
Supplementary information

Supplementary Figures

Supplementary Figure 1: Microscopic magnetic model and the effective model.
a, microscopic magnetic model is based on five leading couplings: JFM

W , JAF
S , JFM

S , JAF
W , and

JAF
O...O. Strong tetrahedra are shaded. JAF

S and JFM
S are shown only for the central strong

tetrahedron. b, effective model with two different types of ferromagnetic effective couplings:
via JAF

W /JAF
O...O and via JFM

W (compare with a).
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Supplementary Figure 2: Structural building blocks of Cu2OSeO3. In the crystal
structure of Cu2OSeO3, the magnetic building blocks are strong (a) and weak (b) tetrahedra.
Cu(1) and Cu(2) atoms are denoted as “1” and “2”, respectively. SeO3 pyramids are shown
green. c, the long-range exchange JAF

O...O runs via the O..O edge of a SeO3 group.
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Supplementary Figure 3: Comparison of QMC and different MF theories with
the experimental magetization. Temperature dependence of the magnetization at 0.5 T,
from experiments (Ref. 1) (black symbols), QMC simulations of the microscopic S = 1

2 model
(red solid line, see also Figure 3), the mean-field theory in the S = 1

2 model (dashed blue line),
the mean-field theory in the effective S = 1 model (dotted blue line), and the tetrahedral
mean-field theory (dashed green line).
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Supplementary Figure 4: Nonmagnetic GGA band structure calculations. a,
GGA density of states (DOS) of the valence band of Cu2OSeO3. b, GGA band structure
of Cu2OSeO3. The 16-bands manifold of the magnetically active states is well-reproduced by
Cu-based Wannier functions (lines). The Fermi level is at zero energy. c, total density of
states (DOS) and orbital-resolved DOS for the magnetically active Cu(1) 3d3z2−r2 and Cu(2)
3dx2−y2 states.
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Supplementary Tables

Supplementary Table 1: Leading transfer integrals (hoppings) in Cu2OSeO3: type of Cu
atoms involved in the exchange, their positions ri and rj , their distance d = |ri − rj | (in Å),
transfer integrals tij (in meV), and antiferromagnetic superexchange JAF

ij (in K). Transfer
integrals are evaluated as nondiagonal elements between the Wannier functions for Cu(1)
3d3z2−r2 and Cu(2) 3dx2−y2 states. JAF

ij is evaluated as 4t2/Ueff for Ueff =4.5 eV.

transfer integral atoms ri rj d = |ri − rj| tij JAF
ij

tFM
W Cu(2)-Cu(2) ρ5 ρ12 3.039 −55 31
tAF
S Cu(1)-Cu(2) ρ4 ρ11 3.057 −170 298
tFM
S Cu(2)-Cu(2) ρ8 ρ15 3.220 −31 10
tAF
W Cu(1)-Cu(2) ρ1 ρ8 3.300 −106 116

tAF
O...O Cu(1)-Cu(2) ρ4 ρ12 6.352 −68 48
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Supplementary Notes

Supplementary Note 1

The cubic crystal structure of Cu2OSeO3 is formed by three different types of polyhedra:

trigonal bipyramids Cu(1)O5, distorted plaquettes Cu(2)O4 and nonmagnetic SeO3 pyramids.

The actual positions of the magnetic Cu atoms are given in the Methods section.

Our study reveals that Cu2OSeO3 features two types of magnetic tetrahedra: strong

tetrahedra, comprising strong magnetic couplings (JAF
S and JFM

S ), and weak tetrahedra, where

the magnetic couplings are substantially weaker (JFM
W and JAF

W ). These tetrahedra also differ

on the structural level: in the strong tetrahedra, Cu(1)O5 and Cu(2)O4 polyhedra share three

common O..O edges (Supplementary Figure 2, a), whereas in the weak tetrahedra, they share

a common O atom, only (Supplementary Figure 2, b).

