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Supplementary Figure 1: Two-atom dipolar potentials around the 42D5/2 + 42D5/2 asymptote.
θ = 0 and M = mJ1 + mJ2 = 5, where θ is the same angle as has been introduced in Supplementary
Eq. (20). Only the asymptotic states with electronic angular-momenta below l = 5, principal quantum-
numbers ranging from 38 to 46, and within ±30 GHz from the 42D5/2 + 42D5/2 asymptote are considered
in the diagonalization of the potential-energy matrix. (a) The potentials that dominate the interaction
between two |42D5/2, mJ = 5/2〉 atoms are indicated by black solid lines. (b) The color code indicates
the fraction of the population of the asymptotic |42D5/2, mJ = 5/2〉 ⊗ |42D5/2, mJ = 5/2〉 state that
is contained in an interaction-induced mixed state as a function of the interatomic distance. Only the
contribution of the |42D5/2, mJ = 5/2〉 ⊗ |42D5/2, mJ = 5/2〉 asymptotic state needs to be considered
since it is the only state in the displayed energy range that can be addressed by the pulse excitation due
to selection rules.
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Supplementary Figure 2: Mean-field analysis of the Ramsey contrast and phase-shift with an
anisotropic van der Waals potential. The black-diamond-shaped and blue-circle data-points show the
Ramsey contrasts (a and b) and the phase-shifts (c and d) measured with the population of the 42D5/2

state being ∼1.2% (a and c) and ∼3.3% (b and d), respectively. In a and b, the Ramsey contrasts sim-
ulated by the mean-field model with the anisotropic potential given by Supplementary Eq. (20) (black
and blue solid lines) are compared with the measured ones. Similarly the measured and simulated phase-
shifts are compared in c and d. The interaction strength is limited below 75 GHz, which is the bandwidth
(half width half maximum) of the pump excitation, and the peak atom density is set to ∼ 1.3× 1012 cm−3

in these simulations. The coefficient C6 = 3.4 GHz µm6 has been used in these simulations. The error
bars represent the standard deviation.
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Supplementary Figure 3: The mean-field analysis of the Ramsey contrast and phase-shift with
the dipole-dipole (DD) interaction and the hybrid form of a dipole-dipole and a van der Waals
(DD-vdW) interaction without anisotropies. The black-diamond-shaped and blue-circle data-points
show the Ramsey contrasts (a and b) and the phase-shifts (c and d) measured with the population of the
42D5/2 state being ∼1.2% (a and c) and ∼3.3% (b and d), respectively. In a and b, the Ramsey contrasts
are simulated by the mean-field model with the DD (dahed line) and DD-vdW (dotted line) interactions
without anisotropies and are compared with the measured ones. Similarly the measured and simulated
phase-shifts are compared in c and d. The mean-field simulations with the pure van der Waals (vdW)
interaction (solid line), which have been shown in Fig. 3 in the main text, are presented again to be
compared with the DD and DD-vdW result. The interaction strength is limited below 75 GHz, which
is the bandwidth (half width half maximum) of the pump excitation, and the peak atom density is set
to ∼ 1.3 × 1012 cm−3 in these simulations. The coefficient C3 = 1 GHz µm3 has been used for the DD
interaction, and a combination of C3 = 3.4 GHz µm3 and rc = 0.81 µm have been used for the DD-vdW
interaction [see Supplementary Eq. (21)]. The error bars represent the standard deviation.
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Supplementary Figure 4: State-resolved field-ionization spectra. (a) Ion signal measured as a func-
tion of time-delay from the ps pulsed-laser excitations to Rydberg states ν = 38. The electric field was
ramped at the same speed as the one for Fig. 1c in the main text. The atom density and Rydberg popu-
lation were ∼ 4 × 1010 cm−3 and 3.2 ± 0.1 %, respectively. (b) The ion signal for ν = 42 with the atom
density and Rydberg population being ∼ 4 × 1010 cm−3 and 1.2 ± 0.1 %, respectively. This is the same
signal as shown in Fig. 1c. The red-shaded region indicates the integration range used for the estimation
of the relative population in the 43D state, whereas the blue-shaded area shows the integration range for
the 42D and 41D states. (c) The ion signal for ν = 50 with the atom density and Rydberg population
being ∼ 3 × 1010 cm−3 and 3.1 ± 0.2 %, respectively. The ramp-up speed of the electric field was slower
than that for ν = 42 and 38 by a factor of 2/3. The bandwidths of the excitations in these measurements
in a – c are the same as the one for the pump excitation in the Ramsey measurements.
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Supplementary Figure 5: Convergence of the simulated Ramsey contrast and phase-shift as func-
tions of an average number of interacting atoms. The Ramsey contrast (a) and phase-shift (b) at τ =

500 ps are simulated by the theory model with the continuum approximation and are plotted as functions
of the cutoff radius r0 (the lower abscissa) and of an average number of interacting atoms within the
volume V = 4π

