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Supplementary Figure 1. Localization of Wannier-Stark resonance states. The figure

shows the propability density |Ψ0,0(x)|2 for the Wannier-Stark resonance state in the lowest ladder

α = 0 for different values of the lattice depth V0 and the external field strength F . a-c, The

localization of the Wannier-Stark resonance states increases with the lattice depth, shown for a,

V0/ER = 1, b, V0/ER = 2 and c, V0/ER = 4. The field strength is dF/ER = 0.25. d-f, The

localization of the Wannier-Stark resonance states also increases with the strength of the external

field or acceleration, shown for d, dF/ER = 0.125, e, dF/ER = 0.25 and f, V0/ER = 0.5. The

lattice depth is V0/ER = 2 and ER = ~2π2/2md2 denotes the recoil energy of the lattice photons.
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Supplementary Figure 2
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Supplementary Figure 2. Scaling of Wannier-Stark interaction terms with the lattice

depth. The interaction term in the Wannier-Stark basis is determined by the overlap intergrals

χk,ℓ;m,n =
∫
Ψ∗

0,k(x)Ψ
∗
0,ℓ(x)Ψ0,m(x)Ψ0,n(x) dx. a, Scaling of the magnitude of the overlap integrals

with the lattice depth V0. For a sufficiently deep lattice the terms χ0,0;0,0, χ0,0;0,+1 and χ0,0;0,−1.

dominate. All other overlaps are significantly smaller and are neglected in the current analysis.

b, We use that Im(χ0,0;0,±1) ≈ 0 (dashed lines) and χ0,0;0,+1 ≈ −χ0,0;0,−1 (solid lines). The field

strength is given by dF/ER = 0.4 and ER = ~2π2/2md2 denotes the recoil energy of the lattice

photons.
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Supplementary Figure 3
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Supplementary Figure 3. Wannier-Stark resonances in momentum space. A Wannier-

Stark resonance state |Ψ0,0(k)|2 (thick blue line) and the atom density ρ(k, 0) (thin black line) for

a homogeneous BEC with cj = 1/
√
L for j = 1, . . . L. Parameters are V0/ER = 2, dF/ER = 0.25

and L = 4.
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Supplementary Figure 4
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Supplementary Figure 4. Eigenvalues of the Bogoliubov-de Gennes operator for

global coupling. The eigenvalues of the Bogoliubov-de Gennes operator L̄ indicate the stability

of a Bose-Einstein condensate: The imaginary part gives the growth rate of quantum fluctuations

in the respective mode. In the limit of many globally coupled oscillators (L → ∞), for which the

quantum dynamics of the oscillators decouples and the eigenvalues essentially depend on the ratio

of the natural frequency ω − ω̄ and the order parameter Kr. Shown is a, the real and b, the

imaginary part of the eigenvalues for Uν = 0 (—) and Uν = Kr (−−−).
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Supplementary Note 1

Equivalence to the longitudinal Lipkin-Meshkov-Glick model

We study quantum signatures of synchronization for the many-body Hamiltonian

Ĥ =
L∑

j=1

ωj â
†
j âj +

U

2
â†2j â

2
j + Ĥs (1)

Ĥs =
L∑

j,ℓ=1

K̃j,ℓ

8

[
i(â†j âℓ − â†ℓâj)(â

†
j âj − â†ℓâℓ) + h.c.

]
.

For L = 2 oscillators, this Hamiltonian describes the Lipkin-Meshkov-Glick (LMG) model

with a longitudinal external field as we show in the following. The LMG model was originally

introduced to analyze shape transitions of atomic nuclei [1]. By now, it is a standard model

in statistical physics for the study of quantum phase transitions and the quantum-to-classical

correspondence [2]. The LMG model describes N indistinguishable particles with 2 internal

states, e.g. N hadronic spins or N two-level atoms. The particles interact symmetrically

with each other and with an external magnetic field h. The Hamiltonian in its most general

form is then given by

Ĥ = 1
N
(λxŜ

2
x + λyŜ

2
y) + hxŜx + hyŜy + hzŜz . (2)

The Ŝx,y,z are the collective spin operators, which form an angular momentum operator with

quantum number N/2,

[Ŝa, Ŝb] = iϵabcŜc,

Ŝ2
x + Ŝ2

y + Ŝ2
z =

N

2

(
N

2
+ 1

)
, (3)

where ϵabc is the totally anti-symmetric tensor.

