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SUPPLEMENTARY NOTE 1. PROPERTIES OF THE NODE DISTANCE DISTRIBUTION

The node-distance distribution is a set of probability distributions that associates to each node i = 1, 2, . . . , N
a probability distribution Pi(d) representing the fraction of nodes connected to i at distance d, where Pi(∞) is the
fraction of disconnected nodes from i.

The set of node-distance distributions possesses local and global information regarding the connectivity of the
network. (N − 1)Pi(d) gives the number of nodes at distance d from i and, thus, the degree (number of nodes at
distance 1 from i) and the closeness centrality (the sum of the inverse distance from i to all other nodes) are easily
obtained [1]. Regarding global properties, the number and the size of the connected clusters are given by (N−1)Pi(∞)
which gives the number of nodes in a different cluster from i. The average of the node-distance distributions gives
the network distance distribution carrying information of the diameter, average path length, average degree, average
cluster size, among others.

Supplementary Figure 1: Network Node Dispersion values for Erdös-Rényi networks. NND values for
networks generated by the ER model with different average degree (generation probability).
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SUPPLEMENTARY NOTE 2.

Here, we briefly describe the meaning of each term on the right-hand side of Equation (2) in the main text.
The first term compares, via the square root of the Jensen-Shannon divergence the average of the node-distance

distributions between the graphs. For each node i = 1, 2, . . . N , the node-distance distribution, Pi(k), is defined as the
fraction of nodes at distance k from i. By setting ni,k as the number of nodes at distance k from i, Pi(k) = ni,k/(N−1).
Consequently, the average of the N node-distance distributions, µ, is given by:

µ(k) =
1

N

N∑
i=1

ni,k
(N − 1)

. (1)

By observing that
∑N
i=1 ni,k gives the double of the number of pairs of nodes at distance k from each other and

N(N − 1)/2 is the total number of possible pairs of nodes, µ(k) gives the fraction of pairs at distance k from each
other. Thus, the first term of the right-hand side of Equation (2) in the main text compares, via the Jensen-Shannon
divergence, the distance distribution between the graphs.

The second term compares the NND values between the networks.
The third term deals with differences in the node centrality value computed via the alpha-centrality vector.
Alpha-centrality measures the total number of paths from a node, exponentially attenuated by their length. The

alpha-centrality matrix gives the number of paths, attenuated by a parameter 0 ≤ α < 1, between two nodes. It can
be written as a power series expansion of the adjacency matrix A, with attenuation parameter α given by:

Cα = A+ αA2 + α2A3 + . . . . (2)

It can be proved that this expansion converges for α < 1/λmax, where λmax is the graph’s spectral radius (largest
eigenvalue of its adjacency matrix). Considering the Perron-Frobenius theory, in a graph (connected or not), λmax is
bounded from above by the maximum degree.

For each node, the alpha centrality is given, considering an exogenous factor vector ~v (here considered as a vector
giving the link density of every node) by:

cα(i) = Cα̇~v
t. (3)

Defined in this way, considering α = 1/N , the alpha-centrality is bounded from above to 1 (value obtained only for
nodes in the full graph). Thus, if Vα is ordered by increasing values of the node alpha-centrality.

Pα =
1

N
[Vα N −

N∑
i=1

(Vα(i))] (4)

is a discrete probability distribution associated with the alpha-centrality values. Two networks share the same Pα if
they possesses the same sorted alpha-centrality sequences.

The graph complement captures differences in nodes with low centrality values. In particular, nodes with low degree
centrality tend to possess a low alpha-centrality value and, its importance may be overlooked. As taking the graph
complement, low degree nodes increases in importance highlighting local networks differences.