3 (r3
0 − r3

B) (the higher abscissa). The population of the 42D5/2 is set to ∼ 3.3 % in these
simulations. The interaction strength is limited below 75 GHz, which is the half width half maximum of
the pump excitation, and the peak atom density is set to ∼ 1.3 × 1012 cm−3 in these simulations. The red
dashed and green dotted lines show the results with the dipole-dipole interaction and the hybrid form of a
dipole-dipole and a van der Waals interaction without anisotropies, respectively. The results with the van
der Waals interaction without an anisotropy, which has been used in the main text, are displayed by the
blue solid lines. The dark-grey solid lines represent the measured Ramsey contrast and the phase-shift,
each of which is the average over eight points around τ = 500 ps in Figs. 6b or d. The light-grey shaded
area represents one standard deviation of the average over those eight measured values. The black solid
line shows the Ramsey contrast |g(τ)| given by Eq. (7) in the main text with γ(τ) = 0, giving the upper
limit of the contrast decay and accordingly the lower limit of the number of atoms ∼ 32 to reproduce the
Ramsey contrast ∼ 0.45 measured at τ = 500 ps, irrespective of the potential curves.
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Supplementary Figure 6: Numerical simulation of the photo-ions contribution to the Ramsey sig-
nal. (a) Ramsey-contrasts simulated as functions of pump probe delay τ in the presence of photo-ions
for ν = 38 (black), 42 (blue), and 50 (red). (b) Phase-shifts simulated as functions of pump probe delay
τ in the presence of photo-ions for ν = 38 (black), 42 (blue), and 50 (red).
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Supplementary Figure 7: Simulation of the effects of the Rydberg interactions during the excitation
on the Ramsey signal. (a) The Rydberg populations at the end of the excitation pulse as functions of
the pulse duration with (red) and without (blue) the interaction. (b) the Ramsey oscillations around the
pump-probe delay τ ∼ 400 ps with (red) and without (blue) the interaction during the excitation pulses.
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Supplementary Figure 8: High resolution measurement of the Ramsey-oscillation contrasts. (a)
The contrasts as functions of the pump-probe delay τ for the higher-density (red dots) and lower-
density (blue dots) ensembles, respectively. The red- and blue-shaded parts are numerically simulated
recurrence-motions of the Rydberg wave-packet for the higher- and lower-density ensembles, respec-
tively. (b) Field ionization spectrum associated with the measurement shown in a.
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Supplementary Figure 9: The calibration of the peak atom density as a function of the power of
the dipole-trap-laser. The red-circle data points show the peak atom density measured in the calibration
experiment as a function of the dipole-trap-laser power. The blue-diamond-shaped data and their error
bars are not measured directly, but are obtained by linear interpolation. These blue-diamond-shaped data
points represent the estimated peak atom densities used in the density dependence measurement of the
Ramsey contrast shown in Fig. 4b in the main text. The error bars represent one standard deviation.
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Supplementary Figure 10: The principal-quantum-number dependences of the phase-shift. (a – c)
Measured phase-shifts are plotted as functions of τ for three different Rydberg levels ν = 38, 42, and
50. Each of them has been measured simultaneously with the Ramsey contrast with the same principal-
quantum-number shown in Fig. 4a in the main text. The simulations indicated by the black, blue, and red
solid-lines have been performed by the theory model with the continuum approximation for the van der
Waals interaction with the adjusting parameters being C6 = 8 GHz µm6 for ν = 38, C6 = 34 GHz µm6

for ν = 42, and C6 = 103 GHz µm6 for ν = 50. The peak atom-density is set to the estimated density
for each Rydberg level in these simulations. The density estimations are described in Methods section
“Estimation of the atom density” in the main text. It should be noted that several Rydberg states are
excited in the case of ν = 50, whereas we have considered an excitation only to a single Rydberg state
to perform the simulations for all of the three Rydberg levels. The error bars represent the standard
deviation.
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Supplementary Figure 11: The theory-model analysis of the Ramsey contrast and phase-shift be-
yond mean-field with the continuum approximations and with an anisotropic van der Waals po-
tential. The black-diamond-shaped and blue-circle data-points show the Ramsey contrasts (a and b) and
the phase-shifts (c and d) measured with the population of the 42D5/2 state being ∼1.2% (a and c) and
∼3.3% (b and d), respectively. In a and b, the Ramsey contrasts simulated with the anisotropic potential
given by Supplementary Eq. (20) (black and blue solid lines) are compared with the measured ones.
Similarly, the measured and simulated phase-shifts are compared in c and d. These simulated results
have been obtained by Eq. (6) in the main text combined with the potential anisotropy, employing the
cutoff radius r0 ∼ 4 µm and its corresponding atom-number N0 = 450 at the peak density. The interaction
strength in these simulations is limited below 75 GHz, which is the half width half maximum of the pump
excitation, and the peak atom density is set to ∼ 1.3 × 1012 cm−3 in these simulations. The coefficient
C6 = 63 GHz µm6 has been used in these simulations. The error bars represent the standard deviation.
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Supplementary Figure 12: The theory-model analysis of the Ramsey contrast and phase-shift
beyond mean-field with the continuum approximation and with the dipole-dipole (DD) interac-
tion and the hybrid form of a dipole-dipole and a van der Waals (DD-vdW) interaction without
anisotropies. The black-diamond-shaped and blue-circle data-points show the Ramsey contrasts (a and
b) and the phase-shifts (c and d) measured with the population of the 42D5/2 state being ∼1.2% (a and
c) and ∼3.3% (b and d), respectively. In a and b, the Ramsey contrasts simulated with the DD (dahed
line) and DD-vdW (dotted line) interactions without anisotropies are compared with the measured ones.
Similarly the measured and simulated phase-shifts are compared in c and d. The simulated results for
the DD interaction have been obtained by Eq. (6) in the main text, employing the cutoff radius r0 ∼ 4 µm
and its corresponding atom-number N0 = 450 at the peak density. It should be noted that these DD
results are pushed down as the cutoff radius is further increased, as is indicated by arrows in the figures
and will be further discussed with Supplementary Fig. 5. The simulations with the pure van der Waals
(vdW) interaction (solid line), which have been shown in Fig. 6 in the main text, are presented again to
be compared with the DD and DD-vdW results. The interaction strength is limited below 75 GHz, which
is the bandwidth (half width half maximum) of the pump excitation, and the peak atom density is set to
∼ 1.3 × 1012 cm−3 in these simulations. The coefficient C3 = 2.5 GHz µm3 have been used for the DD
interaction, and a combination of C3 = 4.3 GHz µm3 and rc = 1.93 µm have been used for the DD-vdW
interaction [see Supplementary Eq. (21)]. The error bars represent the standard deviation.
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Supplementary Figure 13: Phase-shifts calculated as functions of the pump-probe delay τ. (a)
Comparison between the exact (solid lines) and mean-field (dotted lines) solutions with the Gaussian
atom-density distribution for different populations pe (∼ 1.2, ∼ 3.3, and ∼ 10.0 %) in the 42D Rydberg
state. The Gaussian distribution has been taken from the Ramsey experiment shown in the main text. The
C6 coefficients are set to 34 GHz µm6 for the exact solution and 1.9 GHz µm6 for the mean-field solution,
respectively, which are the values used in the calculations performed in the main text. (b) Comparison
between phase-shifts calculated with the Gaussian (solid lines) and homogenous (dashed lines) atom-
density distributions within the mean-field model for different populations pe ∼ 1.2 % and ∼ 3.3 % in the
42D Rydberg state. The Gaussian distribution is the same as in a, whereas the homogeneous density has
been set to the average density of the Gaussian distribution. The C6 value is set the same as in a.
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Supplementary Notes

