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Supplementary Figure S1: Detailed schematic of the experimental setup. Two tunable,

external cavity diode lasers (ECDL) are used as control laser beams used to drive the wavelength

conversion process. The wavelength of both lasers is monitored and locked to an absolute frequency

of better than ±5 MHz using a wavemeter (λ-meter). Both control beams can be amplitude mod-

ulated (a-m) using an RF signal generator (rf-sg), which produces the necessary optical sidebands

to perform EIT-like spectroscopy (see main text) and to generate the input signal for the wave-

length conversion process. An acousto-optic modulator (aom) is used to calibrate the input signal

(switching in the calibration signal with SW1). The light from both lasers are attenuated (VOA1,

VOA2) to the desired power, combined using a wavelength multiplexer (λ-mux), and then sent into

the dimpled optical fibre taper which is used to optically couple to the optomechanical crystal. The

optomechanical crystal sample and fibre taper are both located in a continuous-flow liquid helium

cryostat. Before entering the cryostat, the light passes through fibre polarization controllers (FPC)

to align the polarization of the light with that of the predominantly in-plane linear polarization of

the optomechanical crystal cavity modes. The light also passes through an optical switch (SW2),

allowing the light to be switched between either direction of propagation through the fibre taper,

and providing an accurate calibration of the losses in the taper before and after the optomechanical

crystal cavity (measuring the input-power-dependent optomechanical damping in both transmis-

sion directions allows one to separate the total loss of the taper into losses before and after the

cavity). The transmitted light from the cavity is either optically pre-amplified using an erbium

doped fibre amplifier (EDFA) and sent to a high-speed photodetector (PD2) for measurement of

the microwave power spectrum, or using optical switch (SW3), sent to an optical power meter

(PD3, power meter) for power calibration.
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Supplementary Figure S2: Calibration tones. Schematic of the four tones appearing in the elec-

tronic power spectrum of the photocurrent generated by the optical input signal and the additional

calibration signal. The three additional tones proportional to A3 are generated to calibrate the

input signal modulation index, β1.
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Supplementary Figure S3: Effect of large intracavity photon population. (a), Recorded

coupling depth of the first order optical cavity as a function of the intracavity photon population

of the second order mode (green circles). The black curve represents a fit to the extracted coupling

depth. (b), Conversion efficiency as a function of C2/C1. The dashed black line represents the

theoretical values from the nominal system parameters while the solid red line takes into account

the effect of the large intracavity photon population of cavity mode 2 (nc,2). The blue circles

are the extracted data points and show much better correspondence to theory when this effect is

accounted for.
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SUPPLEMENTARY METHODS

Theory of two-mode optomechanical system

We begin by considering the Hamiltonian describing the optomechanical interaction be-

tween two distinct optical modes (indexed k = 1, 2) coupled to a shared mechanical mode

with annihilation operator b̂,

Ĥ =
∑
k

h̄δkâ
†
kâk + h̄ωmb̂

†b̂ + (b̂ + b̂†)
∑
k

h̄gkâ
†
kâk.

(S1)

Each optical mode has a frequency ωk, and is driven by a laser at frequency ωl,k. The

Hamiltonian above is written in the interaction picture with δk = ωk − ωl,k.

As shown below, strong driving at a mechanical frequency red detuned from each cav-

ity mode, δk ∼= ωm, causes an effective beam splitter interaction to take place between the

mechanical mode and each optical cavity mode at an enhanced coupling rate Gk = gk|αk|,

where αk is the square root of the photon occupation in optical mode k. As long as this

coupling is weak with respect to the optical linewidths κk (Gk � κk), an adiabatic elimina-

tion of the optical cavities results in new effective mechanical loss rates γOM,k into each of

the k optical degrees of freedom in the system. This “loss” can provide an effective coupling

between the optical cavity modes by allowing the exchange of excitations between the optical

resonances through the mechanical motion of the system. We calculate exactly what these

conversion rates are by using a scattering matrix formulation to understand the behaviour

of the system. Though completely general expressions can be derived, to best understand

the processes involved we focus on the parameter regime relevant to this experiment, i.e.

the weak-coupling, sideband-resolved case where ωm � κ � γOM, and follow a scattering

matrix derivation of the induced optomechanical coupling between the optical waveguides

coupled to each cavity mode.

The linearized Heisenberg-Langevin equations of motion are found using Eq. (S1), the

displacement âk → αk + âk, and the inclusion of the optical input signal (âin,k(t)), optical

6



vacuum noise (âi,k(t)), and mechanical thermal fluctuation fields (b̂in(t)):

˙̂
b(t) = −

(
iωm +

γi
2

)
b̂ − i

∑
k

Gk(â + â†)−√γib̂in(t)

˙̂ak(t) = −
(
iδk +

κk
2

)
âk − iGk(b̂ + b̂†)

−
√
κe,k/2âin,k(t)−

√
κ′kâi,k(t).