The role of the alpha centrality can be seen in Supplementary Fig. 2.
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Supplementary Figure 2: Special cases. Example of pairs of graphs that have the same NND, and the same
distance distributions (dodecaedral (A) and Desargues (B); and two trees of size 21, (C) and (D)). The third term of
Equation (2) in the main text, is the only one able to distinguish them. The dissimilarity value is positive for both

pairs, confirming their non-isomorphic condition.
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SUPPLEMENTARY NOTE 3. PROOF THAT D IS A BOUNDED PSEUDO-METRIC BETWEEN
NETWORKS

The dissimilarity D(G,G′) between G and G′ of size N and M respectively, is as described in the main text, given
bys:

D(G,G′) = w1

√
JH(µG, µG′)

log 2
+ w2

∣∣∣√NND(G)−
√
NND(G′)

∣∣∣+
w3

2

√JH(PαG, PαG′)

log 2
+

√
JH(PαGc , PαGc′ )

log 2

 (5)

The square root of the Jensen-Shannon divergence is known to be a metric between probability distributions [2].
Thus, D(G,G′) = 0 means that both networks possesses the same distance distribution, alpha-centrality of the graph
and its complement, and NND values. The triangle inequality holds due the fact that |a + b| ≤ |a| + |b| for all real
numbers a and b, and this result is independent of the chosen weights w1, w2, and w3.

Weight Sensitivity Analysis

To understand the role of the chosen values w1, w2 and w3 we perform a sensitivity analysis. We refer to
D(G,G′, w1, w2, w3), the dissimilarity between graphs G and G′, using weights, w1, w2 and w3.

The first experiment consists of testing link failures on a full graph.
Let G be a full graph with N nodes. After selecting a node, we randomly remove all its adjacent links, and we

compute the graphs dissimilarities. We denote G1, the graph obtained from G, after the removal of a single link, and
inductively Gi the graph obtained from Gi−1 by the deletion of an adjacent link of the selected node.

When considering N = 100, the removal of a single edge is better perceived by the third term of the right-hand
side of Equation (5). In this case, D(G0, G1, 0, 0, 1) = 0.0502 is five times the D(G0, G1, 1, 0, 0) = 0.0101 value and
almost twice the D(G0, G1, 0, 1, 0) = 0.0268 value. Supplementary Fig. 3 - C, shows that the third term is the best
in capturing differences in the beginning, and in the end of the link removal process. The behavior exemplifies the
role of the third term of the D function, as in these states of the process, the resulting network after a link failure is
globally very similar with the original one. The alpha centrality captures the changes caused by the removal of links,
in the shortest paths.

Supplementary Figure 3: Full graphs attack. Considering a full graph with 100 nodes, we remove links for a
selected node and compute D over consecutive graphs. (A) Measurements considering only the first term of the

measure, that is D(Gi, Gi−1, 1, 0, 0). (B) Measurements considering only the second term, D(Gi, Gi−1, 0, 1, 0). (C)
Measurements considering only the third term, D(Gi, Gi−1, 0, 0, 1).

Through the deletion of the 99th edge, the network becomes disconnected, causing a big disruption in the distance
distribution. Thus, the first term of D, better captures these network changes. D(G98, G99, 1, 0, 0) = 0.1411 almost
three times the D(G98, G99, 0, 1, 0) and 47 times D(G98, G99, 0, 0, 1) value, detecting the disconnection (Supplementary
Fig. 3 - A).

The second term captures the heterogeneity of the topology. The selection of a second node and the removal of
the 100th edge, induce high network heterogeneity, presenting a disconnected node, and the connected component
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is no longer a full graph. D(G99, G100, 0, 1, 0) = 0.0489 almost five times the D(G99, G100, 1, 0, 0) and 21 times the
D(G99, G100, 0, 0, 1) value (Supplementary Fig. 3 - B).

As a second experiment, we repeat the percolation tests in the Erdös-Rényi process, using only the alpha centrality
term. Supplementary Fig. 4 shows that the alpha centrality, D(G,G′, 0, 0, 1), is not capable of detecting the phase
transition captured when using D, D(G,G′, 0.45, 0.45, 0.1), (see Fig. 4-B in the main text). The maximum NND value
for this case is 0.12. A high value of w3 would distort the D values, minimizing the power of the NND in detecting
these important topological changes. Considering this, we fixed w3 = 0.1, value that only significantly alters D when
comparing highly distance-regular graphs.

Supplementary Figure 4: Alpha dissimilarities for the evolution Erdös-Rényi process. Heatmap of the
dissimilarity function considering weights w1 = w2 = 0, and w3 = 1. The alpha centrality is unable to detect the

percolation phase transition for the ER process.

The use of the alpha centrality over the graphs complements has a computational drawback. The comparison
between large sparse graphs is computationally prohibitive, as their complements are dense graphs. However, as in
this case, the third term do not significantly increase the value of D, it can be avoided without losing precision.

