

Supplementary Figure S1 | Effect of simultaneous *PhADT1* and *PhPPA-AT* downregulation on the levels of phenylalanine-derived volatiles, tyrosine, tryptophan, aromatic amino acid intermediates, and shikimate in petunia flowers.

The levels of plastidial ADT and PPA-AT activity (n = 5 biological replicates), phenylalanine-derived volatiles ($n \ge 5$), prephenate, arogenate, tyrosine, tryptophan and shikimate ($n \ge 6$) in petals of wild-type (WT; black) and the *PhADT1* (striped), *PhPPA-AT* (gray), and *PhADT1xPhPPA-AT* (white) RNAi lines harvested at 8 PM, 2 d postanthesis. Data are presented relative to corresponding WT controls set at 100% (687.5 nmol g FW⁻¹ h⁻¹ for phenylalanine-derived volatiles, 0.10 and 2.60 nkat mg protein⁻¹ for plastidial ADT1 and PPA-AT activities, respectively; 3.5, 21.4, 12.6, 16.0, 36.9 nmol g FW⁻¹ for prephenate, arogenate, tyrosine, tryptophan, and shikimate, respectively). Data are means \pm s.e.m. Columns with the same letters above are not significantly different based on Tukey's test (P < 0.05; One-way ANOVA).

Supplementary Figure S2 | Functional complementation of the phenylalanine auxotrophic *E. coli* mutant DL39 by *PhPPY-AT*.

(a) Wild-type *E. coli* (K12), the DL39 mutant transformed with pBad33 alone, and three independent clones of DL39 containing the pBad33-PhPPYAT construct were grown to an $OD_{600} = 1$ in M9 liquid media, washed, and serially diluted to $OD_{600} = 1 \times 10^{-1}$, 10^{-2} , 10^{-3} and 10^{-4} . Five µL of cells at each cell density were plated on M9 solid media containing 0.2% arabinose and 50 µg ml⁻¹ aspartic acid, valine, leucine and isoleucine, with and without 50 µg ml⁻¹ phenylalanine and tyrosine. (b) *In vitro* assays measuring PPY-AT activity with glutamate as an amino donor and phenylpyruvate as the keto acid acceptor were performed using crude extracts prepared from cells of wild-type (K12), the DL39 mutant transformed with empty pBad33, and the DL39 mutant harboring pBad33-PhPPYAT. Reactions were carried out at 30°C for 30 min with 74 µg of crude extract proteins. Data are means ± s.e.m. (*n* = 3 independent experiments).

Supplementary Figure S3 | Expression profiles of *PhPPY-AT* in petunia flowers.

(a) Tissue specific expression of *PhPPY-AT* presented relative to levels in tubes set as 100%. (b) Developmental *PhPPY-AT* expression profile in corolla of petunia flowers from the mature bud stage (d -1) to 7 d postanthesis presented relative to level on d 5, set as 100%. (c) Diurnal expression profiles of *PhPPY-AT* in corolla of petunia flowers d 1 to d 3 postanthesis grown under a normal light/dark cycle presented relative to the level at 3 PM on d 2 postanthesis set as 100%. (*n* = 4 biological replicates)

Supplementary Figure S4 | Effect of *PhPPY-AT* downregulation on phenylalanine and phenylalanine-derived volatile levels in petunia flowers of *PhADT1* and *PhPPA-AT* RNAi parental lines.

Downregulation of *PhPPY-AT* in petunia flowers (left panel) significantly decreases the levels of phenylalanine (middle panel) and phenylalanine-derived volatiles (right panels). For each genetic background, black and white columns represent flowers infiltrated with the empty vector or the *PhPPY-AT* RNAi construct, respectively. Data are presented as a percentage relative to the corresponding empty-vector reference. Data are means \pm s.e.m. ($n \ge 3$ biological replicates). * P < 0.05 and ** P < 0.01 as determined by paired two-tailed Student's t-tests.

Supplementary Figure S5 | Effect of simultaneous *PhADT1* and *PhPPA-AT* downregulation on PDT activity, and expression levels of *PhADT2* and *PhADT3* in petunia flowers.

