small. Beam displacers provide stable inter-

ference between different spatial modes [19]. To achieve high visibility of the interference

between different spatial modes, the gradients of the beam displacers are carefully adjusted,

and phase compensation using additional wave plates (not shown in Figure 2 in the main

text or Supplementary Figures 12 and 13) between different spatial modes is applied. In

our experiment, the fidelity for the investigation of the geometric phases is approximately

94.13± 0.04%, and the fidelities for the investigation of flip-error immunity and phase-error

immunity are approximately 97.91± 0.03% and 96.99± 0.04%, respectively.
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SUPPLEMENTARY NOTE 8. ERROR ESTIMATION

In our experiment, the statistics of each count is assumed to follow a Poisson distribution,

which are determined by the subprogram of PoissonDistribution in Wolfram Mathematica

7.0. The values of each measurement quantity are then calculated from 50 randomly grouped

counting sets, in which the error of the quantity is estimated by the square root of the

corresponding variance. The counts for each measurement in our experiment is about 100K

counts/s. As a result, the variances are small and the error bars are smaller than the size of

the symbols in the figures. In our experiment, the phases are stable in the interferometers

constructed by beam displacers. However, due to the fact that there would be maximal

12 beam displacers involved during the measurement, the misalignments of beam displacers

would limit the fidelity to reconstruct the braiding matrixes and the final states.

SUPPLEMENTARY NOTE 9. MORE EXPERIMENTAL RESULTS

The six experimental initial states (after the first DE0) are shown in Supplementary Fig-

ure 9a and d. The corresponding final states (after the second DE0) in demonstrating the

flip-error immunity and phase-error immunity are shown in Supplementary figure 9b and e,

respectively. The black dots in the poles of the Bloch sphere represent the corresponding

theoretical predictions with the states |xxx〉 (+Z direction), 1√
2
(|xxx〉 − i|x̄x̄x̄〉) (-Y direc-

tion), |x̄x̄x̄〉 (-Z direction), 1√
2
(|xxx〉+ |x̄x̄x̄〉) (+X direction, |03s〉), 1√

2
(|xxx〉+ i|x̄x̄x̄〉) (+Y

direction), and 1√
2
(|xxx〉−|x̄x̄x̄〉) (-X direction, |13s〉), respectively. The final states after the

flip-error operation and the phase-error operation are almost identical to the corresponding

initial states, respectively. Supplementary Figure 9c. and f. show the comparison between

the fidelities of the final states (dark yellow columns) and the theoretical prediction (identity,

cyan columns) for the cases of flip-error protection and phase-error protection, respectively.

The output states of the first DE0 and DE1 in Figure 2 in the main text are shown in

Supplementary Figure 10a and c, respectively. The fidelities, calculated as (Tr
√√

ρeρt
√
ρe)

2,

of the corresponding output states are shown in Supplementary Figure 10b and d, where

ρe (ρt) represents the experimentally reconstructed (theoretically predicted) density matrix.

Supplementary Figure 10e shows the final states after the second DE0 and Supplementary

Figure 10f shows the corresponding fidelities. The initial states in the meridian plane of
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the Bloch sphere (Supplementary Figure 10a) is rotated counterclockwise to the equatorial

plane (Supplementary Figure 10e), which clearly demonstrate the non-trivial statistics. The

error bars for fidelities correspond to the counting statistics.

Supplementary Figure 11 shows experimental results for the four-mode measurement

in investigating the geometric phases. Solid and open columns represent the theoretical

and experimental results of the density matrices after DE2. The fidelities are shown in

Supplementary Figure 11j, with the numbers from 1 to 9 representing the cases with the

theoretical initial states of |xxx〉 (a), 3√
10
|xxx〉 + 1√

10
|x̄x̄x̄〉 (b), 2√

5
|xxx〉 + 1√

5
|x̄x̄x̄〉 (c),

1√
2
(|xxx〉+|x̄x̄x̄〉) (d), 1√

5
|xxx〉+ 2√

5
|x̄x̄x̄〉 (e), 1√

10
|xxx〉+ 3√

10
|x̄x̄x̄〉 (f), |x̄x̄x̄〉 (g), 1√

2
(|xxx〉+

i|x̄x̄x̄〉) (h), and 1√
2
(|xxx〉 − i|x̄x̄x̄〉) (i), respectively.