Traditionally, the case of a purely transversal field (hx,y = 0) has received the most

interest. However, a longitudinal field arises naturally in many quantum-optical realizations

of the LMG model [3–5]. We consider the case that λx and λy have opposite signs and rotate

the coordinate system according to

Ŝx = cos(θ)Ŝ ′
x + sin(θ)Ŝ ′

y (4)

Ŝy = − sin(θ)Ŝ ′
x + cos(θ)Ŝ ′

y (5)
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with tan(θ) =
√

−λy/λx. The LMG Hamiltonian then reads

H ′ =
λx cos(θ)

2 + λy sin(θ)
2

N
Ŝ ′2
x

+
(λx − λy) cos(θ) sin(θ)

N
(Ŝ ′

xŜ
′
y + Ŝ ′

yŜ
′
x)

+ (hx cos(θ)− hy sin(θ))Ŝ
′
x

+ (hx sin(θ) + hy cos(θ))Ŝ
′
y + hzŜz (6)

up to a constant. Tuning the external field such that

hx sin(θ) + hy cos(θ) = 0

hz = 0, (7)

and introducing the mapping

K̃=
(λx − λy) cos(θ) sin(θ)

N

ω= hx cos(θ)− hy sin(θ)

U=
λx cos(θ)

2 + λy sin(θ)
2

N
, (8)

the LMG Hamiltonian reads

H ′ = ωŜ ′
x + UŜ ′2

x + K̃(Ŝ ′
xŜ

′
y + Ŝ ′

yŜ
′
x). (9)

Now we can use the fact that the collective spin operators can be represented in terms of

bosonic creation and annihilation operators as

Ŝ ′
x =

1

2

(
â†2â2 − â†1â1

)
,

Ŝ ′
y =

i

2

(
â†2â1 − â†1â2

)
Ŝ ′
z =

1

2

(
â†2â1 + â†1â2

)
. (10)

Using this mapping and the relation (3), it is then easy to see that the LMG Hamiltonian

equals the Hamiltonian (2) with L = 2 oscillators up to a constant

H ′ =
ω

2

(
â†2â2 − â†1â1

)
+
U

2

(
â†22 â

2
2 + â†21 â

2
1

)
+
K̃

4

[
i(â†2â1 − â†1â2)(â

†
2â2 − â†1â1) + h.c.

]
. (11)
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Supplementary Note 2

Synchronization for cold atoms in tilted optical lattices

We demonstrate how the quantum synchronization Hamiltonian arises for cold bosonic

atoms in tilted optical lattices. The quantum dynamics of the atoms in the lattice potential

is described by the second-quantized Hamiltonian

Ĥ =

∫
ψ̂†(x)Ĥ1ψ̂(x) dx+

U0

2

∫
ψ̂†(x)ψ̂†(x)ψ̂(x)ψ̂(x) dx, (12)

where ψ̂(x, t) is the bosonic field operator and we use the s-wave scattering approximation

[6]. We consider a tilted or accelerated one-dimensional optical lattice, such that the single-

particle Hamiltonian reads

Ĥ1 = − ~2

2m

∂2

∂x2
+ V (x) (13)

with

V (x) = V0 cos(2πx/d) + Fx, (14)

where d is the lattice period. The one-dimensional limit can be realized by a tight confine-

ment of the atoms in the radial directions, while the external field F can be realized by

accelerating the entire lattice (see, e.g. [7]), by gravity or by magnetic gradient fields (see,

e.g. [8, 9]). Alternatively, such a system is realized for the propagation of light beams in

modulated photonic lattices, where the index of refraction is periodically modulated [10, 11].

The dynamics can be understood by expanding the field operators into the eigenstates

of the single-particle Hamiltonian Ĥ1, the so-called Wannier-Stark resonance states [12, 13].