Supplementary Note 1: Estimation of the photo-ion contribution to the
Ramsey signal

In order to investigate the effect of the electric field generated by photo-ions on the Ramsey

signal, we have performed numerical simulations for ν = 38, 42, and 50, including ion

contributions. In each of those simulations, atom locations in an ensemble with a Gaussian

distribution are generated by the Monte-Carlo method. In this list of atom locations a certain

number of random locations are taken to be ion locations. The number of ions is obtained as

follows. The ion fractions are estimated for ν = 38 and 50 from the field ionization spectra

shown in Supplementary Figs. 4a and c, respectively, and for ν = 42 from the spectrum similar

to the one shown in Supplementary Fig. 4b to be the ratios of the areas of the ion peaks at

∼ 5.6 µs for ν = 38, 42 and ∼ 6.2 µs for ν = 50 to the total areas of the spectra. The numbers

of ions are thus estimated as the products of those ion fractions, our Rydberg populations pe’s,

and the total number of atoms to be 109 for ν = 38 with pe ∼ 3.2 %, 232 for ν = 42 with

pe ∼ 3.3 %, and 108 for ν = 50 with pe ∼ 3.1 %, respectively. These numbers are the upper

limits of the number of photo-ions as they may include the ions produced at much later time

(100 ns timescale) by Rydberg interactions [1]. At each atom position in each of the ensembles

with these ion numbers, the joint electric field generated by those ions is calculated. The Stark

shift induced by this joint electric field is calculated for each atom, so that the period of its

Ramsey oscillation is shifted accordingly. Those Ramsey oscillations are averaged over the

whole ensemble of the Rydberg atoms to give the contrast-decay and phase-shift shown in

Supplementary Fig. 6 for each of ν = 38, 42, and 50. It is seen that the contrast-decay and

phase-shift are less than 2 % and 2.5 degrees at the longest pump-probe delay 500 ps in our

measurements and are almost negligible.
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Supplementary Note 2: Discussion on the pump-probe excitation and the
zero-delay offset in the phase-shift

We consider the time-domain Ramsey interferometry with the identical pump and probe

excitations, each of which is a one-photon excitation of a two-level atom, consisting of a ground

state |g〉 and an excited state |e〉, with rectangular laser pulses for simplicity. The results can

be easily adapted to near-resonant two-photon excitations that have been used in the present

experiments.

The time dependent Schrödinger equation is given by

i~
∂

∂t
|ψ〉 = H|ψ〉 (1)

=

(
~
ω

2
|e〉〈e| − ~

ω

2
|g〉〈g| − deg · E(t)|e〉〈g| − d∗eg · E(t)|g〉〈e|

)
|ψ〉.

Here, ω is the angular frequency for the atomic transition, E(t) = E0(Θ(t − t0) − Θ(t −

t1)) cos(ωl(t − t0)) is the pump laser field where ωl is the laser frequency, Θ(t) is the Heavi-

side step function, t0 is the beginning of the pulse excitation, t1 is the end of the excitation,

|ψ〉 = Cg(t)|g〉 + Ce(t)|e〉 is the atomic state, and deg = 〈e|d|g〉 is the dipole-matrix element.

Solving the Schrödinger equation Eq. (1) by employing the rotating-wave approximation for

the evolution of the atomic state during the pump excitation we obtain Cg(t1)

Ce(t1)

 =

 (cos(θ/2) − iη sin(θ/2))eiωl
2 δt −iξ sin(θ/2))eiχeiωl

2 δt

−iξ sin(θ/2)e−iχe−iωl
2 δt (cos(θ/2) + iη sin(θ/2))e−iωl

2 δt


 Cg(t0)

Ce(t0)


= A

 Cg(t0)

Ce(t0)

 , (2)

with θ = Ωδt, η = ∆/Ω, ξ = ΩR/Ω, and Ω =

√
Ω2

R + ∆2, where ΩR is the Rabi frequency, and

∆ = ω − ωl is the detuning of the laser frequency ωl from the atomic resonance ω. The time

δt = t1 − t0 is the duration of the pump excitation, and χ represents the phase of the complex

Rabi frequency Ω̃R = ΩReiχ. It is important to note in the formulation given in Eq. (2) that the

matrix A, which describes the time evolution of the atomic state during the pump excitation, is

given in the lab frame, in which the field-free evolution of the atomic state between the pump

and probe excitations is described.
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The matrix for the excitation can be expressed in the form

A =

 |cg|eiφ/2 i|ce|eiζ/2

i|ce|e−iζ/2 |cg|e−iφ/2

 , (3)

where φ and ζ are phases of the complex amplitudes cg and ce, respectively. The pump and

probe excitation operation on the ground state |g〉 results in

|ψ(τ)〉 = A exp(−iHτ/~)A|g〉 (4)