The long-range magnetic coupling JAF
O...O is mediated by the O..O edge of SeO3 group (Sup-

plementary Figure 2, c), which provides a substantial σ-overlap of magnetic Cu(1) 3d3z2−r2

and Cu(2) 3dx2−y2 orbitals with respective O 2p orbitals.

Supplementary Methods

1. DFT calculations

Nonmagnetic calculations

The initial step of our computational procedure is a nonmagnetic band structure calculation.

For the nonmagnetic calculations, we used an 16×16×16 k-mesh with 368 points in the

irreducible wedge. LDA and GGA yield marginally different band structures, thus we restrict

our analysis to the GGA. The valence band width of 8.5 eV (Supplementary Figure 4, a) is

similar to the related Cu2+ compounds. The energy range between−8 and−6 eV is dominated

by Se and O states, typical for covalent Se–O bonds. The rest of the valence band is formed

by Cu and O states.

The metallic spectrum contrasts with the experimentally proven insulating nature of

Cu2OSeO3 [2]. This drawback of LDA and GGA stems from the underestimation of strong

electronic correlations, inherent to the spatially confined 3d orbitals of Cu. The insulating

state can be restored by adding the missing on-site correlations within a Hubbard model, or

using the mean-field DFT+U formalism.

The magnetic properties of Cu2OSeO3 are ruled by the sixteen bands in the vicinity of the

Fermi level (Supplementary Figure 4, b). The orbital character of the magnetically active

states can be analysed by projecting these bands onto a local coordinate system. In the

trigonal bipyramids Cu(1)O5, the z axis connects the apices, the x axes runs along one of the

Cu(1)–O bonds lying in the basal plane. For Cu(2) plaquettes, the local x-axis runs along one
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of the Cu(2)–O bonds, while the z-axis is perpendicular to the plaquette plane. In this way,

we find that the magnetically active (half-filled) orbitals are 3z2−r2 for Cu(1) and x2−y2 for

Cu(2) (Supplementary Figure 4, c). In cuprates, such an alternation of magnetically active

orbitals is very scarce, it was recently suggested for the spin-1/2 frustrated magnet volborthite

Cu3V2O7(OH)2·2H2O [3].

Since the number of magnetically relevant bands (16) matches the number of Cu atoms in

the unit cell, the magnetism of Cu2OSeO3 can be described by an effective one-orbital model

within the tight-binding approximation:

ĤTB = −
∑
i>j,σ

tij(ĉ
†
iσ ĉjσ + ĉ†jσ ĉiσ)−

∑
i,σ

εi ĉ
†
iσ ĉiσ,

where tij and εi are the transfer integrals and the on-site energies, respectively. To parameter-

ize the model, we resort to localized Wannier functions for Cu(1) 3dz2−r2 and Cu(2) 3dx2−y2

states, and evaluate the model parameters tij and εi as nondiagonal and diagonal elements,

respectively (see Ref. 4 for the methodological aspects). In this way, we find that only four

transfer integrals tij are larger than 40 meV: tAF
S , which couples Cu(1) and Cu(2) in the strong

tetrahedra; two inequivalent couplings tFM
W and tAF

S in the weak tetrahedra, as well as the

long-range coupling tAF
O...O mediated by the O...O edge of a SeO3 pyramid.

These four terms, supplemented with the short-range coupling tFM
S (this superexchange

pathway facilitates a substantial ferromagnetic component to the respective magnetic ex-

change, see below), constitute a minimal basis for the microscopic magnetic model (Supple-

mentary Table 1 and Supplementary Figure 1, a.

The resulting transfer integrals can be mapped onto an effective tight-binding model,

which is in turn supplemented by a Hubbard term, in order to restore the insulating ground

state. In the strongly correlated limit (Coulomb repulsion Ueff dominates over electron trans-

fer tij) and at half-filling, both well-justified for undoped cuprates, the lowest-lying (magnetic)

excitations of this Hubbard model can be described by a Heisenberg model with the antifer-

romagnetic exchange JAF
ij = 4t2ij/Ueff [5]. The JAF

ij estimates are given in Supplementary

Table 1.