The linear system has a fundamental symmetry, it is invariant under a combined translation

by the lattice period d and a shift of the energy by dF . The eigenstates are therefore

organized in ladders,

Ψα,n(x) = Ψα,0(x− dn),

Eα,n = Eα,0 + dFn, (15)

where Ψ is the wave function and E the energy of the eigenstates. Each ladder α = 0, 1, 2, . . .

roughly corresponds to one Bloch band in the field-free case and n ∈ Z labels the rung of

the ladder. The fundamental time scale of the system is determined by the energy distance

7



of the rungs Eα,n+1 − Eα,n = dF . In the non-interacting limit this gives rise to a periodic

motion, the Bloch oscillations [7, 12–18] with the frequency ωB = dF/~.

If the external field is not too strong, Landau-Zener tunneling between the bands can be

neglected and the dynamics takes place in the ground ladder α = 0 only [19]. Plugging the

expansion of the field operator into the Wannier-Stark resonance states

ψ̂(x) =
+∞∑

n=−∞

b̂nΨ0,n(x) (16)

into equation (12) then yields the Hamiltonian

Ĥ = ~ωB

+∞∑
n=−∞

n b̂†nb̂n +
U0

2

∑
kℓmn

χk,ℓ;m,nb̂
†
kb̂

†
ℓ b̂mb̂n (17)

with the overlap integrals

χk,ℓ;m,n =

∫ +∞

−∞
Ψ∗

0,k(x)Ψ
∗
0,ℓ(x)Ψ0,m(x)Ψ0,n(x) dx. (18)

We note that this expansion is different from the one based on the Wannier functions which is

commonly used in the analysis of the field-free case F = 0 [6]. Wannier functions are strongly

localized in one well of the lattice such that nonlinear coupling terms between the different

wells can be neglected. However, Wannier functions are no eigenstates such that there is a

linear coupling term describing single-particle tunneling between adjacent wells. Wannier-

Stark functions are much better suited for tilted or accelerated lattices: The periodicity of

the single-particle dynamics becomes apparent and the effects of the nonlinearity can be

analyzed rather directly [9, 20, 21].

The many-body-quantum dynamics described by the Hamiltonian (17) depends crucially

on the overlap of the Wannier-Stark resonance states (18). A remarkable property of these

states is their localization in real space, which increases with the lattice depth and the

field strength. Therefore, several approximations can be made which greatly reduce the

complexity of the interaction terms in the Hamiltonian (17). By definition, we have the

permutational invariance

χk,ℓ;m,n = χℓ,k;m,n = χk,ℓ;n,m ,

χk,ℓ;m,n = χ∗
m,n;k,ℓ . (19)

Furthermore, we note that

χk,ℓ;m,n = χ0,ℓ−k;m−k,n−k = χk−m,ℓ−m;0,n−m (20)

8



due to the translational symmetry of the Wannier-Stark states. For a sufficiently deep lattice,

only the on-site coupling and the coupling between nearest neighbor states are strong due

to the strong localization of the Wannier-Stark states (cf. Supplementary Fig. 2 and [20]).

Furthermore we find that

Im(χn,n;n,n+1), Im(χn,n;n,n−1) ≈ 0,

χn,n;n,n+1 = χ0,0;0,+1 ≈ −χn,n;n,n−1 = −χ0,0;0,−1 .

Using these approximation and neglecting all other interaction terms, the Hamiltonian (17)

reduces to

Ĥ = ~ωB

+∞∑
n=−∞

n b̂†nb̂n +
U0

2
χ0,0;0,0

+∞∑
n=−∞

b̂†nb̂
†
nb̂nb̂n

+U0χ0,0;0,1

+∞∑
n=−∞

(
b̂†nb̂

†
nb̂nb̂n+1 − b̂†nb̂

†
nb̂nb̂n−1

+ b̂†nb̂
†
n+1b̂nb̂n − b̂†nb̂

†
n−1b̂nb̂n

)
. (21)

Shifting the phase of each mode by a constant factor,

b̂n = einπ/2ân (22)

we finally obtain the quantum synchronization Hamiltonian as discussed in our paper,

Ĥ = ~ωB

∑
n

n â†nân +
U

2

∑
n

â†nâ
†
nânân

+
K̃

8

∑
n

[
i(â†n+1â

†
n − â†nân+1)(â

†
n+1ân+1 − â†nân) + h.c.

