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Supplementary Figure S1: Annealing temperature schedules. Temperature as a function of anneal-
ing step n for three different schedules: exponential T (n) = Tir

n
exp, linear T (n) = Ti/(nrlin + 1), and

constant T (n) = .5 temperature, where Ti is the initial temperature, Tf is the final temperature, and
rexp = (Tf/Ti)

1/ntot , rlin = (Tf/Ti − 1)/ntot for ntot total number of annealing steps.
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Supplementary Figure S2: Contour used in our proof of the KMS condition.
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Supplementary Methods.
First-principles derivation of the master equation

Here we derive the master equation used by SA from first principles within the open quantum systems
formalism. This motivates classical SA as a model for a system dominated by classical thermalization of the
final Ising Hamiltonian.

Let HS(t) be the time-dependent system Hamiltonian and HSB =
∑
αAα⊗Bα be the system-bath Hamil-

tonian. We have previously established that the Lindblad equation within the rotating wave approximation
has the form19

ρ̇ = −i [HS , ρ] (S1)

+
∑
αβ

∑
ω

γα?β(ω)

[
Lω,βρL

†
ω,α −

1

2

{
L†ω,αLω,β , ρ

}]
,

where

Lω,α =
∑

ω=Eb−Ea

Lab,α =
∑

ω=Eb−Ea

|a〉〈a|Aα|b〉〈b| (S2a)

L†ω,α =
∑

ω=Eb−Ea

L†ab,α =
∑

ω=Eb−Ea

|b〉〈b|A†α|a〉〈a| (S2b)

{|a〉} is the instantaneous eigenbasis of HS (we have suppressed its explicit time-dependence) for spin vector
a = {a1, . . . , aN}, where ai ∈ {↑, ↓} , and

γα?β(ω) =

∫ ∞
−∞

dτeiωτ 〈B†α(τ)Bβ(0)〉 (S3)

is the Fourier transform of the bath correlation function. The star adornment on the first subscript (α?)
is a reminder that the first operator in the bath correlation function is Hermitian-transposed. We have
ignored the Lamb shift in Eq. (S1) since for a time-dependent Lindblad evolution it amounts to a small
perturbation of the system Hamiltonian. We used this form of the master equation for our quantum open
system numerical simulations, as detailed elsewhere19.

We show below that for a bath in thermal equilibrium at inverse temperature β

γα?β(−ω) = e−βωγβα?(ω) , (S4)

where

γβα?(ω) =

∫ ∞
−∞

dτeiωτ 〈Bβ(τ)B†α(0)〉 . (S5)

We assume that the system-bath coupling Hamiltonian has the form

HSB =

N∑
j=1

∑
r∈{±,z}

g
(r)
j σrj ⊗B(r)

j , (S6)

where σ± = (σx ± iσy)/2, we identify | ↑〉 with |0〉 and | ↓〉 with |1〉, and where we neglect higher-order

interactions of the form σrj ⊗ σsk ⊗ B
(rs)
jk or above. Since HSB is Hermitian we also have B

(±)†
j = B

(∓)
j ,

B
(z)†
j = B

(z)
j , g

(±)∗
j = g

(∓)
j , g

(z)∗
j = g

(z)
j , and where the asterisk denotes complex conjugation. In the

computational basis of spin vectors {a}, we introduce the notation

|a±j 〉 ≡ σ±j |a〉 , (S7)
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which denotes either a flipping of aj , or 0 if either σ+
j acts on aj =↑ or σ−j acts on aj =↓. Then

〈a|σ±j |b〉 =
(
σ±j
)
ab

= δa,b±j
, (S8)

where the δ function is defined to evaluate to zero also when σ±j annihilates |b〉. We are interested in classical
thermalization, in which the density operator is diagonal in the computational basis {a}, so we set ρab = 0
for a 6= b. Equation (S1) then gives ρ̇ab = 0. Using indexes α = (r, j) and β = (s, k) in Eq. (S1), where
r, s ∈ {±, z} and j, k ∈ [1, . . . , N ], and taking the diagonal 〈a| · |a〉 matrix element, the Lindblad equation
becomes

ρ̇aa =
∑

(r,j),(s,k)

g
(r)∗
j g

(s)
k × (S9)

∑
b|b 6=a

γ(r,j)?(s,k)(ωab) (σsk)ab ρbb
(
(σrj )

†)
ba

− γ(r,j)?(s,k)(ωba)
(
(σrj )

†)
ab
ρaa (σsk)ba ,

where ωab = Eb − Ea. Note that the sum in Eq. (S1) involving the resonant contribution γα?β(0) from the

terms Laa,βρL
†
bb,α and 1

2

{
L†aa,αLbb,β , ρ

}
vanishes since they cancel after taking the diagonal matrix element.

