
Supplementary Note 1. Machine learning in the context of this paper.

Machine learning1 as applied in this paper falls under the category of supervised learning
for regression. Given a vector of nf input variables x = (x1, x2, ..., xnf

), known as features,
and a vector of nt output variables y = (y1, y2, ..., ynt), known as targets, it attempts to
find a model f that relates the features and the targets as y = f(x). This can be defined
as the following optimization problem:

f = arg min
f∗

E[‖y− f ∗(x)‖2] (1)

where E indicates the expected value with respect to the distribution of the data. Since a
generic function approximator fa defined in terms of a series of parameters a is normally
used, the problem reduces to finding the parameters a of the function that solve the
optimization problem:

a = arg min
a∗

E[‖y− fa∗(x)‖2] (2)

In supervised learning for regression the parameters of the model are optimized based
on some training data, consisting of a series of ne training examples with associated values
for the features {x1,x2, ...,xne} and their corresponding target values {y1,y2, ...,yne}.
This allows approximately redefining the previous optimization problem in terms of the
training data as:

a = arg min
a∗

1

2ne

ne∑
i=1

‖yi − fa∗(xi)‖2 = arg min
a∗

J(a∗) (3)

where J(a) is known as the cost function. Any parameters of f that are not optimized in
this process are known as hyperparameters.

Once the optimal parameters a have been found, predictions for the targets can be
made using:

ypredicted = f(xmeasured) (4)

Different machine learning models allow f to take different analytical forms. Depending
on this, the model may be able to represent a narrow or a wide set of functions. This is
qualitatively defined in terms of capacity: the more flexible a model is, and the more non-
linearities it can represent, the larger is its capacity. Typically models with low capacity
tend to underfit the data, while models with large capacity tend to overfit the data.

In the case of the linear model, each of the nt targets are calculated as:

yi = ai0 +

nf∑
j=1

aijxj (5)

where aij are the parameters of the model. finding the optimal value for the parameters
is equivalent to the linear regression problem, which has an analytical solution.

The quadratic model is equivalent to the linear model with the difference that instead
of working directly with the input variables as features, auxiliary features are created
by calculating all possible products across the input variables up to second order. For
example, for an input vector

x = (x1, x2, x3), (6)

the following vector of auxiliary features would be used:

xaux = (1, x1, x2, x3, x
2
1, x

2
2, x

2
3, x1x2, x1x3, x2x3). (7)



Similarly, cubic or quartic models can be defined; the higher the degree of the polyno-
mial, the larger the capacity of the model.

The support vector regressor (SVR)2 model attempts to find a solution for each of the
nt targets calculated as:

yi = ai0 +
ne∑
j=1

aijk(x,xj) (8)

where the summation is performed across all the examples in the training set, aij are
parameters of the model, and k is a kernel function, in this case, a Gaussian kernel
defined as:

k(u,v) =
1√

(2πγ)nf
e−

1
2
γ‖u−v‖2 (9)

where γ is a hyperparameter of the model. While this method would in principle need
to store every single example in the training set to evaluate the function, in practice,
the training is performed in terms of two additional hyperparameters C and ε, finding a
solution for which aij is 0 for most of the training examples. The examples for which aij
is not zero are called the support vectors. For more information on the kernel functions,
the training and the hyperparameters, see reference2.

In the case of artificial neural networks (ANN)3, the model calculates the output in a
series of layers of the following kind:

xl+1 = φ(bl + Alxl) (10)

where xl is the vector with the variables at a given layer, xl+1, the values at the next
layer, Al, a matrix of parameters of size nl x nl+1, where nl and nl+1 are the number
of variables in the current layer and the next layer, respectively, and bl is a vector of
parameters with size nl+1. The selection of the activation function φ, which breaks the
linearity of the model, is treated as a hyperparameter. In this case we chose the widely
used rectified linear activation (ReLU) function:

φReLU(x) =

{
x if x ≥ 0
0 if x < 0

(11)

The input to the first layer x0 corresponds to the input features x, and the output of
the last layer xNl

corresponds to the targets y, where Nl is the number of layers in the
ANN. The activation function is removed for the last layer so the function can output
any real number. Intermediate layers calculating the internal variables xl are known as
hidden layers, and the number of variables used at each hidden layer is known as the
number of hidden cells per layer. Both the number of hidden layers and the number of
hidden cells per layer are hyperparameters of the model. By increasing these numbers the
capacity of the model increases. The effect of interleaving linear multiplications with the
rectified linear activation function provides an output that is linear on the inputs almost
everywhere, except for the points that are exactly at 0 for the rectified linear activations.
As a result, the ANN can be seen as a sophisticated piecewise function formed of a number
of linear regions that increases as the number of hidden layers and hidden cells increase4.

Training a neural network consists of finding the set of matrices Al and vectors bl that
solve the optimization problem for the training set. This is typically performed using
the iterative gradient descent technique where the derivative of the cost function with
respect to each parameter of the model is calculated and used to update the values of the
parameters in the direction opposite to the derivative, decreasing the value of the cost
function. In this work, we use a variation of this algorithm named AdaGrad5 for this
purpose. For more information on ANN, see reference3.



Supplementary Note 2. Details about the variables used for the prediction.

Fast shot-to-shot variables. We list here all of the fast shot-to-shot variable names
used as features for prediction, currently measured at 120 Hz at the Linac Coherent Light
Source (LCLS):

• ebeamCharge and ebeamDumpCharge: Electron beam charge measured at the ac-
celerators, and at the electron dump.

• ebeamEnergyBC1 and ebeamEnergyBC2 : Electron beam energy measured at each
of the two bunch compressors.