]
(23)

with U = U0 × χ0,0;0,0 and K̃ = 4U0 × χ0,0;0,1. We note that the phase shift (22) has no

implications for the physics described by the model. It has been introduced only for the sake

of notational convenience, to allow for a better comparability with the established Kuramoto

model.

In the paper we consider the dynamics of an initially pure Bose-Einstein condensate, i.e.

a product state where all bosonic atoms are in the same single-partice quantum state

|BEC⟩ = 1√
N !

(
L∑

j=1

cj b̂
†
j

)N

|0⟩.

=
1√
N !

(
L∑

j=1

e−ijπ/2cj â
†
j

)N

|0⟩. (24)

9



In particular, we consider a condensate which is initally at rest, i.e. has homogeneous phases,

and is widely distributed in space such that cj = 1/
√
L for j = 1, . . . , L.

In experiments with ultracold atoms one commonly measures the momentum space den-

sity ρ(k, t) = ⟨ψ̂†(k)ψ̂(k)⟩ using the time-of-flight technique. Using the expansion (16) and

the translational symmetry of the Wannier-Stark states

Ψα,n(x) = Ψα,0(x− dn)

⇒ Ψα,n(k) = e−inkdΨα,0(k) (25)

the momentum density reads

ρ(k, t) = |Ψ0,0(k)|2
∑
n,ℓ

e−i(n−ℓ)kd⟨b̂†ℓ b̂n⟩t

= |Ψ0,0(k)|2
∑
n,ℓ

e−i(n−ℓ)kdei(n−ℓ)π/2⟨â†ℓân⟩t . (26)

The long-time evolution of the quantum many-body system is thus determined by the co-

herences ⟨â†ℓân⟩t. As shown in our paper, synchronization can induce long-time coherence.

To understand how this manifests in laboratory experiments, we briefly review the dynamics

for K = 0 in the following.

In the linear case U = K = 0 the coherences evolve as

⟨b̂†ℓ b̂n⟩t = e−i(n−ℓ)ωBt⟨b̂†ℓ b̂n⟩0 (27)

which can be directly seen from integrating the Heisenberg equation,

d

dt
b̂n =

i

~
[Ĥ, b̂n] = −iωBn b̂n. (28)

Hence, the momentum space density of the atoms is given by

ρ(k, t) = |Ψ0,0(k)|2
∑
n,ℓ

e−i(n−ℓ)(kd−ωBt)⟨b̂†ℓ b̂n⟩0. (29)

In this formulation one can directly see that the quantum dynamics is fully periodic, which

is commonly referred to as Bloch oscillations [7, 12–18]. If t is an integer multiple of the

Bloch time TB = 2π/ωb, we have e−i(n−ℓ)ωBt = 1 such that

ρ(k, t = mTB) = ρ(k, 0) ∀m ∈ Z. (30)

10



For an initially pure BEC (24), the coherences of this state are simply given by ⟨b̂†ℓ b̂n⟩0 =

Nc∗ℓcn such that the momentum density (29) can be further simplified to

ρ(k, t) = |Ψ0,0(k)|2 × |C̃(kd+ ωBt)|2, (31)

where C̃ denotes the discrete Fourier transform of the amplitudes cn:

C̃(y) =
L∑

j=1

cje
−ijy. (32)

If the BEC is initially distributed widely distributed in space, then the Fourier transform

|C̃|2 is a ‘comb’ function, i.e. a periodic arrangement of sharp peaks. Hence we obtain

a particular simple picture of Bloch oscillations in momentum space: A comb function is

moving under the envelope given by |Ψ0,0(k)|2 (cf. Supplementary Fig. 3).

In the regime of strong on-site interaction U and no coupling K = 0, all non-diagonal

coherences tend to zero, ⟨b̂†ℓ b̂n⟩ → 0 for ℓ ̸= n [20, 22–24], and the momentum density reads

ρ(k, t) → |Ψ0,0(k)|2
L∑

n=1

⟨b̂†nb̂n⟩ = N |Ψ0,0(k)|2. (33)

Revivals are possible in finite systems for longer time scales. The Wannier-Stark resonance

state Ψ0,0(k) roughly extends over the first Brillouin zone k ∈ [−π/d,+π/d] (cf. Supple-

mentary Fig. 3). Strong on-site interactions thus lead to a delocalization of ρ(k, t) over the

entire first Brillouin zone. A localization in momentum space thus indicates the presence of

persistent quantum correlations, which emerge due to classical synchronization, as discussed

in the paper.