In this approach, only the antiferromagnetic contribution to the magnetic exchange can

be estimated. To account for the ferromagnetic contribution, which can be especially large

for short-range couplings, we use DFT+U calculations.

DFT+U calculations

DFT+U calculations are a standard computational tool for orbitally-ordered insulators. In

this method, the missing electronic correlations are added in the static mean-field approxima-

tion, by introducing an additional on-site Coulomb repulsion Ud and on-site Hund’s exchange

Jd that are applied to the d states of Cu. Such an alteration favors integer occupation numbers
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and restores the insulating ground state [6, 7].

Accurate estimation of the parameters Ud and Jd is a challenging task. These on-site

terms are applied to a particular manifold of states, only, which is unphysical and impedes

an independent experimental estimation of the parameters. Moreover, the values of Ud and

Jd can vary depending on the way the d orbitals are defined in the code (basis dependence).

Here, to estimate the on-site repulsion and exchange, we performed auxiliary constrained

LDA calculations using the TB-LMTO-ASA code [8]. Following the calculational procedure from

Ref. 9, we obtain Ud = 10.5 eV and 9.5 eV for Cu(1) and Cu(2), respectively. Jd is very close

to 1 eV for both Cu atoms. We adopt these values and perform DFT+U calculations using

the vasp code. For the double-counting correction, we use the fully localized limit [10].

A standard way to evaluate exchange integrals are total energy DFT+U calculations for

magnetic supercells. In the case of Cu2OSeO3, the crystallographic cell (16 Cu atoms) suffices

to evaluate all five relevant exchanges. Numerical estimates for the magnetic exchanges Jij

are obtained by mapping the DFT+U total energies onto a classical Heisenberg model:

E = E0 +
∑
{ij}

Jij Si · Sj , (1)

where {ij} labels all relevant interaction bonds. In a scalar-relativistic calculation, the spin-

orbit coupling is neglected, thus only collinear configurations can be treated: Si ·Sj is either 1
4

or −1
4 . The exchange integrals Jij (Table 1) are evaluated as solutions to a redundant system

of 15 linear equations of the type Eq. (1).

Full-relativistic DFT+U calculations

The Dzyaloshinskii-Moriya couplings are estimated by mapping the full-relativistic DFT+U

total energies for different staggered magnetic configurations onto the classical bilinear ex-

change model:

E′ =
∑
i>j

∑
α,β

Mα,βS
α
i Sβj (α, β = x, y, z), (2)

where all anisotropic exchange terms are comprised in the 3×3 matrix M . The antisymmetric

part of this matrix contains the components of the Dzyaloshinskii-Moriya vector D: 0 Dz −Dy

−Dz 0 Dx

Dy −Dx 0

 (3)

To estimate the matrix elements of M, we use the four-state mapping method developed by

Xiang and coworkers [11]. The total energies are calculated using full-relativistic DFT+U

implemented in vasp code on a 2×2×2 k-mesh. The resulting energies were carefully checked

for convergence. The resulting DM anisotropies are provided in Supplementary Table 1.
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2. QMC simulations

To verify and refine the DFT+U estimates for the isotropic exchange couplings, we performed

Quantum Monte Carlo (QMC) simulations of the temperature dependence of the magnetic

susceptibility χ∗ (for the paramagnetic state) and the magnetization M∗ (for the magnetically

ordered state), as well as finite-size dependence of the spin stiffness (for the magnetic ordering

temperature TC).

Simulations of χ∗(T ∗) were done using the code loop (Ref. 12) from the software package

ALPS version 1.3.[13] Simulations were performed on finite lattices of 8192 spins S = 1
2 us-

ing periodic boundary conditions, with 40 000 sweeps for thermalization and 400 000 sweeps

after thermalization. The simulated curves are fitted to the experimental χ(T ) dependence

(digitized data from Ref. 2) using the following expression:

χ(T ) =
NAg

2µ2
B

kB J
· χ∗
(

T

kB J

)
. (4)

We adopted the experimental value g= 2.11 measured using ESR [14]. Thus, the only free

parameter is the overall energy scale J . The fit yields J = 170 K, slightly exceeding the

DFT+U estimate for JAF
S (149.2 K). Thus, we scaled all DFT+U estimates for the isotropic

couplings by a factor of 1.14 to obtain the correct experimental energy scale, see Table 1.