Moreover, since Eq. (S9) involves only off-diagonal terms (b 6= a), contributions due to σz all vanish, and
using Eq. (S8), we are left with

ṗa =

N∑
j=1

∑
r=±
|g(r)j |2

(
γ(r,j)?(r,j)(ωaa−r

j
)pa−r

j

− γ(r,j)?(r,j)(ωarja)pa

)
, (S10)

where we denoted pa ≡ ρaa, the probability of spin configuration a. We can furthermore identify

P (a→ arj) ≡ |g(r)j |2γ(r,j)?(r,j)(ωarja) (S11a)

P (a−rj → a) ≡ |g(r)j |2γ(r,j)?(r,j)(ωaa−r
j

) (S11b)

as the transition probabilities, so that Eq. (S10) becomes the rate equation

ṗa =

N∑
j=1

∑
r=±

P (a−rj → a)pa−r
j
− P (a→ arj)pa . (S12)

This can be further simplified using the KMS condition. Indeed, note that, using Bα(τ) = σ±j (τ) in
Eqs. (S3) and (S5), we have

γ(±,j)?(±,j)(ω) = γ(∓,j)(∓,j)?(ω). (S13)

Using this along with ωa±j a
= −ωaa±j and Eq. (S4), we have

γ(±,j)?(±,j)(ωa±j a
) = e

−βω
aa
±
j γ(∓,j)?(∓,j)(ωaa±j

) . (S14)

Therefore Eq. (S11) yields

P (a→ a±j ) = e
−βω

aa
±
j |g(±)j |2γ(∓,j)?(∓,j)(ωaa±j ) (S15a)

P (a±j → a) = |g(∓)j |2γ(∓,j)?(∓,j)(ωaa±j ) . (S15b)
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This, together with g
(±)∗
j = g

(∓)
j , gives the detailed balance condition for thermalization dynamics

P (a→ a±j )

P (a±j → a)
= e
−β(E

a
±
j
−Ea)

=
fj(Ea − Ea±j )

fj(Ea±j
− Ea)

, (S16)

where we introduced transition functions fj(∆E), which we identify with the transition probabilities in
Eq. (S15).

We can now rewrite Eq. (S12) as the classical master equation that we used in our SA numerical simu-
lations

ṗa =

N∑
j=1

∑
r=±

(
fj(Earj − Ea)parj − fj(Ea − Earj )pa

)
. (S17)

Correlation functions and the KMS condition
Here we derive the detailed balance condition Eq. (S4) from first principles. Our calculation closely

follows Ref. (19), but differs in that it applies also to non-Hermitian bath operators.
The correlation function of a thermal bath is assumed to satisfy the KMS (Kubo-Martin-Schwinger)

condition35

〈B†α(τ)Bβ(0)〉 = 〈Bβ(0)B†α(τ + iβ)〉 . (S18)

This expression has the advantage that it also applies to operators which are not trace class. For trace class
operators the KMS condition can be derived assuming that the bath is in a thermal state, ρB = e−βHB ,
where HB is the bath Hamiltonian. In this case:

〈B†α(τ)Bβ(0)〉 = Tr[ρBU
†
B(τ, 0)B†αUB(τ, 0)Bβ ]

=
1

ZTr[Bβe
−(β−iτ)HBB†αe

−iτHB ]

=
1

ZTr[Bβe
i(τ+iβ)HBB†αe

−i(τ+iβ)HBe−βHB ]

= Tr[ρBBβU
†
B(τ + iβ, 0)B†αUB(τ + iβ, 0)]

= 〈Bβ(0)B†α(τ + iβ)〉 , (S19)

where UB is the bath unitary evolution operator. Note that

〈B†α(τ)Bβ(0)〉 = 〈Bβ(−τ − iβ)B†α(0)〉 . (S20)

If in addition the correlation function is analytic in the strip between τ = −iβ and τ = 0, then it follows
that the Fourier transform of the bath correlation function satisfies the detailed balance condition Eq. (S4)
as we show next.