=

 |cg|
2eiφeiω2 τ − |ce|

2e−iω2 τ

i|cg||ce|e−iζ/2(eiφ/2eiω2 τ + e−iφ/2e−iω2 τ)


Therefore, the population in the excited state P(τ) = 〈ψ(τ)|e〉〈e|ψ(τ)〉 that remains after the

probe excitation is given by

P(τ) = 2|cg|
2|ce|

2 (1 + cos(ωτ + φ)) . (5)

Here only the phase φ remains in the Ramsey signal, while the phase ζ is cancelled out. Ac-

cording to Eq. (2) and Eq. (3) the phase φ is defined by

tan(φ/2) =
Ω sin(ωlδt/2) cos(Ωδt/2) − ∆ cos(ωlδt/2) sin(Ωδt/2)
Ω cos(ωlδt/2) cos(Ωδt/2) + ∆ sin(ωlδt/2) sin(Ωδt/2)

. (6)

When the laser detuning vanishes (∆ = 0) we obtain φ = ωlδt = ωδt. Similarly, if ΩR → 0, the

phase φ converges to ωδt. In the regime with |∆| >> |ΩR| where Ω =

√
Ω2

R + ∆2 ≈ ∆ +
Ω2

R
2∆

, the

effects of the laser field can be characterized by the AC-Stark shift ωac =
Ω2

R
4∆

, so that we obtain

tan(φ/2) ≈ tan
((
ω −

Ω2
R

2∆

)
δt/2

)
. (7)

Therefore the phase aquired during the excitation is given by the AC-Stark-shifted phase-

evolution

φ ≈ (ω − 2ωac) δt. (8)

If the interactions among the atoms are neglected during the ps pulses, this intrapulse phase is

common to the higher- and lower-density ensembles under the condition that their sizes, shapes,
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and positions are identical. Accordingly, the intrapulse phase is cancelled out in the phase-shift

between those two ensembles.

In the actual measurements, however, slight differences between the sizes, shapes, and po-

sitions of the higher- and lower-density ensembles can lead to different intrapulse phases due

to different AC-Stark shifts (see Methods section “Estimation of the atom density” in the main

text). Additional intrapulse phases due to the Rydberg interactions during the pump and probe

excitations are considered to be negligibly small as seen in the theoretical simulations demon-

strated in the next paragraph.

We have performed theoretical simulations of the Ramsey signals to investigate the effects

of the Rydberg interactions during the pump (or probe) excitation, whose width is 10 ps, on

the contrast and phase of the Ramsey oscillations. We consider a two-level system with its

level spacing that corresponds to a frequency of 1.008 × 1015 Hz and is the energy difference

between 5S and 42D states. We assume the van der Waals interaction C6 ∼ 34 GHz µm6 as it has

been obtained in the beyond-mean-field analyses of our data in the main text. The interatomic

distance that gives the interaction timescale comparable to the width of the excitation ∼ 10 ps

is estimated to be ∼ 0.84 µm. The average number of atoms within a sphere whose radius

is 0.84 µm is estimated to be less than two in our higher-density ensemble. The number of

atoms N that has been considered in the present simulation is five and is thus large enough to

investigate the interaction effects within the ∼ 10 ps pulse excitation. We have compared the

populations of the excited state generated by an effective off-resonant two-photon excitation

with and without the atom-atom interactions during the excitation process. We have considered

the atoms to be randomly distributed within a cube with a volume r3
0 = N/nav where the average

atom density nav = (1.3/2(3/2))×1012 cm3 is the same value as the one in our experiment. We plot

the excited state populations at the end of the excitation pulse as functions of the pulse duration

with and without the atom-atom interactions in Supplementary Fig. 7a. Here the red and blue

curves show the results with and without the interactions, respectively, during the excitation.

We fixed the average Rabi frequency to 18.88 GHz, and the detuning from resonance emerging

due to the two-photon light shift to 150 GHz, so that the resulting populations are ∼ 3 % in
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the excited state at the pulse duration of 10 ps. It is seen in Supplementary Fig. 7a that the

populations are almost the same between these two cases with their population difference being

less than 1 % at 10 ps, indicating that the interaction effects on the excited-state population

are almost negligible during the pulse excitation. Next we have simulated the Ramsey signals

with the pump and probe excitations and evaluated the intrapulse-interaction effects on the

contrast and phase of the Ramsey oscillations. The simulated Ramsey oscillations are shown

in Supplementary Fig. 7b where the red and blue curves show the results with and without

the interactions during the excitation pulses, respectively, around the pump-probe delays τ =

400 ps. We calculate the contrasts for those traces and obtain 0.867 and 0.844 with and without

the interactions, respectively. The difference between the contrasts is thus ∼ 3 %, originating

from the interaction during the the excitations. The phase difference between those two traces

is less than ∼ 1 degrees. This corrsponds to the intrapulse phase discussed in the preceding

paragraph. These simulated values for the contrast reduction and the phase difference are much

smaller that the measured contrast-decay and the amount of phase-shift seen in Figs. 3 and 6.

It is thus concluded that the interaction effects on the contrast and phase are almost negligible.

It is also concluded that the contribution of the interactions to the intrapulse delay is negligibly

small.

