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Supplementary Figures
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Supplementary Figure S1: Monte Carlo simulations. We present Monte Carlo simulations of

the fourth order spin correlations appearing in the expansion of χloc
2a and χloc

2b for nearest neighbors

in a three-dimensional classical Heisenberg model. The correlations for further neighbors are similar

in shape but successively smaller in amplitude. A small magnetic field is applied to stabilize the

symmetry breaking and a lattice size of 203 sites is used. Further neighbor correlations have similar

temperature dependence but decrease with increasing distance.
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Supplementary Discussion

Magnetic susceptibilities are defined in the expansion of the total magnetization Mtot in

terms of the uniform magnetic field H:

Mtot = Mtot,0(T ) + χuni
0 H + χuni

1 H2 + χuni
2 H3 + · · · , (S1)

where χuni
i is the uniform magnetic susceptibility of the i-th order. In terms of cumulants

we have

χuni
0 = β〈(Mtot − 〈Mtot〉)2〉 (S2)

χuni
1 = β2〈(Mtot − 〈Mtot〉)3〉 (S3)

χuni
2 ≈ β3〈(Mtot − 〈Mtot〉)4〉 (S4)

where β = 1/(kBT ), kB is the Boltzmann constant, and T is the temperature.

Based on the simple molecular field theory for an Ising spin S = 1/2, the total magneti-

zation Mtot is given as [23]

Mtot

NµB

= tanh

(
TCMtot

TNµB

+
µBH

kBT

)
, (S5)

where µB is the Bohr magneton. Just below TC we can expand in powers of M

χuni
0 ≈ Nµ2

B

(
1

kBTC

)(
1

2
|ε|−1

)
, (S6)

χuni
1 ≈ Nµ3
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)
, (S7)

χuni
2 ≈ Nµ4

B

(
1

kBTC

)3 (
5

72
|ε|−4

)
, (S8)

where ε = (T − TC)/TC. Just above the Curie Temperature, T & TC we obtain

χuni
0 ≈ Nµ2

B

(
1

kBTC

)
|ε|−1, (S9)

χuni
1 = 0, (S10)

χuni
2 ≈ Nµ4

B

(
1

kBTC

)3 (
−1

3
|ε|−4

)
. (S11)

The divergent behavior near, but not right at, TC in Fig 4b can be reproduced with Sup-

plementary Equations (S8) and (S11) (to obtain χuni
2 in Fig. 4b, one has to multiply by

−(kBTC)3 as we shall explain later).
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In order to explain the smearing of the divergence near TC, we have performed Monte

Carlo simulations. First we extend Kondo’s theory [13] for the AHE in ferromagnetic met-

als by including the short-range spin-spin correlations since they can be dominant as we

approach the critical point. The short-range spin-spin correlations, which are neglected in

Kondo’s theory, can dramatically change the behavior of the longitudinal resistance near TC

in ferromagnetic metal as discussed by Fisher and Langer [24].

Using the second Born approximation, but including the spin-spin correlations between

different sites, the magnetic susceptibilities χi can be generalized to quantities we shall

denote χloc
i . The superscript “loc” indicates that the magnetic susceptibilities depend not

just on on-site correlations, but on all local correlations of spins. After integration over the

Fermi surface only those up to a finite separation will contribute to the transport coefficients

as below:

χloc
0 =

N∑
n=1

ei(k′−k)(Rn−R1)〈(Mn − 〈Mn〉)(M1 − 〈M1〉)〉, (S12)

χloc
1 =

N∑
n=1

ei(k′−k)(Rn−R1)〈(Mn − 〈Mn〉)2(M1 − 〈M1〉)〉, (S13)

χloc
2a = 2c2

N∑
n=1

ei(k′−k)(Rn−R1)〈(Mn − 〈Mn〉)2(M2
1 − 〈M2

1 〉)〉, (S14)

χloc
2b = 2c2

N∑
n=1

ei(k′−k)(Rn−R1)〈(Mn − 〈Mn〉)(M2
n − 〈M2

n〉)(M1 − 〈M1〉)〉. (S15)

Here k and k′ are wave vectors of the conduction electron, and Rn is the position of the

n-th site. Mn is the magnetization of the localized electron of the n-th site, 〈Mn〉 is its

average value thermally averaged. The subscript of M1 is to emphasize that the expectation

value is for the moment on a single site 1. c2 is the material parameter, c2 = −1/2 for Ni.

As for χloc
2 , there are two terms, i.e., χloc

2a and χloc
2b . The difference between the two terms

originate from different pairings of linear and quadratic operators on the different sites, but

preserving the total order of 4. In the strictly local theory of Kondo [13], only one site was

involved, so there was just one term denoted r2.

For zero momentum transfer k − k′ = 0, χloc
2a in Supplementary Equation (S14) and χloc

2b

in Supplementary Equation (S15) near TC can be approximated as follows;

χloc
2a ≈ χloc

2b ≈ 2c2(kBTC)3χuni
2 ≡ χ′

2. (S16)
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It is this quantity χ′
2 that is plotted in Fig. 4b in the main text.

Note however that there is a finite momentum transfer (k − k′) in χloc
2a and χloc

2b , which

effectively reduces the summation over more than a few neighbors once they are integrated

over. This should cut off any divergence near TC in integrated quantities such as transport

coefficients, as it does for the longitudinal resistance near TC in ferromagnets, as discussed

by Fisher and Langer [24]. In Figure S1, we present Monte Carlo simulations of the fourth

order spin correlations appearing in the expansion of χloc
2a and χloc

2b for nearest neighbors in

a three-dimensional classical Heisenberg model. It is apparent that this result is in contrast

to the uniform nonlinear susceptibility χuni
2 in Fig. 4b which is summed to all distances

and should diverge in the limit of zero field. However, we note that it is very difficult to

fully reproduce the experimental results with our Monte Carlo simulations where we put the

cut-off distance by hand.
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