After fixing w3 = 0.1, we perform a third experiment varying w1 and w2. The relation between w1 and w2 is linear,
and the choice of these values depends on the importance we want to give to global and local topological features.
We analyze the D values when varying w1 and w2, for all the cases of the classical models experiment, presented in
Fig. 3 of the main text. Supplementary Fig. 5 shows the average values of 1,000 runs for each pair of networks,
D(G,G′, (0.9 − w2), w2, 0.1). As is it possible to see, both terms are in the same order of magnitude, and in all
cases, the relative relationship between the networks do not present strong dependency on the weights selection. The
comparison of networks global (first term) and local (second term) features are highly important for having a precise
general measure. We consider, for the definition of D, these features as equally important. Nevertheless, if one needs
to emphasize the contribution of one of these features, the weights can be manipulated without losing the properties
discussed in this manuscript.
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Supplementary Figure 5: Weights analysis. Comparisons between all the following networks: ER, Regular, BA,
WS (max NND) and WS (min NND), considering D(G,G′, (0.9− w2), w2, 0.1).
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SUPPLEMENTARY NOTE 4. DISTANCE BETWEEN GRAPHS OF DIFFERENT SIZES

Given two graphs of different sizes (N < M), we briefly describe how to compute the dissimilarity between them.
The first term on the right-hand side of Equation (5) compares the distance distributions between them. It is easy

to see that both distributions are immersed in the same probability space.
The second term on the right-hand side of Equation (5) computes the NND difference value, a size independent

measure between the networks.
The third term compares alpha centrality measures. We simply add (M −N) zeros to the beginning of the smaller

probability distribution vector given by Equation 4. This approach is justified by the immersion of the smaller network
into a larger space by adding nodes with a zero centrality value. Regarding the comparisons of full graphs (analogously
empty graphs) the third term is the only capable to capture differences of them. For example, two full graphs of sizes
two (G2) and three (G3) the PDF associated with the alpha-centrality given by Equation 4 are given by the vectors:

Pα(G2) = (1/2, 1/2, 0) and Pα(Gc2) = (0, 0, 1)

Pα(G3) = (1/3, 1/3, 1/3, 0) and Pα(Gc3) = (0, 0, 0, 1).

We transform Pα(G2) and Pα(Gc2) by adding a zero value at the beginning of the probability distribution vectors:

Pα(G2) = (0, 1/2, 1/2, 0) and Pα(Gc2) = (0, 0, 0, 1)

and, in this way, the computation of the last term of the right-hand side of Equation (5) can be performed.
We include an experiment starting with a 10 nodes full graph (G10), then, we generate full graphs increasing the

number of nodes in 20%. Finally, we compute D against G10 and against the complete graph considering 1/3 of the
nodes GN/3. The metric is able to distinguish all pairs of graphs, increasing the distance to G10 as the graphs grow,
and presenting a constant distance against (GN/3), see Supplementary Fig. 6.

Supplementary Figure 6: Full graphs analysis. In this figure we compute the distance between each complete
graph against a complete graph with 10 nodes, and against a complete graph with a third of the nodes considered.
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SUPPLEMENTARY NOTE 5. COMPARISON OF ALGORITHMS FOR ISOMORPHISM AND
DISSIMILARITIES.

Supplementary Tables 1 and 2 depict the main algorithms and methods to detect graph isomorphism. In these tables
we briefly describe the methods and their major drawbacks. It is important do remark that [3] gives several classical
graph metrics but, all of them are considered in Supplementary Tables 1 and 2. Some measures are equivalent to the
Hamming distance in the sense that they consider the identification of the nodes. In particular, the Weight Distance,
counts the number of edges, not common in both graphs with a normalization factor that results in a measure between
0 and 1, a normalized version of the Hamming Distance. Other measures, contained in this reference, are based on
feature vector extraction and are included in the two first citations of Supplementary Table 2.

In order to generate a dataset for network comparisons we use nauty and Traces, programs for computing auto-
morphism groups of graphs and digraphs [4]. In particular, there is a suite of programs called gtools included in the
package that can, via geng, generate non-isomorphic graphs with a desired characteristics.