We compute the Fourier transform:

γα?β(ω) =

∫ ∞
−∞

dτeiωτ 〈B†α(τ)Bβ(0)〉

=

∫ ∞
−∞

dτeiωτ 〈Bβ(−τ − iβ)B†α(0)〉 . (S21)

To perform this integral we replace it with a contour integral in the complex plane,
∮
C
dτeiωτ 〈Bβ(−τ −

iβ)B†α(0)〉, with the contour C as shown in Supplementary Figure S2. This contour integral vanishes by the
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Cauchy-Goursat theorem36 since the closed contour encloses no poles (the correlation function 〈Bβ(τ)B†α(0)〉
is analytic in the open strip (0,−iβ) and is continuous at the boundary of the strip37), so that∮

C

(. . . ) = 0 (S22)

=

∫
↑

(. . . ) +

∫
↓

(. . . ) +

∫
→

(. . . ) +

∫
←

(. . . ) ,

where (. . . ) is the integrand of Eq. (S21), and the integral
∫
→ is the same as in Eq. (S21). After making the

variable transformation τ = −x− iβ, where x is real, we have∫
←

(. . . ) = −eβω
∫ ∞
−∞

e−iωx〈Bβ(x)B†α(0)〉 . (S23)

Assuming that 〈Bα(±∞− iβ)Bβ(0)〉 = 0 (i.e., the correlation function vanishes at infinite time), we further
have

∫
↑ (. . . ) =

∫
↓ (. . . ) = 0, and hence we find the result:∫ ∞

−∞
dτeiωτ 〈Bβ(−τ − iβ)B†α(0)〉 (S24)

= eβω
∫ ∞
−∞

e−iωτ 〈Bβ(τ)B†α(0)〉 = eβωγβα?(−ω) ,

which, together with Eq. (S21), proves Eq. (S4).

Classical master equation explanation for the enhancement of the isolated state
We now explain why, as seen in the numerical simulations shown in the main text, the probability of the

isolated state never exceeds that of the average of the 16 cluster ground states, i.e., why

ps ≥
1

16

16∑
i=1

pi . (S25)

Let us first derive a rate equation for the isolated state. A single spin-flip of a core spin in the isolated
state raises its energy by 4, since it violates two couplings between the core spins and corresponds to a
transition from |↓↓〉 to |↑↓〉 (where the second, ancilla, spin is unchanged), which doesn’t change the energy
according to Eq. (5).Likewise, a single spin-flip of an ancilla spin in the isolated state violates no couplings
and corresponds to a transition from |↓↑〉 to |↓↑〉 (with the core spin unchanged), which raises the energy by
4 according to Eq. (5).There are 8 ways this can happen (4 core and 4 ancilla spins can be flipped). Since
this accounts for all the single spin transitions, Eq. (13) yields the rate equation

ṗs = 8f(−4)pe − 8f(4)ps , (S26)

where pe is the population of the excited states with energy −4. States connected by single spin-flips have
similar populations, and all states with energy −4 are connected (see main text). Here we are assuming that

the spin flip rate is the same for all sites [corresponding to assuming g
(r)
j = g(r) in Eq. (S6)].

We next derive the rate equation for the cluster, once again accounting only for single spin flips. For states
in the cluster the core spins are all up, and ancilla-spin flips are energy-preserving transitions between states
in the cluster. For core-spin flips we need to analyze two different situations. The first is a configuration in
a ground state where the core-ancilla pair starts as |↑↑〉 and the core spin flips, so the state becomes |↓↑〉.
This violates two couplings, with energy cost 4, and according to Eq. (5) the energy difference between these
two states is 4, so the overall result is an excited state with energy 0. The second is a configuration in a
ground state where the core-ancilla pair starts as |↑↓〉 and again the core spin flips, so the state becomes
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|↓↓〉. This again violates two couplings, with energy cost 4, but costs no energy according to Eq. (5), so the
overall result is an excited state with energy −4.

Thus, a state with l ancillae with spin ↓ and 4 − l ancillae with spin ↑ connects (via single spin-flips)
to l excited states with energy −4 and 4 − l excited states with energy 0. To write a rate equation for
pC =

∑16
i=1 pi/16 we shall assume that all excited states with energy 0 (−4) have probability p(0) (pe), and

all states in the ground state cluster have equal probability pC . Summing over the number l of ancilla with
spin ↓ for each cluster state, the rate equation is

16∑
i=1

ṗi =

4∑
l=0

(
4

l

)(
lf(−4) pe − lf(4) pC

+ (4− l)f(−8) p(0)− (4− l)f(8) pC
)

(S27a)

= 32
(
f(−4) pe − f(4) pC

+ f(−8) p(0)− f(8) pC
)
, (S27b)

so that
ṗC = 2

(
f(−4) pe − f(4) pC + f(−8) p(0)− f(8) pC

)
. (S28)