11



Supplementary Note 3

The mean-field limit

The mean-field equations of motion for the amplitudes cℓ = ⟨âℓ⟩ are most easily derived

from the Heisenberg equation
d

dt
ân =

i

~
[Ĥ, ân] (34)

with the Hamiltonian

Ĥ =
L∑

j=1

ωj â
†
j âj +

U

2
â†2j â

2
j + Ĥs , (35)

Ĥs =
L∑

j,ℓ=1

K̃j,ℓ

8

[
i(â†j âℓ − â†ℓâj)(â

†
j âj − â†ℓâℓ) + h.c.

]
.

Throughout this paper we use scaled units with ~ = 1, thus measuring energy in units of

frequency. The relevant commutators can be evaluated in a straightforward way with the

result

[ân, â
†
j âj] = δn,j ân (36)

[ân, â
†2
j â

2
j ] = 2δn,j â

†
nâ

2
n (37)

[ân, â
†
j âℓâ

†
j âj] = 2δn,j â

†
nânâj (38)

[ân, â
†
j âℓâ

†
ℓâℓ] = (1− δn,j)â

†
ℓâ

2
ℓ + (1− δn,ℓ)â

†
j â

2
ℓ + δn,j âℓ (39)

such that we obtain

i
d

dt
ân = ωnân + Uâ†nâ

2
n +

L∑
j=1

K̃nj

2i
(â†j â

2
n + â†j â

2
j − 2â†nânâj). (40)

Taking the expectation value on both sides of the equation then yields

i
d

dt
⟨ân⟩ = ωn⟨ân⟩+ U⟨â†nâ2n⟩

+
L∑

j=1

K̃nj

2i
(⟨â†j â2n⟩+ ⟨â†j â2j⟩ − 2⟨â†nânâj⟩) (41)

This equation includes the three point functions of the form ⟨â†j âkâℓ⟩ on the right-hand side.

This is a general feature of quantum many-body system: The Heisenberg equations induce

an infinite hierarchy of coupled equations for the expectation values. To obtain a closed set
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of equations we must truncate this hierarchy at some point by approximating the three-point

functions in terms of one-point functions

⟨â†j âkâℓ⟩ ≈ ⟨â†j⟩ ⟨âk⟩ ⟨âℓ⟩ = c∗jckcℓ, (42)

where the asterisk denotes complex conjugation. The truncation is generally valid for Bose-

Einstein condensates with a high number of particles, as the error vanishes as 1/N . A

discussion of the validity of this truncation and other approaches can be found in [25] and

the references therein. We finally arrive at the mean-field equations of motion,

i
dcn
dt

= ωncn + U |cn|2cn +
L∑

j=1

K̃nj

2i
(c∗jc

2
n + |cj|2cj − 2|cn|2cj). (43)

For further analysis we decompose the complex numbers cn into amplitude and phase

cn = |cn|e−iϕn , (44)

that is,

|cn| = (c∗ncn)
1/2 and ϕn = − arctan

(
Im(cn)

Re(cn)

)
. (45)

Within the mean-field approximation, the squared modulus |cn|2 corresponds to the number

of excitations or atoms per mode, respectively:

|cn|2 = ⟨â†n⟩ ⟨ân⟩ ≈ ⟨â†nân⟩. (46)

The equations of motion for the amplitudes and phases are then derived from equation (43),

which leads to

d

dt
|cn|2 = −

L∑
j=1

K̃nj(|cj|2 − |cn|2)|cj||cn| cos(ϕn − ϕj) (47)

d

dt
ϕn = ωn + U |cn|2 +

L∑
j=1

K̃nj

2

|cj|
|cn|

(3|cn|2 − |cj|2) sin(ϕj − ϕn). (48)