(a) PDT activities were determined using triple quadruple LC/MS in plastids isolated from d 1 to d 3 old petunia flowers of wild-type (WT; black) and the *PhADT1* (striped), *PhPPA-AT* (gray), and *PhADT1xPhPPA-AT* (white) RNAi lines harvested at 8 PM. Data are presented relative to the level in WT (0.468 pkat mg protein⁻¹) set as 100%. Data are means \pm s.e.m. (*n* = 5 biological replicates). * P < 0.05 as determined by unpaired two-tailed Student's t-test between WT and each transgenic line. (b) *PhADT2* and *PhADT3* mRNA levels were determined by qRT-PCR with gene-specific primers in corollas of petunia flowers from WT (black) and the *PhADT1* (striped), *PhPPA-AT* (gray), and *PhADT1xPhPPA-AT* (white) RNAi lines harvested at 8 PM 2 d postanthesis. Data are presented relative to corresponding levels in WT set as 100%. Data are means \pm s.e.m. (*n* = 3 biological replicates). Columns with the same letters above are not significantly different based on Tukey's test (P < 0.05; One-way ANOVA).

Supplementary Figure S6 | Verification of product formation and purity of enzymatically synthesized L-[ring- ${}^{2}H_{5}$]-Phenylpyruvate. L-[ring- ${}^{2}H_{5}$]-Phenylpyruvate was synthesized by enzymatic conversion of L-[ring- ${}^{2}H_{5}$]-phenylalanine by melon CmArAt1. The dominant ion of non-labeled phenylpyruvate (91 m/z) detected by Triple Quadrupole LC/MS in an authentic phenylpyruvate standard (**a**) is shifted in enzymatically synthesized L-[ring- ${}^{2}H_{5}$]-phenylpyruvate to 96 m/z (**b**). Phenylpyruvate and

L-[ring-²H₅]-phenylpyruvate were monitored in MRM (Multiple Reaction Monitoring) mode and quantified based on a standard calibration curve generated with an authentic non labeled phenylpyruvate standard. (**c**) Authentic standard of L-[ring-²H₅]-phenylalanine after OPA derivatization analyzed by TOF LC/MS. (**d**) OPA derivitization of L-[ring-²H₅]phenylpyruvate shown in (**b**) to assess the purity of synthesized labeled phenylpyruvate and removal of L-[ring-²H₅]-phenylalanine substrate. L-[ring-²H₅]-phenylalanine derivatized by OPA was monitored in extracted ion chromatogram (EIC) mode of 345.1 m/z. Inserted panel in (**c**) shows mass spectra of L-[ring-2H5]-phenylalanine.

Emitted volatiles (nmol g FW ⁻¹ h ⁻¹)	WT	PhADT1 RNAi	<i>PhPPA-AT</i> RNAi	PhADT1xPhPPA-AT RNAi
Benzaldehyde	136.0 ± 20.3 ^{a,c}	15.8 ± 3.2 ^b	85.0 ± 15.0 ^c	156.8 ± 18.1 ^ª
Benzyl alcohol	10.0 ± 2.2 ^{a,b}	0.7 ± 0.2^{b}	$7.6 \pm 1.0^{a,b}$	17.0 ± 5.4^{a}
Phenylacetaldehyde	42.4 ± 9.3 ^a	3.4 ± 0.9^{b}	$14.0 \pm 2.6^{b,c}$	39.4 ± 8.3 ^{a,c}
Methylbenzoate	275.2 ± 28.6 ^{a,c}	65.0 ± 10.3 ^b	195.0 ± 23.0 ^c	289.0 ± 21.0 ^a
Phenylethanol	13.1 ± 1.2 ^ª	0.9 ± 0.5^{b}	7.5 ± 0.7 ^c	13.9 ± 1.9 ^a
Benzylacetate	$0.4 \pm 0.1^{a,b}$	0.1 ± 0.0^{b}	0.3 ± 0.1^{b}	0.7 ± 0.1^{a}
Eugenol	3.0 ± 0.5^{a}	0.9 ± 0.2^{b}	$1.9 \pm 0.3^{a,b}$	3.0 ± 1.0 ^a
Isoeugenol	194.3 ± 36.6 ^a	52.0 ± 13.0 ^b	97.2 ± 30.2 ^{a,b}	182.7 ± 35.8 ^a
Benzylbenzoate	13.0 ± 3.3 ^a	2.1 ± 0.7 ^b	5.2 ± 1.1 ^{a,b}	13.1 ± 3.4 ^a
Phenylethylbenzoate	0.3 ± 0.1^{a}	0.0 ± 0.0^{b}	0.1 ± 0.0^{b}	$0.2 \pm 0.0^{a,b}$
Total emitted volatiles	687.5 ± 88.9 ^ª	140.7 ± 25.4 ^b	413.2 ± 45.6 [°]	715.6 ± 78.4 ^ª