In the next step, we verified the magnetic ordering temperature. To this end, we sim-

ulated spin stiffness ρS for different finite lattice sizes, and performed a finite-size scaling.

The quantity ρSL is independent of the linear dimension L of the finite lattice at the order-

ing temperature [15]. Thus, the crossing point in Figure 3 (b) directly yields T/J ' 0.34.

Adopting J = 170 K, we obtain TC' 58 K, in excellent agreement with the experimental

T exp
C = 60 K [2, 16].

Finally, to address the magnetically ordered state, we simulated the temperature depen-

dence of the magnetization in different magnetic fields. These simulations were performed

using the code dirloop sse (Ref. 17) from the software package ALPS version 1.3 [13]. The

simulated M∗(T ∗) curves were scaled using the following expression

M(T ) = gM∗
(
T ∗

kBJ

)
, (5)

adopting J = 170 K obtained from the fit to the χ(T ) data and the experimental g= 2.11 [14].

In this zero-parameter fit, we obtain excellent agreement with the experimental M(T ) mea-

sured in magnetic fields of 0.5, 4.5, and 14 Tesla, see Figure 3, a.

Comparison with previous ab initio studies — The ab initio results for the exchange

constants reported by Yang et al. (Ref. 18) are generally much smaller than our estimates (The

exchange couplings reported in Ref. 18 are: JAF
S = 75.82 K, JAF

W = 10.44 K, JFM
S =−42.86 K,

JFM
W =−13.14 K, and JAF

O...O =11.42 K). For example, the dominant antiferromagnetic coupling
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is 75.82 K in Ref. 18, which is more than two times smaller than our result of ∼ 170 K. At

the mean-field level, the parameters of Ref. 18 give T
MF,S= 1

2
C '58.55 K, which is very close to

T exp
C ' 60 K [2, 16]. However, the presence of two well-separated exchange energy scales in

the problem gives rise to strong quantum-mechanical correlations that are not captured by

the mean-field theory. As shown in the main paper, one of the main consequences of these

correlations is that the effective energy scale responsible for the ordering is much smaller than

the microscopic exchange couplings. So in contrast to the mean-field theory, the exchange

parameters of Ref. 18 actually give a number which is about three times smaller than T exp
C .

This can be seen e.g. by using the mean-field theory of the effective S = 1 model, which

captures most of the quantum-mechanical correlations, yielding (see 13 below) TMF,S=1
C '

18.23 K, that drastically underestimates the experimental TC.

3. Mean-field theories

One of the central aspects of Cu2OSeO3 that derives from the effective, strong coupling

picture is that only the weak exchange couplings are essential for the basic helimagnetism

below TC. This aspect can be demonstrated more explicitly by considering three mean-field

(MF) treatments of the problem: a single-site MF in the original spin-1/2 model, a single-site

MF in the effective spin-1 model, and a tetrahedral MF treatment of the original spin-1/2

problem. In all of them we disregard the DM couplings since they are much smaller than

the exchange couplings and so they are not expected to affect much the T -dependence of the

magnetization (at high enough T ) or the value of TC .