The first line shows that the amplitudes remains constant if all have the same value

d

dt
|cn|2 ≡ 0 if |cj|2 = |cn|2 ∀ j, n = 1, . . . , L. (49)

Denoting the total number of excitations as

N =
L∑

ℓ=1

|cℓ|2 (50)
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we thus find that the toric manifolds

TN =
{
c ∈ CL

∣∣ |cℓ|2 = N/L ∀ℓ = 1 . . . , L
}

(51)

are invariant under the flow generated by the equations (43). On a torus with a given number

of excitations N only the phases evolve according to equation

dϕn

dt
= ωn + U

N

L
+

L∑
j=1

Knj sin(ϕj − ϕn), (52)

where Knj = NK̃nj/L. This exactly constitutes the celebrated Kuramoto model [26–28].
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Supplementary Note 4

Beyond mean-field

The dynamics of quantum fluctuations beyond mean-field and the depletion of the conden-

sate mode can be analyzed in a Bogoliubov-de Gennes approach. To this end we decompose

the bosonic annihilation operators into the condensate mode cn and the remaining quantum

fluctuations, described by the operator b̂n. Together, this gives the ansatz:

ân = cn + b̂n . (53)

Assuming an almost pure condensate with N atoms, cn is of order
√
N while the fluctuations

b̂n are of order 1. In the mean-field limit one furthermore assumes that N → ∞, while the

macroscopic interaction strength UN/L = g and NK̃jℓ/L = Kjℓ tend to a constant value.

We can thus insert the ansatz (53) into the Heisenberg equations of motion (41) and sort

the equation according to the order of the atom number N . To leading order N1/2 one

recovers the mean-field equations of motion (43). In next to leading order one obtains the

Bogoliubov-de Gennes equations

i
d

dt

b̂n
b̂†n

 =
L∑

j=1

 ζnj ηnj

−η∗nj −ζ∗nj


︸ ︷︷ ︸

=:Lnj

b̂j
b̂†j

 (54)

with the matrix elements

ζnj = −iK̃nj(|cj|2 − |cn|2) + δnj

[
ωn + 2U |cn|2 − i

L∑
ℓ=1

K̃nℓ(c
∗
ℓcn − c∗ncℓ)

]
(55)

ηnj = − i

2
K̃nj(c

2
j + c2n) + δnj

[
Uc2n + i

L∑
ℓ=1

K̃nℓcncℓ

]
. (56)

On the Kuramoto manifold we have cn =
√
N/Le−iϕn and the matrix elements simplify

to

ζnj = δnj

[
ωn + 2

UN

L
+ 2

∑
ℓ

Knℓ sin(ϕℓ − ϕn)

]
ηnj = − i

2
Knj

(
e−2iϕn + e−2iϕj

)
+ δnj

[
UN

L
e−2iϕn + i

∑
ℓ

Knℓe
−i(ϕn+ϕℓ)

]
. (57)
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Now the main question is whether this equation is dynamically stable or not, i.e. whether the

quantum fluctuations remain bounded or grow exponentially. If the Bogoliubov-de Gennes

operator

L =


L11 L12 . . .

L21 L22 . . .
...

...
. . .

 (58)

is time-independent, this can be directly read of from its eigenvalues λ1,...,2N . If all eigenvalues

are real, then the condensate is stable and the number of non-condensed atoms can grow only

slowly. If an eigenvalue becomes complex with Im(λn) > 0 then the Bogoliubov-de Gennes

equations predict an exponential growth of the associated eigenmode. The condensate is

dynamically unstable and number fluctuations typically become very large. If L is explicitly

time-dependent, more care has to be taken. The Bogoliubov-de Gennes equation (54) can

be formally solved as b̂1(t)
...

 = T̂ e−i
∫ t
0 L(t′)dt′

b̂1(0)
...

 , (59)

where T̂ denotes time ordering. We are particularly interested in the case where the mean-

field dynamics is periodic with period T . Then we can define a time-averaged Bogoliubov-de

Gennes operator L̄ as

e−iL̄T = T̂ e−i
∫ T
0 L(t′)dt′ (60)

Using this definition we obtain the same condition for dynamical instability as in the time-

independent case: The condensate is stable if all eigenvalues of L̄ are real, it becomes

unstable if an eigenvalue becomes complex with Im(λn) > 0. We note that in this case the

real parts of the eigenvalues are defined only modulo 2π/T .

