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Supplementary Figure 1.  The model performance of the EC-LUE model (a), EC-LUE-2p 

model (b), MODIS-GPP product (c) and CASA model (d) at all investigated sites. The values were 

site-averaged GPP over the study periods shown in Supplementary Table 1. The red lines are the 

1:1 lines, and the black solid lines are the linear regression lines. The EC-LUE-2p model 

significantly improved GPP predictions by considering the impact of moss.   
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Supplementary Figure 2.  Model comparison of simulated GPP values (a), coefficient of 

determination (R
2
) (b), predictive error (PE) (c) and relative predictive error (RPE) (d) among the 

EC-LUE, EC-LUE-2p, MODIS-GPP, and CASA models. Boxplots with median, upper and lower 

quantiles, minimum and maximum or outliers (points).  
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Supplementary Figure 3.  Eight-day variation in estimated GPP from EC measurements (open 

circles) and predicted GPP using the EC-LUE model (black solid lines) at all sites. The numbers 

within parentheses are stand age. 
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Supplementary Figure 4.  Eight-day variation in estimated GPP from EC measurements (open 

circles) and predicted GPP using the EC-LUE-2p model (black solid lines) at all sites. The 

numbers within parentheses are stand age. 
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Supplementary Figure 5.  Fractional contribution of moss to ecosystem GPP (simulated) and 

NPP (observed). Observations of mosses and vascular plants derived from the previous study
1
. 

Stand age for each site: CA-NS7 (4 year), CA-NS95 (7 year), CA-NS6 (13 year), CA-NS5 (21 

year), CA-NS3 (38 year), CA-NS2 (72 year) and CA-NS1 (152 year). The insert shows the 

comparison of simulated and observed ratio. The dashed line is the 1:1 line, and the regression 

line is y = 0.64x + 0.05, R² = 0.89, n = 7, p < 0.05.  
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Supplementary Figure 6.  The relationship between MODIS-fPAR product and the calculated 

fPAR using linear relationship of NDVI in this study. The red lines indicate the 1:1 line. The 8-day 

MODIS-fPAR product was used in this analysis. 
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Supplementary Figure 7.  Model validation of EC-LUE-2p with calculated K_NDVI based on 

the relationship between K_NDVI and stand age. (a) Model validation for a given site using the 

relationship between K_NDVI and stand age, derived including all sites. (b) Model validation for a 

given site using the relationship based on other sites excluding this site. The 1:1 lines are red, and 

regression lines are black. The numbers in the figures indicate the site-averaged GPP values over 

the study period shown in Supplementary Table 1.   
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 Supplementary Table 1  The eddy covariance sites used in this study 

ID
1
 Site

2
 Lat

3
 Long

4
 Age

5
 AMT

6
 AP

7
 Period

8
 Reference 

1 

CA-NS1 55.88 -98.48 152 -2.89 500.29 2002-2005 2 

2 

CA-NS2 55.91 -98.52 72 -2.88 499.82 2001-2005 2 

3 

CA-NS3 55.91 -98.38 38 -2.87 502.22 2001-2005 2 

4 

CA-NS95 55.90 -98.21 7 -2.93 498.21 2001-2005 1 

5 

CA-NS5 55.86 -98.49 21 -2.87 500.34 2001-2005 2 

6 

CA-NS6 55.92 -98.96 13 -3.08 495.37 2001-2005 2 

7 

CA-NS7 56.63 -99.95 4 -3.52 483.27 2002-2005 2 

8 

CA-Oas 53.63 -106.19 83 0.34 428.53 2000-2005 3 

9 

CA-Obs 53.99 -105.12 111 0.79 405.60 2000-2005 4 

10 

CA-Ojp 53.92 -104.69 91 0.12 430.50 2000-2005 5 

11 

CA-Qcu 49.26 -74.04 57 0.13 949.00 2003-2005 6 
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12 