Supplementary Table S1 | Emissions of phenylalanine-derived volatiles in wildtype (WT) and the *PhADT1*, *PhPPA-AT*, and *PhADT1xPhPPA-AT* RNAi lines.

Volatiles were collected from 6 PM to 10 PM using six flowers harvested at d 2 postanthesis. Data are means \pm s.e.m. (*n* = 5 biological replicates). Means with the same letters within the row are not significantly different based on Tukey's test (P < 0.05; One-way ANOVA).

keto acid substrate	amino donor ^c	PhPPY-AT
Forward		
phenylpyruvate ^a	tyrosine	100 ^d
	methionine	12.4 ± 0.45
	glutamate	12.3 ± 0.21
	leucine	10.6 ± 0.45
	tryptophan	6.6 ± 0.32
	histidine	$\textbf{3.0} \pm \textbf{0.22}$
	glutamine	0.8 ± 0.04
	aspartate	0.2 ± 0.02
Reverse		
4-hydroxyphenylpyruvate ^b	phenylalanine	5.8 ± 0.19
	glutamate	$\textbf{5.2} \pm \textbf{0.29}$
	methionine	5.0 ± 0.23
	leucine	4.6 ± 0.16
	tryptophan	$2.7 \pm \ 0.04$
	histidine	$1.4 \pm \ 0.04$
	glutamine	0.3 ± 0.05
	aspartate	$0.1\pm~0.06$

Supplementary Table S2 | Amino donor specificities of petunia PhPPY-AT for forward and reverse reactions.

^aPhenylpyruvate concentration was 10 mM.

^b4-hydroxyphenylpyruvate concentration was 4 mM since at higher concentrations inhibition was observed

^cAmino donor substrate concentration was 10 mM.

^dPhPPY-AT activity with phenylpyruvate and tyrosine as substrates was 23.6 nkat mg protein⁻¹ and set as 100%.

Data are means \pm s.e.m. (*n* = 3 independent experiments).

Supplementary Table S3 | Keto acid substrate specificities of petunia PhPPY-AT.

keto acid substrate ^a	amino donor ^b	PhPPY-AT
Phenylpyruvate	L-tyrosine	100 ^c
α-ketoglutarate		44.0 ± 1.04
Oxaloacetate		$\textbf{2.1} \pm \textbf{0.13}$
Prephenate		n.d.
Pyruvate		n.d.
Phenylpyruvate	L-glutamate	$\textbf{12.2}\pm\textbf{0.96}$
Pyruvate		$\textbf{4.2} \pm \textbf{0.23}$
Oxaloacetate		$\textbf{2.8} \pm \textbf{0.40}$
4-hydroxyphenylpyruvate		$\textbf{2.5} \pm \textbf{0.08}$
Prephenate		n.d.

^aKeto acid and amino donor^b substrate concentrations were 10 mM.

^cPhPPY-AT activity with phenylpyruvate and tyrosine as substrates was 23.6 nkat mg protein⁻¹ and set as 100%.