We have verified that the discussion above holds entirely also for a three-level system with

rectangular laser pulses. We consider a system consisting of a ground state |g〉, an intermediate

state |i〉, and a Rydberg excited state |e〉. A laser field with frequency ωl1 couples the state

|g〉 to the upper state |i〉 with Rabi frequency ΩR1 and detuning ∆1 ≡ ωl1 − ω1, where ω1 is

the corresponding transition frequency. A second laser field with Rabi frequency ΩR2 drives

the transition between the states |i〉 and |e〉 with the transition frequency ω2. In the case that

|∆1| � |ΩR1|, |ΩR2|, we can neglect the excitation to the intermediate state, so that the three-level

system is effectively reduced to a two-level system. In our actual experiments, however, we use

an excitation laser-pulse whose envelop is not rectangular. The condition |∆1| � |ΩR1|, |ΩR2|

holds in the beginning and end of the pulse, whereas it might be violated at its peak intensity

around the middle of the pulse, so that the intermediate state |i〉 can be populated at the
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peak intensity. However, this state |i〉, which is not a Rydberg state, has a negligibly small

intrapulse-interaction effect during the excitation pulse and due to adiabaticity given by the

condition ω1, (ω2 − ω1) � |ΩR1|, |ΩR2| no population remains in the intermediate state |i〉 after

the pulse. This shows that our two-photon excitation can be effectively treated as a one-photon

excitation. The discussions above on the intrapulse phase and the interaction effects during the

excitation also apply to the two-photon excitation in our current experiments.

Supplementary Note 3: Field ionization spectra and estimation of excita-
tion bandwidth

In order to reduce the number of Rydberg states to be excited, the spectra of the ps IR

and blue pulsed lasers were cut to be about 0.13 nm and 0.20 nm, respectively, with pulse

shapers in a 4f configuration ( f = 500 mm). These bandwidths were common to the Ramsey

measurements of the three different Rydberg states ν = 38, 42, and 50. Supplementary Figure 4

shows state-resolved field-ionization spectra measured by ramping the electric field slowly on

the microsecond timescale. The spectra indicate that a single state was predominantly populated

for each of the excitations to ν = 38 and 42 as seen in Supplementary Figs. 4a and b, whereas

more levels were populated for the excitation to ν = 50 as seen in Supplementary Fig. 4c. This

is because the energy levels of Rydberg states are inversely dependent on ν2 and more congested

for higher states. Due to the characteristics of field ionization, the threshold value of the electric

field to induce ionization depends on ν−4 [2], so that higher states are less resolvable with the

same ramp-up speed of the electric field. Therefore the ramp-up speed was slower for ν = 50

than for ν = 38 and 42 by a factor of 2/3.

The bandwidth of our Rydberg excitation with the IR and blue pulses was determined from

the field-ionization spectrum for ν = 42 presented in Fig. 1c as well as in Supplementary

Figs. 4b. Assuming a symmetrical population distribution with respect to the center level

ν = 42, we estimated the relative populations in the excited Rydberg states to be ∼ 84 % for

the center state 42D and ∼ 8 % for each neighboring state 43D and 41D, respectively, from the

integrated areas of the ion signal peaks. In Supplementary Figs. 4b, the integration range for
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the 43D state (the 42D and 41D states) is indicated by the red-shaded (blue-shaded) region. We

did not deconvolute the ion spectrum for those integrations although those peaks were not fully

resolved. Based on the relative populations and assuming a Gaussian excitation spectrum, we

obtained a bandwidth of ∼150 GHz (FWHM).

Supplementary Note 4: Structures in the pump-probe delay dependence of
the Ramsey signal

We have made another set of supplementary Ramsey measurements with smaller steps of the

pump-probe delay τ than those of the measurements shown in the main text. The results of those

supplementary measurements are shown in Supplementary Fig. 8a, in which the red and blue

dots show the contrasts of the Ramsey oscillation for the higher- and lower-density ensembles,

respectively, as functions of τ. It should be noted here that Supplementary Fig. 8b shows a field

ionization spectrum associated with the Ramsey measurement shown in Supplementary Fig. 8a,

indicating the 41D, 42D, and 43D states predominantly populated, similar to the measurements

shown in the main text, but more fractions of the 41D and 43D states included in these sup-

plementary measurements with a broader bandwidth of the ps excitation laser pulse. It is thus

reasonable that the recurrence motion of the Rydberg wave-packet with a period of ∼ 10 ps is

more pronounced and better resolved in Supplementary Fig. 8a than in Fig. 2d in the main text

due to the more fractions of the neighboring levels and smaller steps of τ, respectively. The red-

and blue-shaded parts shown in Supplementary Fig. 8a correspond to the recurrence motions of

the Rydberg wave-packet numerically simulated only with those three Rydberg levels and with

the decay factor exp(-α
√
τ) seen in Eq. (5) in the main text. It is seen from this figure that the

simulated results show excellent agreements with the measured τ dependences of the contrast,

demonstrating that our Ramsey signal is not affected by other angular momentum states such as

S, P, and F states or by the oscillation resulting from the ground-state hyperfine splitting.

It is understood from the comparison between the structures seen at τ ∼ 130 − 170 ps in

Fig. 2d in the main text and Supplementary Fig. 8a that those oscillations can be assigned to

the recurrence motion of the wave-packet. It is also understood from the comparison between
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the collapse and revival of the wave packet seen in Supplementary Fig. 8a, which is due to an

anharmonicity of the Rydberg levels, and the global structure seen in Fig. 2d that the structures

on the ∼ 100 ps timescale seen in Fig. 2d are not always assigned to the collapse and revival,

but also to experimental fluctuations.