Supplementary Table 1: Exact graph methods comparisons

Type Description/Drawbacks Size

Independent

Metric Polynomial

time

References

Isomorphism
problem

Recently proved to be computed in quasi-polynomial
time (O(exp((logN)O(1))). The best previous bound was
exp(O(

√
N logN)). Binary answer.

Yes No No [5]

Distance metrics via
maximum common
subgraph

Associates a cost function after finding the maximum
common subgraph between two graphs. Time complex-
ity: O((N + 1)!).

Yes Yes No [6–8]

Graph Edit Distance Do not capture relevant topological differences. Graph
edit distance computation is equivalent to solving the
maximum common subgraph problem when used with
unlabeled nodes.

Yes Yes No [6, 9]

Hamming distance The time complexity is O(N2) for labeled nodes. For
unlabeled nodes the computation is equivalent to solving
the maximum common subgraph problem.

No Yes No [10]
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Supplementary Table 2: Heuristic comparisons. Column SI indicates if the method is size independent, Metric
if the dissimilarity value has metric properties, PT if the algorithm runs in polynomial time, N9 and N20 indicates

the number of non-distinguishable graphs over the exhaustively generated set of non-isomorphic graphs of size 9 and
20, as in [11–13] a, the symbol NT indicates that the method was not tested in this condition.

Type Description/Drawbacks SI Metric PT N9 N20 References
Eigenvalues (spectral
measures)

A network is represented as a vector
containing the eigenvalues of its ad-
jacency or Laplacian matrix. The
main drawback is the existence of
cospectral graphs having quite dif-
ferent topological structure.

No Yes Yes 51, 039 NT [14–16]

LBD, d-RW-
Dist, NetSimile,
NetSimile-SVM,
NetSimile-Dist

It is assigned for each network a fea-
ture vector of characteristics. The
runtime complexity for generating
vectors is linear on the number
of edges but, the algorithm’s time
complexity depends on which fea-
tures are considered when creating
the feature vector.

Yes Yes Feature

dependent

NT NT [17]

Graph Kernels Given by a kernel function that
computes an inner product on
graphs without having to do fea-
ture extraction. The information
lacks in expressiveness when trivial
features are considered. The well
known random walk kernel is not
precise and isomorphic networks
may be considered non-isomorphic.

Yes Yes Yes NT NT [18–22]

Balaban Index J The Balaban index J is a graph
index defined for a given dis-
tance matrix. The main drawback
consists in finding 9,476,268 non-
distinguishable networks of size 10.

No No Yes 165, 109 NT [12, 23]

Heuristic approach
combining graph’s
invariants

Use of discriminating numbers to
combine several different graph
measures that are computable in
polynomial time. The best esti-
mate gives 993 non-distinguishable
networks of size 9 (SI1p, SI1s and
SI1v).

No No Yes 993 NT [11]

Hosoya-Spectral in-
dices and the Hosoya
information content

The method can distinguish all
trees of size 18 but, fails in distin-
guishing networks of size 9. The
best estimate (HS2) gives 18 non-
distinguishable networks of size 9.

No No Yes 18 NT [13]

Dissimilarity D Highly discriminating but,
cannot guarantee the iso-
morphism condition. Can
distinguish all non-isomorphic
graphs of size 6, 7, 8, and 9.
For graphs with 20 nodes, can
distinguish all tested networks
in the worst cases: k-regular
connected graphs with degree
varying from 2 to 11. Can also
distinguish all non-isomorphic
trees with 20 and 21 nodes.

Yes Yes Yes 0 0 Proposed
is this
work

a Not all works have performed this massive experiment
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Supplementary Table 3: Dissimilarity values between classical models. Dissimilarity average values and
confidence intervals computed for each pair of networks shown in Fig. 3. The table is organized by increasing

averaged values. The confidence intervals are computed at 95% over 1, 000 independent experiments. Gray cells
within the same column indicate no statistical significance.