SUPPLEMENTARY NOTE 10. EXPERIMENTAL SETUP FOR SIMULATING

THE EXCHANGE OF MZMS

As shown in the Pre pane in Figure 2 in the main text, the polarization of a single

photon is rotated using a half-wave plate (HWP), and the photon is then sent to a BD30

with a vertical beam displacement of 3.0 mm. Both output beams are further rotated using

HWPs and sent to another BD30 with a horizontal beam displacement of 3.0 mm. There are

now four output beams, which are further rotated using HWPs and pass through a BD60

with a horizontal beam displacement of 6.0 mm. We then obtain eight output beams, and

the distances between neighboring beams are all equal to each other, which facilitates the

measurement of interferences between different optical modes. The relative amplitudes of

the eight beams are controlled using HWPs in the corresponding modes. The eight optical

beams represent the basis of the eight-dimensional space of the systems, which are initially

expressed in the basis of σx as {|xxx〉, |xxx̄〉, |xx̄x〉, |xx̄x̄〉, |x̄xx〉, |x̄xx̄〉, |x̄x̄x〉, |x̄x̄x̄〉}.

The precision of the dissipative evolution is theoretically dependent on the scale of the

evolution time t. In our protocol using a polarization beam splitter (PBS), it is dependent

on the ratio between the reflected and transmitted parts of the vertical polarization after

the PBS, which can be higher than 500:1. As a result, the optical modes with vertical

polarization are discarded directly after each dissipative evolution process (the reflection of

photons with vertical polarizations is not shown in Figure 2 in the main text). For the first

dissipative evoultion DE0 (the projection of exp(σx2σ
x
3 ∗ t) exp(σx1σ

x
2 ∗ t)), the normalized
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output state would have the form of |φ0〉 = α|xxx〉 + β|x̄x̄x̄〉. To perform DE1, we must

express the system located at site 1 in the basis of σz, which is implemented by BR1, which

contains two HWPs and a BD60. Consider the dissipative evolution of H2: two HWPs and a

BD30 in BR2 are used to transform the state of the system located at site 1 back to σx. The

following setup contains HWPs and a BD60 to transform the state of the system located at

site 2 to σz. To transform the state of the system located at site 3 to σy, two BD30s and two

HWPs with a quarter-wave plate (QWP) are used. An inverse base rotation is implemented

in BR3 to transform the entire state back to σx to implement DE0 once again.

For the case of two-mode measurement (TM), the two spatial modes are denoted by H

and V , respectively. The amplitudes of the two modes, which correspond to the amplitudes

of the two polarizations, can be measured directly. For the measurement of R and D, the

interference between these two modes is needed. By applying a HWP in the mode denoted

by V , the spatial modes can be combined again using a BD30. The interference of the

optical modes is transformed to the interference of polarizations, which can be measured

using the standard polarization-analysis setup. For the four-mode measurement (FM) case,

the four modes are denoted by HH, V H, HV and V V . Measurements of interference

between the optical modes are carried out using a step-by-step process. For example, the

measurement of RR is obtained by first combining HH and V H to obtain RH and then

combining HV and V V to obtain RV . RH and RV are then further combined to obtain

RR. As a result, the requirement of the 16 measurement configurations for the standard

two-qubit-state tomography can be achieved.