The Kuramoto model was originally introduced and solved for the case of many glob-

ally connected oscillators [26]. In this case we can analytically estimate the eigenvalues

of the Bogoliubov-de Gennes operator and thus derive criteria for the growth of quantum

fluctuations in the quantum Kuramoto model. So we consider the globally connected case

Knj = K/L on the Kuramoto manifold in the limit of many coupled oscillators L→ ∞ with

a fixed density ν = N/L and define the Kuramoto phase order parameter

reiγ =
1

L

L∑
ℓ=1

eiϕℓ . (61)
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In the generic case the oscillators relax to a steady state with a fixed value of r. The global

phase γ is also constant in time if we transform to an appropriate co-rotating frame of

reference,

cn → cne
−iΩt ⇒ ϕn → ϕn + Ωt

b̂n → b̂ne
−iΩt (62)

where Ω is given by the mean frequency of the oscillators,

Ω =
1

L

N∑
ℓ=1

ωℓ + Uν = ω̄ + Uν. (63)

The mean-field equations of motion on the Kuramoto manifold the read

dϕn

dt
= ωn + Uν − Ω +Kr sin(γ − ϕn), (64)

and the coefficients of the Bogoliubov-de Gennes operator (56) can be simplified to

ζnj = δnj (ωn − Ω + 2Uν + 2Kr sin(γ − ϕn))

ηnj = δnj
(
Uνe−2iϕn + iKre−i(ϕn+γ)

)
− iK

2L

(
e−2iϕn + e−2iϕj

)
. (65)

We observe that in the limit L → ∞ all off-diagonal elements of η vanish as L−1 such

that both ζ and η become diagonal. Thus the the Bogoliubov-de Gennes equation for the

individual oscillators decouple,

i
d

dt

b̂n
b̂†n

 = Lnn

b̂n
b̂†n

 , (66)

and we can analyze the stability of all oscillators separately. To evaluate the stability,

we have to distinguish between phase-locked and drifting oscillators. All oscillators with

|ωn + Uν − Ω| ≤ Kr are phase-locked, i.e. the phase ϕn assumes a fixed value given by the

equation

ωn + Uν − Ω +Kr sin(γ − ϕn) = 0. (67)

Thus the Bogoliubov-de Gennes operator Ln is time-independent with

|ζnn|2 = (ωn − Ω)2

|ηnn|2 = (Kr)2 − (Uν)2 − 2Uν(ωn − Ω)
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such that we can readily evaluate its eigenvalues with the result

λn,± = ±
√
|ζnn|2 − |ηnn|2 (68)

= ±
√
(ωn + Uν − Ω)2 − (Kr)2 . (69)

For all phase-locked oscillators with |ωn+Uν−Ω| < Kr this expression is purely imaginary,

such that quantum fluctuations grow. The growth rate tends to zero, Im(λn,±) → 0, on the

border of the phase-locking region at |ωn + Uν − Ω| = Kr.

Oscillators with |ωn +Uν −Ω| > Kr do not phase-lock but ‘drift’ around the unit cycle.

The mean-field dynamics is periodic such that we have to analyze the eigenvalues of the

averaged operator Lnn as discussed above. In this case the time-ordered integral in equation

(60) is evaluated numerically to obtain the eigenvalues λn,±. We observe a non-zero growth

rate in the immediate vicinity of the phase-locking region while λn,± becomes purely real for

all other drifting oscillators (cf. Supplementary Fig. 4).

We stress that a dynamical instability is possible only if the phase order parameter r does

not vanish. For r = 0 all oscillators are drifting according to ϕn(t) = (ωn + Uν − Ω)t and

the Bogoliubov-de Gennes operator reads

Lnn(t) =

 ωn − Ω + 2Uν ge−2i(ωn+Uν−Ω)t

−Uνe+2i(ωn+Uν−Ω)t −ωn + Ω− 2Uν

 . (70)

The off-diagonal contributions average out such that the eigenvalues of L̄nn are purely real.
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