R WSMAX WSMIN ER BA
(k = 4) (max NND) (min NND) (p = 4/19) (m = 2)

ER WSMIN ER WSMIN WSMIN
0.060 0.102 0.007 0.007 0.301

(0.0551,0.0651) (0.0954,0.1087) (0.0062,0.0078) (0.0062,0.0078) (0.2952,0.3069)

WSMIN ER R R ER
0.061 0.103 0.060 0.061 0.304

(0.0564,0.0652) (0.0957,0.1103) (0.0564,0.0652) (0.0551,0.0651) (0.2972,0.3108)

WSMAX R WSMAX WSMAX R
0.116 0.116 0.102 0.103 0.345

(0.1131,0.1186) (0.1131,0.1186) (0.0954,0.1087) (0.0957,0.1103) (0.3422,0.3478)

BA BA BA BA WSMAX
0.345 0.352 0.301 0.304 0.352

(0.3422,0.3478) (0.3462,0.3578) (0.2952,0.3069) (0.2972,0.3108) (0.3462,0.3578)
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SUPPLEMENTARY NOTE 6. PERCOLATION

We perform the MC simulation for the Power Grid network. Results show that the susceptibility function of the
Power Grid network after 10,000 Monte Carlo simulations, contains a double phase transition characterized in lower(s)
thresholds, that does not coincide with the largest percolation strength, see Supplementary Figure 7.

Zoom

Supplementary Figure 7: Susceptibility analysis on the Power grid network. Susceptibility function of the
Power Grid network after 10,000 Monte Carlo simulations. It contains a double phase transition characterized by

lower(s) thresholds that does not coincide with the largest percolation strength. p
small(1)
c 8× 10−5 and

p
small(1)
c 6× 10−3.

The algorithm begins with two probabilities, β and α, respectively on the supercritical and subcritical phases, and
ε > 0, a precision value. For each bond probability (α and β), we generate s networks by the random removal of
an edge, independently, with probability equals one minus the bond probability. We then suppose that a network
representative of the subcritical (supercritical) regime α (β), Gα (Gβ) possesses distance distribution, NND, alpha
centrality and alpha centrality of its complement, given by the averaged values obtained by the s generated networks.

We then, compute the mean value of these probabilities pm = β−α
2 , and repeat the previous method to get a graph,

Gm, representative for the probability pm. If D(Gm, Gα) > D(Gm, Gβ) then β = pm else α = pm, when the distance



12

between β and α reaches the precision value (ε), the algorithm stops returning p̂c = (β−α)
2 .

It is important to observe that after I iteractions, the size of the resulting interval of search is (β−α)/2I and thus,
for example, for a precision value of ε = 0.01, α = 0 and β = 1 we just need to perform 7 iteractions.

The time complexity of the algorithm is O(sN3).
The values obtained in Table III in the main text were obtained considering α = 1/N , β = 1 and s = 100. When

compared with the MC simulation achieved, in average, 7 times faster. For the Power Grid network this algorithm
takes 5,600 seconds to achieve the value in Table III in the main text while the MC simulation takes, after 10,000
simulations for each p value approximately 35,000 seconds.
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SUPPLEMENTARY NOTE 7. EQUIVALENCE OF NULL MODELS: DK1, MS AND MR

The experiment consists in the following. We ran MR, MS increasing the number of rewiring per edge, and the
dk model (k=1), for real networks. The experiment in the main text, focus on the different dk models. In fact, the
use of the dissimilarity is a good method to detect the number of rewiring operations needed in the MS model. For
example, in the case of the Power Grid network Supplementary Fig. 8, MS requires 9 times the number of edges
rewiring operations to reach the same values of dk (k = 1), and MR null models. Similar results are found when
testing other real networks.

Supplementary Figure 8: Maslov-Sneppen rewiring analysis. Considering the Power grid network, the figure
shows the distance of Molloy-Reed, dk and Maslov-Sneppen null models to the Power Grid network. Blue circles

denote the distance of the MS model for different number rewiring operations.
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Supplementary Table 4: Dissimilarities between real networks and models. Dissimilarity between real-world
networks and four null models. From left to right we report the 95% CI interval results after 30 independent runs,
DS, Degree Sequence (MS, MR, and k=1.0) generates equivalent results, the last three columns are obtained using

the dk-model for k values (2.0, 2.1, 2.5). We use the Shapiro-Wilk test of normality in this data.

dk1 dk2.0 dk2.1 dk2.5
Astroph (0.2186,0.2198) (0.0825,0.0839) (0.0065,0.0099) (0.0063,0.0097)
Caida (0.0865,0.0869) (0.0815,0.0820) (0.0745,0.0758) (0.0471,0.0496)