The mechanical loss rate γi = ωm/Qm, determines the coupling of the system to the

thermal bath, and provides the most significant contribution in terms of noise processes

relevant to the performance of the optomechanical wavelength converter. The other loss

rates, κk, κe,k, and κ′k are, respectively for optical cavity mode k, the total optical loss rate,

the optical loss rate associated with coupling into the waveguide k, and parasitic optical

loss rate into all other channels that are undetected representing a loss of information. Due

to the local evanescent side-coupling scheme studied here (which bi-directionally couples to

the cavity mode), κk = κe,k/2 + κ′k, i.e. only a fraction ηk ≡ κe,k/2κk of the photons leaving

the cavity get detected and ηk ≤ 1/2.

The equations of motion are linear and thus the system can be analyzed more simply in

the frequency domain. Solving for the spectrum of the mechanical mode b̂(ω) in terms of

the input noise operators, we find:

b̂(ω) =
−√γib̂in(ω)
i(ωm−ω)+γ/2

+
∑

k
iGk

i(δk−ω)+κk/2

√
κe,k/2âin,k(ω)+

√
κ′kâi,k(ω)

i(ωm−ω)+γ/2

+
∑

k
iGk

−i(δk+ω)+κk/2

√
κe,k/2â

†
in,k(ω)+

√
κ′kâ
†
i,k(ω)

i(ωm−ω)+γ/2 ,

where the mechanical frequency ωm is now modified by the optical spring, and the mechanical

linewidth is given by γ ≡ γi+γOM,1+γOM,2. The optomechanical damping terms γOM,k come

from coupling of the mechanical system to the optical mode k, and are given by the relation

γOM,k = 2|Gk|2Re

[
1

i(δk − ωm) + κk/2

− 1

−i(δk + ωm) + κk/2

]

=
4|Gk|2

κk
for δk ≈ ωm. (S2)
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The last expression is a simplification that is often made, and is equivalent to looking at

spectral properties at detunings from the mechanical frequency much smaller than κ (so the

optical lineshape isn’t taken into account). Under this approximation, the optical spectrum

is

κk
2
âk(ω) =

iGk
√
γib̂in(ω)

i(ωm−ω)+γ/2

+
∑

j
2GjGk
κj

√
κe,j/2âin,j(ω)+

√
κ′jâi,j(ω)

i(ωm−ω)+γ/2

+
∑

j
iGjGk
2ωm

√
κe,j/2â

†
in,j(ω)+

√
κ′jâ
†
i,j(ω)

i(ωm−ω)+γ/2

−
√
κe,k/2âin,k(ω)−

√
κ′kâi,k(ω). (S3)

From this expression, we see that there are several noise operators incident on optical mode

k. The thermal fluctuations from the environment, b̂in(ω), are converted into noise photons

over the mechanical bandwidth γ. There is also an induced coupling to the optical mode

j 6= k, and photons originally incident only on mode j, i.e. âin,j(ω) are now also coupled into

âk. Finally we note that vacuum noise creation operators are also present in this expression.

These give rise to quantum noise through spontaneous emission of phonons, though we show

below that as ωm is made very large with respect to κk, these terms diminish in importance.

From outside the optomechanical system, we only have access to photons sent into

the system, âin,j, and those leaving the system, âout,k, on transmission. The relation be-

tween these operators is best understood through scattering parameters, and can be de-

rived using the equation for âk(ω) (Eq. S3) and the input-output boundary conditions

âout,k(ω) = âin,k(ω) +
√
κe,k/2âk(ω). After some algebra, the output operator is expressed

as

âout,k(ω) = sth,k(ω)b̂in(ω)

+tk(ω)âin,k(ω) + skj(ω)âin,j(ω)

+
∑
m

nopt,m(ω)âi,m(ω)

+
∑
m

sadj,in,m(ω)â†in,m(ω)

+
∑
m

sadj,i,m(ω)â†i,m(ω) (S4)

The scattering coefficient sth,k(ω) is the conversion efficiency of mechanical thermal noise to
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photons, and is given by

sth,k(ω) = i
√
ηk

√
γiγOM,k

i(ωm − ω) + γ/2
. (S5)

The coefficient tk(ω) in our system is transmission amplitude, given by

tk(ω) = (1− 2ηk) + ηk
γOM,k

i(ωm − ω) + γ/2
. (S6)

In principle, this coefficient is the electromagnetically induced transparency transmission

coefficient, though here it is written about the mechanical frequency for detunings on the

order of γ and the κ’s are too large (κ � γ) for the optical lineshape to be considered in

the expression. This is the expected result of the weak coupling approximation. Finally, the

most important coefficient is the wavelength conversion coefficient skj(ω) which is given by

skj(ω) =
√
ηkηj

√
γOM,kγOM,j

i(ωm − ω) + γ/2
. (S7)

Efficiency, Bandwidth, and Noise

We calculate the spectral density of the output field on port k (Sout,k(ω)) assuming an

input field spectral density on the opposing optical port j (Sin,j(ω)), vacuum inputs on all

other optical channels, and thermal noise from a phonon bath with thermal occupation nb.