To fully characterize the behavior of the entire setup, we experimentally performed full

quantum process tomography [20, 21]. By expanding the output state E(ρ) with a complete

set of basis Êm of the Pauli operators {I(identity), σx(X), σy(Y ), σz(Z)}, the operation of

the quantum process can be expressed as E(ρ) =
∑

mn χmnÊmρÊ
†
n. The physical process E

is completely and uniquely characterized by the 4-by-4 matrix χ [22]. For simulating the

exchange of MZMs, the final state can be written as 1√
2
(α−iβ)|xxx〉+ 1√

2
(β−iα)|x̄x̄x̄〉 when

the initial state is α|xxx〉+β|x̄x̄x̄〉. The experimental χ-matrix for demonstrating non-trivial

statistics is denoted by χe
n, while χt

n represents the theoretical prediction. The fidelity of

the experimental result χe
n is approximately 94.13 ± 0.04%, which can be calculated from

(Tr
√√

χe
nχ

t
n

√
χe

n)2 [22]. The experimental χ-matrix for demonstrating the immunity against

flip errors is denoted by χe
f . χ

t
f represents the theoretical prediction, which corresponds to
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identity. The experimental fidelity of χe
f , which can be calculated from (Tr

√√
χe

fχ
t
f

√
χe

f )
2,

is approximately 97.91±0.03%. Similarly, the experimental χ-matrix for demonstrating the

immunity against phase errors is denoted by χe
p. χt

p represents the theoretical prediction,

which corresponds to identity. The experimental fidelity of χe
p, which can be calculated

from (Tr
√√

χe
pχ

t
p

√
χe

p)2, is approximately 96.99± 0.04%. Optical systems have been used

to simulate a three-spin Ising ring [23] and the XY spin model Hamiltonian [24]. Our

experiment simulates a spin chain that is equal to the Kitaev chain and investigates the

properties of MZMs in this model. This is completely different from the work simulating

the dynamics of a charged Majorana particle by employing a tailored waveguide chip [25].

SUPPLEMENTARY NOTE 11. EXPERIMENTAL SETUP FOR

DEMONSTRATING LOCAL NOISES IMMUNITY

The experimental setup for the investigation of the flip-error immunity is shown in Sup-

plementary Figure 12. Similar to the case for probing the geometric phases, the input state

is prepared by the setup denoted by Pre. The output state after the dissipative evolution

DE0 (α|xxx〉+ β|x̄x̄x̄〉) is then treated as the initial state. The flip-error operation is real-

ized by six HWPs, a BD30 and a BD60, in which the initial two optical spatial modes are

transformed into eight spatial modes with the state representation of |xxx〉 and |x̄x̄x̄〉 (with

the operation of σx1σ
x
2 ), |xx̄x〉 and |x̄xx̄〉 (with the operation of −iσx1σ

y
2), |x̄xx〉 and |xx̄x̄〉

(with the operation of iσy1σ
x
2 ), |x̄x̄x〉 and |xxx̄〉 (with the operation of σy1σ

y
2). Two of the

eight output modes (|xxx〉 and |x̄x̄x̄〉) are preserved after the second DE0. The two-mode

(TM) measurement setup is used to reconstruct the initial and final states, in which the

states of spatial information are translated into polarization information. A quarter-wave

plate (QWP), a half-wave plate (HWP) and a polarization beam splitter (PBS) are used for

polarization analysis. Photons are finally detected by single-photon detectors (SPDs).

Supplementary Figure 13 shows the experimental setup for the investigation of the phase-

error immunity, which is similar to Supplementary Figure 8. For the perturbation operator

1
2
(σz1 + 1), the initial two-mode states transform into four-mode states, two of which remain

unchanged, while two are rotated by σz1. HWPs and a BD30 are used to implement the

perturbation, using a setup similar to that shown in BR1. The basis of the four-mode states

in BR1 (to express the first qubit in σz) are represented by {|zxx〉, |z̄xx〉, |zx̄x̄〉, |z̄x̄x̄〉},
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while the basis of the four-mode states in the case of perturbation are represented by

{|xxx〉, |x̄x̄x̄〉, |x̄xx〉, |xx̄x̄〉}. After the second DE0, only the terms associated to |xxx〉 and

|x̄x̄x̄〉 are preserved.
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