For most temperatures of interest, relative to the energy scale of the Ising Hamiltonian, the dominant
transitions are those between the cluster and states with energy -4. Transitions to energy 0 states are
suppressed by the high energy cost, and transitions from energy 0 states to the cluster are suppressed by the
low occupancy of the 0 energy states. Then

ṗC ≈ 2f(−4) pe − 2f(4) pC . (S29)

In classical annealing at constant low temperature starting from arbitrary states (that is, the high energy
distribution), probability flows approximately ṗs/ṗC ≈ 4 times faster into the isolated state initially, and
it gets trapped there by the high energy barrier. This matches well the numerical results of Fig. (3). To
show that ps ≥ pC for slow cooling schedules, assume that this is indeed the case initially. Then, in order
for pC to become larger than ps, they must first become equal at some inverse annealing temperature β′:
ps(β

′) = pC(β′) ≡ pg, and it suffices to check that this implies that ps grows faster than pC . Subtracting
Eq. (S29) from Eq. (S26) yields

ṗs − ṗC = 6 (f(−4) pe − f(4) pg)

= 6f(−4)pg

(
pe
pg
− P (g → e)

P (e→ g)

)
, (S30)

where in the second line we used Eq. (S16). Now, because the dynamical SA process we are considering
proceeds via cooling, the ratio between the non-equilibrium excited state and the ground state probabilities

will not be lower than the corresponding thermal equilibrium transition ratio, i.e., pe
pg
≥ P (g→e)

P (e→g) = e−4β
′
.

Therefore, as we set out to show,

ṗs − ṗC ≥ 0 , (S31)

implying that at all times ps ≥ pC .

The quantum Singular Coupling Limit does not agree with the experimental results Interest-
ingly, an open system QA master equation in the singular coupling limit (SCL) yields results in qualitative
agreement with classical thermalization, and opposite to our weak coupling limit (WCL) master equation
(S1). Here, following Ref. 36, we present a derivation of the SCL master equation.

We consider a Hamiltonian of the form:

H(t) = HS(t) + ε−1HI + ε−2HB , (S32)
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where we take the interaction Hamiltonian HI to have the form A⊗B, where the system (A) and bath (B)
operators are both Hermitian. The formal solution in the interaction picture generated by HS and HB is
given by:

ρ̃(t) = ρ̃(0)− iε−1
∫ t

0

ds
[
H̃I(s), ρ̃(s)

]
. (S33)

Plugging this solution back into the equation of motion and taking the partial trace over the bath, we obtain:

d

dt
ρ̃S(t) = −ε−2

∫ t

0

dsTrB

([
H̃I(t),

[
H̃I(s), ρ̃(s)

]])
, (S34)

where we have assumed that Tr[ρBB] ≡ 〈B〉 = 0. Under the standard Markovian assumption that ρ(t) =
ρS(t)⊗ ρB and under a change of coordinates s = t− τ , we can write:

d

dt
ρ̃S(t) = ε−2

∫ t

0

dτ [(A(t)ρ̃(t− τ)A(t− τ) (S35)

−A(t)A(t− τ)ρ̃(t− τ)) 〈B(τ)B(0)〉+ h.c.]

where A(t) = US(t)AU†S(t) and where we have used the homogeneity of the bath correlation function to
shift its time-argument. We change coordinates τ = ε2τ ′ and observe that under this coordinate change
〈B(τ)B(0)〉 is independent of ε. We assume that this bath correlation function decays in a time τB that is
sufficiently fast, such that τB � t/ε2. This allows us to approximate the integral by sending the upper limit
to infinity. We also assume that τB � τ ′ε2, which forces the correlation time of the bath to zero, hence
its spectral density to become flat, and hence—using the KMS condition—amounts to taking the infinite
temperature limit. Under these assumptions, we can now take the ε → 0 limit, yielding the SCL master
equation

d

dt
ρS(t) = −i [HS(t) +HLS, ρ(t)]

+γ(0)

(
Aρ(t)A− 1

2

{
A2, ρ(t)

})
, (S36)

where

γ(ω) =

∫ ∞
−∞

dτ ′e−iωτ
′〈B(τ ′)B(0)〉 , (S37)

HLS = −A2

∫ ∞
−∞

dωγ(ω)P
(

1

ω

)
, (S38)

where HLS is the Lamb shift (renormalization of the system Hamiltonian) and where P denotes the Cauchy
principal value. Thus, even if HS is time-dependent, we recover the same form for the SCL master equation
as in the time-independent case.35
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