Supplementary Note 5: Active control of many-body dynamics
Supplementary Note 5-1: Atom-density dependence of the Ramsey-
contrast decay

Figure 4b in the main text shows the Ramsey contrasts for ν = 42 with a population of

3.5 ± 0.3 % at τ = 300 and 510 ps for several different atom densities ranging from the lower to

the higher densities described in the main text. These measurements were made by changing

the power of the dipole-trap laser and thereby the trap depth. At first the atom densities in

these Ramsey measurements were estimated solely from the total number of atoms and the size

of the atomic ensemble obtained by in-situ absorption imaging with a CCD camera without

expanding the atomic ensemble, but were underestimated because of the spatial resolution, as

is described in Methods section “Estimation of the atom density” in the main text. Therefore it

was calibrated in a later independent experiment in which the trapping conditions (1) and (3)

(the loading sequence and the dipole-trap laser focusing), which were described in Methods

section “Estimation of the atom density”, were almost the same as those employed in the

Ramsey measurements. In this calibration experiment, we measured the radial trap-frequency,

the temperature, the axial size, and the total number of atoms to obtain the atom density as a

function of the power of the dipole-trap laser. Supplementary Figure 9 shows the results of this

calibration measurement accompanied by a calibration curve, which is a linear interpolation

function. The atom densities in the Ramsey measurements were estimated from this calibration

curve as a function of the dipole-trap-laser power as shown by the blue diamond-shaped data

points in Supplementary Fig. 9, and then the Ramsey contrasts measured at τ =300 and 510 ps

are plotted against these estimated atom densities in Fig. 4b in the main text. It is seen in

Fig. 4b that the contrast decay is accelerated as the atom density is increased.
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Supplementary Note 5-2: The principal-quantum-number dependences of
the phase-shift

Figure 4a in the main text shows the Ramsey contrasts as functions of τ for three different

Rydberg levels ν = 38, 42, and 50. The populations pe and estimated peak atom-densities

are pe ∼ 3.2 % and ∼ 1.2 × 1012 cm−3 for ν = 38, pe ∼ 3.3 % and ∼ 1.3 × 1012 cm−3 for

ν = 42, and pe ∼ 3.1 % and ∼ 1.2 × 1012 cm−3 for ν = 50, respectively (see Methods section

“Estimation of the atom density” in the main text for these density estimations). It is seen

from this figure that the dephasing is accelerated by increasing the principal quantum number

ν of the Rydberg level. We have also measured the corresponding phase-shifts for these three

levels simultaneously with the Ramsey contrasts as shown in Supplementary Fig. 10. The

theory-model simulations with the continuum approximation indicated by solid lines agree

well with the measured results. It should be noted that several Rydberg states are excited in

the case of ν = 50, whereas we have considered an excitation only to a single Rydberg state to

perform the simulations for all of the three Rydberg levels.

Supplementary Note 6: Calculation of the Ramsey contrast and phase-shift
with nearest-neighbor interactions

We follow previous Ramsey studies on Rydberg interactions [3, 4] to calculate the Ramsey-

contrast-decays and the phase-shifts expected for nearest-neighbor interactions. In the Ramsey

measurement in the main text, the population in the Rydberg state is observed as a function

of the delay time τ between the pump and probe excitations. Within the delay time, nearest

neighbor atoms evolve under a Hamiltonian

H =

2∑
j=1

(
Eg|g〉 j〈g| j + Ee|e〉 j〈e| j

)
+ U(r)|e〉1|e〉2〈e|2〈e|1, (9)

where |g〉 and |e〉 are ground- and excited Rydberg-states with energies Eg and Ee, respectively,

and U(r) is an interaction energy between a pair of Rydberg atoms separated by r. The time-

domain Ramsey signal is obtained by solving a Schrödinger equation with this Hamiltonian
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as

P(τ) = 2pg pe

(
1 + pg cos(ωτ + φ) + pe cos((ω + U(r)/~)τ + φ)

)
(10)

= 2pg pe<
{
1 + ei(ωτ+φ)

(
pg + pee

iU(r)τ
~

)}
.

Here pg and pe are the ground- and Rydberg-state populations, respectively, ω = (Ee − Eg)/~

is the atomic-resonance frequency, and φ is the phase offset arising from the AC-Stark shifts

during the pulse excitation. This result is identical to the Ramsey signal obtained by Eq. (3)

in the main text with N = 2. In a homogeneous atom distribution with a density of n, the

nearest-neighbor distribution is given by

Pr(n, r) = exp
(
−

4πnr3

3

)
4πnr2, (11)

where
∫ ∞

0
Pr(n, r)dr = 1. The Ramsey signal given by Supplementary Eq. (10) is averaged over

this distribution as follows:

Pav(n, τ) =

∫ ∞

0
Pr(n, r)P(τ)dr (12)

= 2pg pe<

{
1 + ei(ωτ+φ)

(
pg + pe

[∫ rB

0
Pr(n, r)dr +

∫ ∞

rB

Pr(n, r)e
iU(r)τ
~ dr

])}
,

where rB is the blockade radius determined by the finite bandwidth of the excitation with the IR

and blue pulses.

This is further averaged over the density distribution of our atomic ensemble, which can be

modeled by a Gaussian distribution to be

n(x) = npe
−

(x2+y2)
2σ2

xy
− z2

2σ2
z , (13)

where np = N
(2π)3/2σ2

xyσz
is the peak density, N is the number of atoms in the ensemble, σxy is the

width in the x,y-direction, and σz is the width in the z-direction of the atomic ensemble. The

Ramsey signal thus averaged over the whole ensemble is given by

Pav(τ) =
4π
N

∫ ∞

0
dρρ2n(ρ)Pav(n(ρ), τ) (14)

=
2
√
πnp

∫ np

0
dn

√
ln

(np

n

)
Pav(n, τ),
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where the radius ρ is defined by ρ =

√
x2 + y2 +

(
zσxy

σz

)2
. In going from the first line to the

second line in Supplementary Eq. (14), an integral over the volume of the ensemble is converted

to an integral over the density.

It should be noted that the maximum threshold of the Ramsey-contrast-decay expected for

nearest-neighbor interactions is determined by the population pe of a Rydberg state as follows.

When the Ramsey oscillations are maximally dephased, the third term in the parentheses in

the first line of Supplementary Eq. (10) vanishes. In this limit, the oscillation contrast and

the phase-shift converge to pg (= 1 − pe) and φ, respectively, seen in the second term. These

features do not depend on the character of the interaction U(r) such as van der Waals and

dipole-dipole.