Hypertext (0.0092,0.0163) (0.0013,0.0022) (0.0016,0.0024) (0.0017,0.0025)
Infectious (0.2160,0.2171) (0.1967,0.1973) (0.1520,0.1553) (0.1512,0.1539)
UC Irvine (0.0333,0.0360) (0.0234,0.0257) (0.0227,0.0240) (0.0217,0.0234)

Jazz (0.1086,0.1118) (0.0711,0.0724) (0.0179,0.0227) (0.0202,0.0249)
Karate (0.1024,0.1128) (0.1052,0.1146) (0.0685,0.0771) (0.0601,0.0683)
Lexical (0.0364,0.0445) (0.0153,0.0186) (0.0135,0.0167) (0.0133,0.0168)

Petster (C) (0.2679,0.2710) (0.1064,0.1094) (0.0467,0.0528) (0.0629,0.0681)
Petster (0.1541,0.1592) (0.0930,0.0943) (0.0889,0.0904) (0.0874,0.0891)
PGP (0.3002,0.3022) (0.2323,0.2346) (0.2273,0.2305) (0.1728,0.1770)

Power Grid (0.3817,0.3840) (0.3860,0.3883) (0.3888,0.3910) (0.3475,0.3498)
U. Rovirat (0.0895,0.0914) (0.0638,0.0655) (0.0738,0.0786) (0.0379,0.0409)

Yeast (0.1040,0.1076) (0.0799,0.0827) (0.0662,0.0704) (0.0468,0.0507)
Euroroad (0.2956,0.3011) (0.2604,0.2674) (0.2593,0.2646) (0.2499,0.2563)

Contiguous (0.2238,0.2321) (0.2031,0.2092) (0.1235,0.1521) (0.1152,0.1314)
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SUPPLEMENTARY NOTE 8. DESCRIPTION OF THE REAL DATASETS

All networks here presented are freely available at The Koblenz Network Collection [24]. The descriptions here
presented can also be found at the Koblenz website (http://konect.uni-koblenz.de/).

CAIDA: This is the undirected network of autonomous systems of the Internet connected with each other from the
CAIDA project, collected in 2007. Nodes are autonomous systems (AS), and edges denote communication [24, 25].
It contains 26, 475 nodes, 53, 381 edges, transitivity 0.007318732, average path length 3.875647 and diameter 17.

PGP: This is the interaction network of users of the Pretty Good Privacy (PGP) algorithm. The network contains
only the giant connected component of the network [24, 26]. It contains 10, 680 nodes, 24, 316 edges, transitivity
0.378024687, average path length 7.48554 and diameter 24.

ROVIRA: This is the email communication network at the University Rovira i Virgili in Tarragona in the south
of Catalonia in Spain. Nodes are users and each edge represents that at least one email was sent [24, 27]. It contains
1, 113 nodes, 5, 451 edges, transitivity 0.16625006, average path length 3.606032 and diameter 8.

IRVINE: This undirected network contains sent messages between the users of an online community of students
from the University of California, Irvine. A node represents a user and each edge represents that at least one email
was sent [24, 28]. It contains 1, 899 nodes, 59, 835 edges, transitivity 0.0568303, average path length 3.0551636 and
diameter 8.

JAZZ: This is the collaboration network between Jazz musicians. Each node is a Jazz musician and an edge
denotes that two musicians have played together in a band [24, 29]. It contains 198 nodes, 2742 edges, transitivity
0.5202593, average path length 2.2350408 and diameter 6.

KARATE: This is the well-known Zachary karate club network. The data was collected from the members of
a university karate club by Wayne Zachary in 1977. Each node represents a member of the club, and each edge
represents a tie between two members of the club [24, 30]. It contains 34 nodes, 78 edges, transitivity 0.2556818,
average path length 2.4081996 and diameter 5.

HYPERTEXT: This is the network of face-to-face contacts of the attendees of the ACM Hypertext 2009 confer-
ence. In the network, a node represents a conference visitor, and an edge represents a face-to-face contact that was
active for at least 20 seconds. The network is considered unweighted [24, 31]. It contains 113 nodes, 2, 196 edges,
transitivity 0.4952046, average path length 1.6562895 and diameter 3.