• ebeamPkCurrBC1 and ebeamPkCurrBC2 : Electron beam peak current measured
at each of the two bunch compressors.

• ebeamL3Energy : Electron beam energy measured after the third linear acceleration
stage.

• ebeamLTUPosX and ebeamLTUPosY : Horizontal and vertical electron beam posi-
tions at the Linac to Undulator (LTU) transport line.

• ebeamLTUAngX and ebeamLTUAngY : Horizontal and vertical electron beam angles
at the Linac to Undulator (LTU) transport line.

• ebeamLTU250 and ebeamLTU450 : Electron beam position in two dispersive regions
at the LTU transport line.

• ebeamUndPosX and ebeamUndPosY : Horizontal and vertical electron beam posi-
tions at the undulator.

• ebeamUndAngX and ebeamUndAngY : Horizontal and vertical electron beam angles
at the undulator.

• f 11 ENRC and f 12 ENRC : Redundant X-ray total energy measurements before
attenuation from two gas detectors.

• f 21 ENRC and f 22 ENRC : Redundant X-ray total energy measurements after
attenuation from two gas detectors.

• f 63 ENRC and f 64 ENRC : Redundant X-ray total energy measurements corrected
to be accurate for small signals (<0.5 mJ).

Slow EPICS variables. We list here typical slow environmental properties recorded as
Experimental Physics and Industrial Control System (EPICS)6 variables measured at 2
Hz at LCLS:

• Positions of translation stages involved in the control feedback loops.

• Voltages of power supplies involved in the control feedback loops.

• Strength of magnetic fields in the magnetic chicanes, and bending magnets.

• Nominal values for the amplitude and phases of the radiofrequency fields.

• Pressures from the vacuum systems.

• Temperatures at different stages.

• Calibration values inputted manually by operators.

• Status of beam blockers.



Support vector regressor Artificial neural network

C ε γ

Number of

hidden

layers

Number of

hidden cells

per layer

Batch

size

Training

steps

Single-pulse

photon energy
100 0.08 0.005 2 [10,5] 1000 5000

Single-pulse

spectrum
100 0.3 0.005 3 [50,50,20] 1000 5000

Double-pulse

delay
100 0.4 0.005 2 [50,10] 1000 2400

Double-pulse

photon energy
100 0.5 0.005 2 [20,5] 1000 2000

Supplementary Table 1. Hyperparameters of the models.



Untrained model 
y = f(x)

Targets

Features

Raw data

1. Pre-processing and 
data normalization

Remove:
-Low variance features

-Outlier events
-Low energy events

Fast and 
environmental 

diagnostics

Slow complex 
diagnostics

Training 
set

Targets

Features

2. Random split 
into subsets

Pre-processed 
data

Targets

Features

Targets

Features
Validation 

set

Targets

Features Test 
set

4. Choose 
hyperparameters

5. Train on features to 
predict targets for the 

training set

Trained model 
y = f(x)

Final model 
y = f(x)

Predicted 
targets

6. Predict for 
validation 
features

7. Compare

Validation 
error 

Repeat steps 4-7 systematically for different sets of 
hyperparameters to find the smallest possible 

validation error

9. Predict for 
test features

Predicted 
targets

10. Compare

Final model 
error 

8. Copy 
model

Supplementary Figure 1. Flow diagram of the training and testing process.
After pre-processing and normalizing the input dataset, it is divided into three groups:
the training set, the validation set, and the test set. Different models with different sets
of hyperparameters are trained on the training set, and used to predict the targets for

the validation set, allowing to obtain the validation error. Once the set of
hyperparameters that yield the smallest validation error is found, the final error of the

model is obtained by making predictions on the test set, which was kept isolated during
the previous stages. Datasets are shown in light brown. Features are shown in orange.

Targets are shown in blue. Models are shown in purple. Calculated errors in the
predictions are shown in red.



10

0

10

 R
e
si

d
u
a
l

o
f 

d
e
la

y
p
re

d
ic

ti
o
n
 (

fs
) a

Linear model

b

Quadratic model

10 0 10 20
Measured delay (fs)

10

0

10

 R
e
si

d
u
a
l

o
f 

d
e
la

y
p
re

d
ic

ti
o
n
 (

fs
) c

Support vector regressor

10 0 10 20
Measured delay (fs)

d

Artificial neural network

Supplementary Figure 2. Residuals of the models predicting the time delay.
Experimental points are shown in blue. The lines showing the perfect absence of

residuals are included for reference as black dashed lines. The residuals of the
predictions present clear non-linear correlations with respect to the time delay for the
linear and quadratic models. These non-linear correlations are greatly reduced for the

support vector regressor and practically disappear for the artificial neural network.



Supplementary References

1Murphy, K. P. Machine learning: a probabilistic perspective (MIT press, 2012).
2Smola, A. J. & Schölkopf, B. A tutorial on support vector regression. Stat. Comput. 14, 199–222 (2004).
3Cheng, B. & Titterington, D. M. Neural networks: a review from a statistical perspective. Stat. Sci. 9,

2–30 (1994).
4Montufar, G. F., Pascanu, R., Cho, K. & Bengio, Y. On the number of linear regions of deep neural

networks. In Advances in Neural Information Processing Systems, 2924–2932 (2014).
5Duchi, J., Hazan, E. & Singer, Y. Adaptive subgradient methods for online learning and stochastic

optimization. J. Mach. Learn. Res. 12, 2121–2159 (2011).
6Dalesio, L. R. et al. The experimental physics and industrial control system architecture: past, present,

and future. Nucl. Instr. Meth. Phys. Res. A 352, 179–184 (1994).