Supplementary Note 7: Mean-field model
For the mean-field approximation we follow the notation |e〉 j〈e| j = P( j)

ee which results in the

following N-atom Hamiltonian

H =

N∑
j=1

EeP( j)
ee +

N−1∑
j=1

N∑
i> j

U(ri, j)P(i)
eeP( j)

ee , (15)

where Ee is the energy of Rydberg state and U(ri, j) describes the interaction between atoms i

and j separated by ri, j. Without loss of generality we have set the ground-state energy Eg = 0.

By using a relation P( j)
ee = 〈P( j)

ee 〉+ δP( j)
ee where 〈P( j)

ee 〉 and δP( j)
ee are the mean value and fluctuation

of P( j)
ee , respectively, we obtain the mean-field approximation from

P(i)
eeP( j)

ee ≈ 〈P(i)
ee〉〈P

( j)
ee 〉 + 〈P(i)

ee〉δP( j)
ee + 〈P( j)

ee 〉δP(i)
ee (16)

= 〈P(i)
ee〉P

( j)
ee + 〈P( j)

ee 〉P(i)
ee − 〈P

(i)
ee〉〈P

( j)
ee 〉,

which allows to write the Hamiltonian in the following form

H =

N∑
j=1

H j (17)

=

N∑
j=1

~

(
ω +

(
〈Pee〉 −

〈Pee〉
2

2

)
∆ω j

)
P( j)

ee − ~

(
〈Pee〉

2

2
∆ω j

)
P( j)

gg ,

24



where ω = Ee/~ is the atomic-resonance frequency and 〈P( j)
ee 〉 is assumed to be common to all

the atoms and set to 〈Pee〉. Each atom can be considered separately, and the interactions enter

as shifts of the energy levels with ~
(
〈Pee〉 −

〈Pee〉
2

2

)
∆ω j and ~

(
〈Pee〉

2

2 ∆ω j

)
for the Rydberg and

ground states, respectively. Here ∆ω j =
∑

j,i U(ri, j)/~ is the sum over all interactions with atom

‘ j’.

In this model, therefore, Rydberg interactions modify only the period of the Ramsey oscilla-

tion of each atom as follows

Pmf; j(τ) = 2pg pe

(
1 + cos((ω + pe∆ω j)τ + φ)

)
, (18)

where τ is the pump-probe delay, pg and pe are the ground- and Rydberg-state populations,

respectively, 〈Pee〉 = pe, and φ is the phase offset arising from the AC-Stark shifts during the

pulse excitation. Oscillations with slightly different periods are then averaged over the atom

distribution. The interferogram obtained in the Ramsey measurement is thus given by

Pmf(τ) =
1
N

N∑
j=1

Pmf; j(τ) = 2pg pe

1 +
1
N

N∑
j=1

cos((ω + pe∆ω j)τ + φ)

 . (19)

This averaging yields a contrast decay of the Ramsey oscillation. By employing the Monte

Carlo method to model a realistic distribution of the N atoms as given by Supplementary

Eq. (13) we acquire the results of Supplementary Eq. (19).

Supplementary Note 8: Outline of the least-squares fitting
The least-squares fitting for Fig. 3b in the main text and Supplementary Figs. 2b and 3b was

performed so that the residual between the Ramsey contrasts measured for ∼3.3 % population

and their simulations was minimum, with reasonable steps of fitting parameters, for 500 atoms,

whose configuration was generated by the Monte-Carlo simulation. For each of these 500

atoms, the mean-field energy shift is calculated by considering the interactions with ∼ 6 × 105

atoms, and these shifts are averaged over the 500 atoms. The fitting parameters such as the

C6 coefficient obtained in that least-squares fitting were used to calculate the simulated curves

shown in Fig. 3 and Supplementary Figs. 2 and 3 with an averaging over 20,000 atoms from the

ensemble.
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The least-squares fitting for Fig. 6b in the main text and Supplementary Figs. 11b and 12b

was also performed so that the residual between the Ramsey contrasts measured for ∼ 3.3 %

population and their simulations with Eq (4) in the main text was minimum with reasonable

steps of fitting parameters. The fitting parameters such as the C6 coefficient obtained in

that least-squares fitting were used to calculate the simulated curves shown in Fig. 6 and

Supplementary Figs. 11 and 12.

Supplementary Note 9: Effects of the atom-density distribution on the
phase-shifts

We present detailed analyses of the effects of the atom-density distribution on the phase-

shifts. Supplementary Figure 13a shows the exact and mean-field calculations of the phase-shift

for the 42D Rydberg state with the Gaussian distribution of the atom density. The Gaussian

distribution has been taken from the Ramsey experiment shown in the main text. Both in the

exact and mean-field calculations, the phase-shift is saturated as the Rydberg population pe

increases, as shown in Supplementary Fig. 13a. As the Rydberg population is increased, the

initial slope of the phase-shift becomes larger due to stronger interactions, so the phase-shift

converges earlier to a value around -40 degrees, and the disagreement between the exact and

mean-field results becomes smaller.

This saturation is due to the Gaussian atom-density distribution of our experimental setup

as shown in Supplementary Fig. 13b, in which the phase-shifts calculated with two different

density distributions (Gaussian and homogeneous) and two different Rydberg populations

are compared within the mean-field model. The Gaussian distribution is the same as in

Supplementary Fig. 13a, whereas the homogeneous density has been set to the average density

of the Gaussian distribution. It is seen that the Gaussian distribution gives the phase-shift

saturated more rapidly for the higher Rydberg population. With the homogeneous distribution,

however, the phase-shifts are not saturated within this timescale 1000 ps. In contrast to the

homogeneous distribution, the rapid decrease of the atom density in the Gaussian tails results

in the saturation of the phase-shift. This is because the contribution to the phase-shift from
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atoms distant from the center of the Gaussian distribution is suppressed, and therefore the

phase-shift does not grow afterwards. The stronger interactions for pe ∼ 3.3 % yield the

phase-shift saturated within our measurement time 500 ps. This saturation is reached both

by the exact and mean-field calculations for pe ∼ 3.3 % as seen in Supplementary Fig. 13a,

unlike the case with pe ∼ 1.2 % and therefore weaker interactions, giving the closer agreement

between the mean-field and exact results as well as the experimental ones for pe ∼ 3.3 % than

for pe ∼ 1.2 %, as seen in Fig. 3d in the main text.