INFECTIOUS: This network describes the face-to-face behavior of people during the exhibition INFECTIOUS:
STAY AWAY in 2009 at the Science Gallery in Dublin. Nodes represent exhibition visitors; edges represent face-to-
face contacts that were active for at least 20 seconds. The network contains the data from the day with the most
interactions and is considered undirected and unweighted [24, 31]. It contains 410 nodes, 2, 765 edges, transitivity
0.4356933, average path length 3.6308546 and diameter 9.

CONTIGUOUS: These are the 48 contiguous states and the District of Columbia of the United States of America
(the USA). They include all states except the states of Alaska and Hawaii, which are not connected by land with the
other states, and include the District of Columbia (DC). An edge denotes that two states share a border. The US
states in the configuration given by this dataset exist since February 14, 1912, when Arizona was admitted as the
48th state, and is current as of 2014. The states of Alaska and Hawaii were admitted as the 49th and 50th states in
1959, but are not contiguous with the other states, and are not reflected in this dataset [24, 32]. It contains 49 nodes,
107 edges, transitivity 0.4061758, average path length 4.1632653 and diameter 11.

EUROROAD: This is the international E-road network, a road network located mostly in Europe. The network is
undirected; nodes represent cities and an edge between two nodes denotes that they are connected by an E-road [24, 33].
It contains 1, 174 nodes, 1, 417 edges, transitivity 0.03388634, average path length 18.37129 and diameter 62.

POWER GRID: This undirected network contains information about the power grid of the Western States of
the United States of America. An edge represents a power supply line. A node is either a generator, a transformator
or a substation [24, 34]. It contains 4, 941 nodes, 6, 594 edges, transitivity 0.1031532, average path length 18.9891854
and diameter 46.

LEXICAL: This is the undirected network of common noun and adjective adjacencies for the novel “David Cop-
perfield” by English 19th century writer Charles Dickens. A node represents either a noun or an adjective. An edge
connects two words that occur in adjacent positions. The network is not bipartite, i.e., there are edges connecting
adjectives with adjectives, nouns with nouns and adjectives with nouns [24, 35]. It contains 112 nodes, 425 edges,
transitivity 0.156935, average path length 2.535553 and diameter 5.

YEAST: This undirected network contains protein interactions contained in yeast. A node represents a protein
and an edge represents a metabolic interaction between two proteins [24, 36]. It contains 1, 846 nodes, 2, 203 edges,
transitivity 0.0550095, average path length 6.81030 and diameter 19.
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PETSTER (C): This Network contains friendships and family links between users of the website hamster-
ster.com [24]. It contains 2, 426 nodes, 16, 631 edges, transitivity 0.2314317, average path length 3.588250 and diameter
10.

PETSTER: This Network contains the giant connected component of the friendships and family links between
users of the website hamsterster.com [24]. It contains 1, 858 nodes, 12, 534 edges, transitivity 0.09040339, average
path length 3.452511 and diameter 14.

ASTROPH: This is the collaboration graph of authors of scientific papers from the arXiv’s Astrophysics (astro-ph)
section. An edge between two authors represents a common publication [24, 25]. It contains 18, 771 nodes, 198, 050
edges, transitivity 0.3180016, average path length 4.193988 and diameter 14.
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SUPPLEMENTARY NOTE 9. THE POWER GRID AND EUROROAD NETWORKS: THE FBM
EXPERIMENT

We generate 10 fractional Brownian motion (fBm) time series and construct the corresponding networks via the
HVG algorithm, for different Hurst exponent (H). fBm networks posses the same size of the Power Grid and Euroroad
networks. We then compute D values between the generated networks, and the Power Grid and Euroroad networks.
Supplementary Table 5 depicts the averaged results.

Supplementary Table 5: Power Grid and Euroroad networks. Averaged dissimilarity values between fBm
networks and infrastructure networks, considering different Hurst exponent values.

h = 0.10 h = 0.11 h = 0.12 h = 0.13 h = 0.14
Power Grid 0.0859 0.0811 0.0902 0.0851 0.0785
Euroroad 0.2631 0.2343 0.2067 0.2301 0.2568



18

Supplementary Figure 9: Brain application results with Hamming distance. Results considering the
methodology described in the main text, but using the Hamming distance instead of the D-measure.
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