The spectral densities here have units of photons/Hz·s and can be interpreted as photon flux

per unit bandwidth. At first we ignore the field creation operators in the scattering relation

Eq. (S4) (which give rise to quantum noise and can be neglected when the mechanical

resonator occupation number is greater than one) and arrive at the following expression:

Sout,k(ω) =

∫ ∞
−∞

dω′ 〈â†out,k(ω)âout,k(ω
′)〉

=

∫ ∞
−∞

s∗th,k(−ω)sth,k(ω
′)〈b̂†in(ω)b̂in(ω′)〉

+t∗k(−ω)tk(ω
′)〈â†in,k(ω)âin,k(ω

′)〉

+s∗kj(−ω)skj(ω
′)〈â†in,j(ω)âin,j(ω

′)〉

+n∗opt,k(−ω)nopt,k(ω
′)〈â†i,k(ω)âi,k(ω

′)〉

+n∗opt,j(−ω)nopt,j(ω
′)〈â†i,j(ω)âi,j(ω

′)〉dω′.
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This reduces to,

Sout,k(ω) = ηk
γiγOM,k

(ω + ωm)2 + (γ/2)
nb

+ηkηj
γOM,kγOM,j

(ω + ωm)2 + (γ/2)2
Sin,j(ω),

accounting for the noise autocorrelation functions. From here, we see that the maximum

photon wavelength conversion efficiency is given by

ηmax = η1η2
4γOM,1γOM,2

(γi + γOM,1 + γOM,2)2
. (S8)

The conversion process has a bandwidth (BW) equal to the mechanical linewidth

BW ≡ γi + γOM,1 + γOM,2. (S9)

From the same expression, we calculate a value for the optical signal to noise ratio (OSNR),

to find

OSNRclassical
kj = ηj

γOM,j

γinb

Sin,j(ω). (S10)

Equation (S10) only takes into account the thermal noise in the system and therefore

holds only when γinb/γOM,j � 1. At higher powers, the quantum noise processes which give

rise to the back-action limit in cooling also give rise to excess noise for wavelength conversion.

To consider these terms, the creation operators in Eq. (S4) must not be neglected and the

full relation is then found to be

Sout,k(ω) = ηk
γOM,k

(ω + ωm)2 + (γ/2)2
γinb

+ηk
γOM,k

(ω + ωm)2 + (γ/2)2
γOM,k

(
κk

4ωm

)2

+ηk
γOM,k

(ω + ωm)2 + (γ/2)2
γOM,j

(
κj

4ωm

)2

+ηkηj
γOM,kγOM,j

(ω + ωm)2 + (γ/2)2
Sin,j(ω). (S11)

The quantum limited OSNR is then found to be

OSNRkj =
ηjγOM,jSin,j(ω)

γinb+γOM,k(
κk
4ωm

)
2
+γOM,j(

κj
4ωm

)
2 . (S12)

For the quantum back-action terms to become significant as compared to the thermal noise

on the mechanical system, one needs γinb/γ ∼
(

κ
4ωm

)2
. This is a regime that is yet to be
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reached in experiments and as such the quantum back-action noise terms can be neglected

for experiments to date. Perhaps more importantly, we ask “what is the amount of noise

added to a signal of a single photon?”. We can express the signal to noise ratios as OSNRkj =

Sin,j(ω)/nadded, with

nadded =
γinb + γOM,k

(
κk
4ωm

)2
+ γOM,j

(
κj
4ωm

)2
ηjγOM,j

.

(S13)

Assuming κj = κk = κ, γi � γ, and γOM,j = γOM,k = γOM, this expression becomes

nadded ≈ 2η−1j

(
γinb

γ
+

(
κ

4ωm

)2
)
. (S14)

To achieve the threshold where a single photon incoming on port j is converted, and is

more likely to be detected on port k than an upconverted thermal excitation, we require

nadded < 1. This requirement is equivalent to stating that in the absence of signals on port j

and k, a cooled phonon occupation of n̄ = ηj/2 must be achieved. We note that ηk does not

make an appearance in this equation, since reduced output coupling efficiency attenuates

the thermal noise and signal equivalently. For the same reason, 1/ηj is present in the noise

quanta expression. The factor of two can be understood to come from the fact that for

good conversion, we require the photon to enter, and exit the system before a phonon is

up converted. The former two processes happen at γOM, while the latter is given by the

thermalization rate γinb.
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