Supplementary Note 10: Numerical simulations with alternative forms of
interactions
Supplementary Note 10-1: Effective treatment of a two-atom interaction

At short interatomic distances a dipole-dipole interaction in non-diagonal terms of the

Hamiltonian couples the initial Rydberg states of a pair of atoms described by | · · · e · · · e · · · 〉

with other Rydberg states | · · · e′ · · · e′′ · · · 〉. Such couplings induce hybridization among

multiple Rydberg states, leading to congested potential structures. To handle this intractable

problem in the present study, we have considered a single effective potential for the two-atom

interaction that represents the congested potential structure. Thereby, the effective interaction

enters only the diagonal components of the Hamiltonian.

Supplementary Note 10-2: Numerical simulation with an anisotropic van
der Waals interaction

In the main text we have considered an isotropic van der Waals interaction given by U(r) =

−C6/r6. Here we introduce an anisotropy into the van der Waals interaction by

U(r, θ) = −
C6(1 − 3 cos2(θ))2

r6 , (20)

where θ is the angle between the z-axis (Fig. 1a) and a line connecting two atoms interacting

with each other. The comparisons between our experimental observations and the simulations

with the anisotropic potential U(r, θ) above are presented in Supplementary Fig. 2 for the

mean-field model and in Supplementary Fig. 11 for the theory model beyond mean-field with
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the analytical continuum-approximation, respectively. It is seen in Supplementary Fig. 2c

that the mean-field simulation fails to reproduce the observed phase-shift again, whereas the

theory-model simulations agree with the measured Ramsey contrasts and phase-shifts for

both of the Rydberg populations pe ∼1.2 % to 3.3 %. The adjustment parameter employed

in these simulations with the anisotropic potential is C6 = 63 GHz µm6 and is comparable to

C6 = 34 GHz µm6 employed in the simulations without the potential anisotropy.

Supplementary Note 10-3: Numerical simulation with a hybrid form of a
dipole-dipole and a van der Waals interaction and with a pure dipole-dipole
interaction

A hybrid form of a dipole-dipole and a van der Waals (DD-vdW) interaction is defined by

U(r) =

 −
C3
r3 r ≤ rc

−
C6
r6 r > rc

, (21)

where rc is the crossover radius defined by r3
c = C6/C3. We have performed numerical simu-

lations of the Ramsey contrast and phase-shift using this DD-vdW interaction with C3 and rc

being fitting parameters.

We have also performed the simulations using a dipole-dipole (DD) interaction without

anisotropies. The results of those simulations are presented in Supplementary Fig. 3 for the

mean-field model and in Supplementary Fig. 12 for the theory model with the continuum ap-

proximation, respectively. The corresponding results with the pure van der Waals (vdW) in-

teraction, which have been shown in Figs. 3 and 6 of the main text, are presented again in

Supplementary Figs. 3 and 12 to be compared with the DD-vdW and DD results. It is seen

in Supplementary Fig. 3c that the mean-field simulation fails to reproduce the observed phase-

shift again for both the DD-vdW and DD interactions. It is seen in Supplementary Fig. 12, on

the other hand, that the theory model simulations beyond mean-field with the DD-vdW interac-

tion show good agreements simultaneously with the Ramsey contrasts and phase-shifts, whereas

similar agreements have not been found with the DD interaction. Supplementary Figure 1 shows

the two-atom potentials that we have obtained by diagonalizing the 87Rb Hamiltonian for two
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atoms with the DD interaction. It is seen from this figure that there is a mixing of states corre-

lating to the 42D5/2+42D5/2 and 44P3/2+40F7/2 asymptotes due to DD coupling at interatomic

distances shorter than ∼ 2 µm. This distance is longer than the shortest interatomic distance

accessible by our ps pulse excitation, indicating the validity of the DD-vdW interaction. The

DD-vdW interaction, however, needs two fitting parameters C3 and rc, whereas the pure vdW

interaction needs only one fitting parameter C6. We have, therefore, employed the pure vdW

interaction in the main text to suppress the ambiguity of the fitting.

Supplementary Figure 5 shows the simulated Ramsey contrast and phase-shift at τ = 500 ps

as functions of the cutoff radius r0 (the lower abscissa), at which we truncate the integration

in Eq. (6) in the main text, and of an average number of interacting atoms within the volume

V = 4π
3 (r3

0 − r3
B) (the higher abscissa). They are simulated by the theory model with the

continuum approximation for the vdW, DD, and DD-vdW interactions without anisotropies.

The population of the 42D5/2 is set to ∼3.3% in these simulations. The converged values agree

well with the measured ones indicated by the dark-grey solid lines, each of which is the average

over eight points around τ = 500 ps in Figs. 6b or d in the main text. The light-grey shaded

area represents one standard deviation of the average over those eight measured values. On

the other hand, the Ramsey contrast and phase-shift simulated with the DD interaction neither

converge nor agree with the experimental observations. The black solid line in Supplementary

Fig. 5a shows the Ramsey contrast |g(τ)| given by Eq. (7) in the main text with γ(τ) = 0,

which gives the situation in which the Ramsey oscillations modulated by the Rydberg-Rydberg

interactions are dephased completely. This black solid line thus represents the upper limit

of the contrast decay and accordingly the lower limit of the number of atoms ∼ 32 to re-

produce the Ramsey contrast ∼ 0.45 measured at τ = 500 ps, irrespective of the potential curves.
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