Data are means \pm s.e.m. (*n* = 3 independent experiments).

n.d., not detectable

Supplementary Table S4 | Catalytic activity of CmArAT1

$\begin{array}{rcl} \mbox{Reactions}: \mbox{Phenylpyruvate} + \mbox{Tyrosine} & \leftrightarrow & \mbox{Phenylalanine} + \mbox{4-hydroxyphenylpyruvate} \\ & \mbox{Phenylpyruvate} + \mbox{Glutamate} & \leftrightarrow & \mbox{Phenylalanine} + \mbox{\alpha-ketoglutarate} \end{array}$		
keto acid substrate ^a	amino donor ^b	<i>Vmax</i> (nmol s ⁻¹ mg protein ⁻¹)
Forward		
Phenylpyruvate	tyrosine ^a	54.59 ± 1.94
Phenylpyruvate	glutamate ^a	1.47 ± 0.02
Reverse		
4-hydroxyphenylpyruvate	phenylalanine ^b	12.35 ± 0.39
a-ketoglutarate	phenylalanine ^b	8.19 ± 0.08

Enzymatic reactions were carried out at 30°C for 10 min in the presence of 5 μ g of recombinant CmArAT1. When tyrosine was used as an amino donor, 0.3 μ g of CmArAT1 was used and

reactions were carried out at 30°C for 3 min.

^aKeto acid and amino donor^b substrate concentrations were 10 mM.

Data are means \pm s.e.m. (*n* = 3 independent experiments).

Supplementary Table S5 | Amino donor specificity of CmArAT1 with phenylpyruvate as the amino acceptor.

keto acid substrate	amino donor ^b	CmArAT1
phenylpyruvate ^a	tyrosine	100.0 ^c
	glutamate	$2.7{\pm}0.04$
	methionine	2.6 ± 0.07
	leucine	$\textbf{3.8}\pm\textbf{0.43}$
	tryptophan	$\textbf{3.5}\pm\textbf{0.38}$
	histidine	0.96 ± 0.09
	glutamine	0.15 ± 0.008
	aspartate	n.d.

Enzymatic reactions were carried out at 30°C for 10 min in the presence of 5 μ g of recombinant CmArAT1. When tyrosine was used as an amino donor, 0.3 μ g of CmArAT1 was used and reactions were carried out at 30°C for 3 min.

^aPhenylpyruvate and amino donor^b substrate concentrations were 10 mM.

^cCmArAT1 activity with phenylpyruvate and tyrosine as substrates was 54.6 nkat mg protein⁻¹ and set as 100%.

Data are means \pm s.e.m. (*n* = 3 independent experiments).

n.d., not detectable

Supplementary Table S6 | Sequence information of primers used for qRT-PCR analysis

Primers	Sequence
PhADT1 for ¹⁶	5'-TAACTGCGAAGCCATTCCCTGC-3'
PhADT1 rev ¹⁶	5'- CTCTACTGGTAGAACTGCGCG-3'
PhADT2 for ¹⁶	5'-ACGAAGTTGGGTTTGGTCAG-3'
PhADT2 rev ¹⁶	5'- TGCCCCTGCATCTTTTAGTT-3'
PhADT3 for ¹⁶	5'-CAAAATGTGAAGCTATTCCTTGTG-3'
PhADT3 rev ¹⁶	5'-TTCGATCGGTAAAACAGCACG-3'
PhCM1 for ¹⁶	5'-CCTGCTGTTGAAGAGGCTATCA-3'
PhCM1 rev ¹⁶	5'-CAGGGTCACCTCCATTTTCTG-3
PhPPA-AT for ¹⁷	5'-GCAATGACTGGTTGGAGACTTG-3'
PhPPA-AT rev ¹⁷	5'-TCACATCAGGTGCCAGTAGCA-3'
PhUBQ for ¹⁶	5'-GTTAGATTGTCTGCTGTCGATGGT-3'
PhUBQ rev ¹⁶	5'-AGGAGCCAATTAAAGCACTTATCAA-3'
AtTYDC for ³⁸	5'-GATCCAAGTTTTGAGGTTGTCACTA-3'
AtTYDC rev ³⁸	5'-ACGGTTACGTTCGTTACATTGG-3'