CA-Qfo 49.69 -74.34 100 0.00 961.31 2003-2005 4 

13 CA-Sf1 54.48 -105.82 25 -0.15 423.69 2003-2005 7 

14 CA-Sf2 54.25 -105.88 13 -0.88 435.12 2001-2005 7 

15 CA-Sf3 54.09 -106.01 4 0.08 441.78 2001-2005 7 

16 CA-Sj1 53.91 -104.66 8 0.13 430.23 2001-2005 8 

17 CA-Sj2 53.95 -104.65 0 0.11 430.33 2003-2005 9 

18 CA-Sj3 53.87 -104.65 27 0.13 433.33 2003-2005 8 

19 FI-Hyy 61.85 24.28 40 2.18 620.20 2000-2003 10 

20 RU-Fyo 56.46 32.92 183 4.91 704.00 2000-2006 11 

21 RU-Zot 60.80 89.35 200 -3.27 536.00 2002-2004 12, 13 

22 SE-Fla 64.12 19.45 28 0.27 615.98 2001-2002 14 

23 SE-Nor 60.08 17.47 100 5.45 561.02 2003 14 

24 TUR 64.12 100.46 102 -9.17 317.00 2004 - 

25 YLF 62.25 129.25 160 -10.40 259.00 2004 15 

26 YPF 62.25 129.65 60 -10.40 259.00 2004 16 

1
Site label. 

2
Abbreviation of EC site name. 

3
Positive values indicate north latitude. 

4
Negative 

values indicate west longitude, and positive values indicate east longitude. 
5
Stand age in 2002. 

6
Annual mean temperature (℃). 

7
Total annual precipitation (mm). 

8
The study period.  
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Supplementary Notes 

 

Supplementary Note 1 

Data at the EC sites 

Data obtained at 26 EC sites in North America, Europe and Asia were used in this study 

to validate 4 LUE models and to calibrate the EC-LUE-2p model (Supplementary Table 1). They 

covered various stages of ecological successions in the boreal biome: deciduous broadleaf forests, 

mixed forests, evergreen needleleaf forests and grasslands. The EC data used in this study were 

obtained from the websites of AmeriFLUX (http://public.ornl.gov/ameriflux), CarboEuropeIP 

(http://gaia.agraria.unitus.it/database/carboeuropeip/), Canada-FLUXNET 

(http://www.fluxnet-canada.ca/) and AsiaFlux (http://www.asiaflux.net/). Supplementary 

information on the vegetation, climate, and soil at each site is available online. Half-hourly or 

hourly averaged PAR, T and friction velocity (u
*
) were used with net ecosystem exchange of 

CO2 (NEE) in this study. Datasets that were gap-filled by site investigators were used directly for 

this study (i.e., the LaThuile database)
17

.  

For the sites that were not in the LaThuile database (i.e., TUR, YLF, YPF; 

Supplementary Table 1), the following established procedures were used to process the data
18

. 

Nonlinear regression relationships between measured fluxes and controlling environmental 

variables (air temperature, PAR) were fit to fill the missing data using a 15-day moving window. 

The van’t Hoff equation was used to fill the missing nighttime NEE (Fc,night)
19

:  
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where A and B are estimated model coefficients, and T is air temperature. A Michaelis-Menten 

light response equation was used to fill the missing daytime NEE (Fc,day)
20

: 
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where FGPP,sat (GPP at saturating light) and α (initial slope of the light response function) are 

empirically estimated coefficients, and FRE,day (ecosystem respiration) was estimated by 

extrapolation of Eq. (3) using the daytime air temperature. Daily NEE, ecosystem respiration 

(Re), and meteorological variables were synthesized based on half-hourly or hourly values, and 

the daily values were recorded as missing when more than 20% of the data from a given day was 

missing; otherwise, daily values were calculated by multiplying the averaged half-hourly or 

hourly rate by 24 hours
21

. GPP was calculated as the sum of NEE and Re. Based on the daily 

dataset, 8-day GPP mean value can be calculated. If more than 2 days of daily data were missing 

within a given 8-day period, the 8-day value was indicated as missing.  
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