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Supplementary Figure 1: Resistance (red lines) and its first derivative oR/ST plotted
(black squares) plotted as a function of temperature for Sr3(Ir;-xRux),O7 samples with (a)
x=0.35, (b) x=0.32, (c) x=0.3, and (d) x=0.17 respectively. Vertical dashed lines show the
temperature Tyt plotted in the electronic phase diagram of Fig. 1 (a) in the paper’s main
text. Shaded grey region shows the uncertainty in determining Ty. Ru X-concentrations
were measured for each sample with the corresponding uncertainty displayed in each
panel. Resistance and dR/6T are plotted as raw data in arbitrary units without geometric

conversion to resistivity.
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Supplementary Figure 2: (a) " as a function plotted as a function of temperature. A
500 Oe field was applied parallel to the ab-plane for all concentrations with the exception
of x=0.2 where a 1 T field was applied. Solid lines are fits to Curie-Weiss behavior. (b)
Zero-field cooled (ZFC) and field cooled (FC) magnetization data collected for the
x=0.75 concentration. 1 emu g+ Oe™ = 47 x 10”° m*/kg.
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Supplementary Figure 3: Radial scans through the antiferromagnetic Bragg reflection
Q=(1,0,2) for select concentrations of Srs(Ir;-xRux).O7. Intensity for each sample has
been divided by the integrated area of the sample’s corresponding Q=(2,0,6) nuclear
Bragg reflection. Before correcting for minor changes in absorption and extinction
between Ru-concentrations this plot provides a rough illustration of the moment
evolution as a function of x. Solid lines are Gaussian fits to the data. Error bars are one
standard deviation. An additional sample, not plotted here, with nominal x=0.32 was
measured with a normalized scattering intensity that saturates at 0.3 (off the scale) and
the corresponding AF moment plotted in Fig. 3 (c) of the main text.
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Supplementary Figure 4: Lattice parameters determined via powder x-ray diffraction
on crushed crystals plotted as a function of Ru-doping for Srz(Ir;xRuy).0; at 300K. Data
was refine using the FullProf Rietveld refinement program®. Dashed line is a guide to the
eye. While the reduction in lattice constants is monotonic, it is not linear and seemingly
maps the nonlinear contraction previously observed in Sry(IrxRuy)O4.2 Error bars are
one standard deviation.
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