Single-site mean-field theory in the bare S = 1
2 model

The single-site mean-field theory in the bare S = 1
2 model has been worked out in Ref. 16

for a simplified model with only two bare exchange couplings. Here we repeat the same steps

using the present set of exchange couplings from ab initio calculations. We begin by writing

down the mean-field Hamiltonian for an isolated spin S = 1
2 in a local magnetic field. Given

that there are two types of Cu sites we consider two different local fields B1 and B2:

HMF,S= 1
2

Cu(1) = −B1 · SCu(1), HMF,S= 1
2

Cu(2) = −B2 · SCu(2) . (6)

Assuming B1,2 = B1,2z, the solution for the magnetizations at temperature T are given by

the well known formula:

〈SzCu(1)〉 =
1

2
tanh(βB1/2), 〈SzCu(2)〉 =

1

2
tanh(βB2/2) , (7)

where β = 1/(kBT ). To proceed we must relate the local fields to the local magnetizations

by examining the connectivities of the various couplings. Each Cu(1) site interacts with nine

Cu(2) spins: three via JAF
S , plus three via JAF

W , plus three via JAF
O...O. On the other hand,
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each Cu(2) spin interacts with four Cu(2) spins (two via JFM
S plus two via JFM

W ), and three

Cu(1) spins (one via JAF
S , plus one via JAF

W , plus one via JAF
O...O). Therefore

B1 = B0 − j12〈SzCu(2)〉, B2 = B0 − j21〈SzCu(1)〉 − j22〈SzCu(2)〉 , (8)

where B0 is the external magnetic field, and j21 ≡ JAF
S +JAF

W +JAF
O...O>0, j12 ≡ 3j21, and

j22≡2(JFM
S +JFM

W )<0. Replacing Eqs. (8) into Eqs. (7) gives two non-linear equations which

must be solved self-consistently in order to obtain the magnetizations as a function of T and

B0. The full T -dependence of the total magnetization is shown in Supplementary Figure 3.

Within this mean-field approximation, the transition temperature T
MF,S= 1

2
C can be found

by setting B0 = 0 and expanding the right hand side of Eqs. (7) for small B1,2 (which is

equivalent to the region of small SzCu(1) and SzCu(2)), which yields

T
MF,S= 1

2
C =

1

4

 |j22|
2

+

√(
j22

2

)2

+ j12j21

 . (9)

Using our ab initio couplings we get a numerical value of T
MF,S= 1

2
C ' 0.919JAF

S ' 156.23 K

(see also Supplementary Figure 3), which is more than two times larger than the experimental

value of T exp
C ' 60 K. As explained in the main body of the paper, the reason for this large

discrepancy is rooted in the fact that the elementary magnetic degrees of freedom that order

at TC are not the bare S = 1
2 Cu2+ spins but the effective S = 1 entities of each strong

tetrahedron. As we show below, doing the mean-field decoupling in the effective S = 1 model

delivers a much better estimate for TC.

Single-site mean-field theory in the effective S = 1 model

The single-site mean-field theory in the effective S = 1 model is based on the solution of the

quantum-mechanical problem of an isolated spin S = 1 in a magnetic field B,

HMF,S=1 = −B · S . (10)

Taking again B = Bz, the solution for the magnetization at temperature T is given by the

S = 1 Brillouin function:

〈Sz〉 = BS=1(βB) =
2 sinh(βB)

1 + 2 cosh(βB)
. (11)

Using the fact that each S = 1 site has six nearest neighbors and six next-nearest neighbors

and replacing

B = B0 − 6(J1 + J2)〈Sz〉 (12)
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in Eq. (11), where B0 is the external magnetic field, gives a non-linear equation which must

be solved self-consistently to find 〈Sz〉 as a function of T and B0. The full T -dependence of

the total magnetization is shown in Supplementary Figure 3.

In this mean-field theory, the transition temperature TMF,S=1
C can be found by setting

B0 = 0 and expanding the right hand side of Eq. (11) around the limit of small B (or small

〈Sz〉). We find

TMF,S=1
C = −4(J1 + J2). (13)

Using our values for J1 and J2 we find TMF,S=1
C = 64.7 K, which is rather close to the

experimental value, see also Supplementary Figure 3.

Tetrahedral mean-field (TMF) theory for S = 1/2

The above single-site mean-field theory in the effective S = 1 model has two main problems,

one at very high T and another at low T . At very high T , we expect a paramagnetic behavior

of isolated S = 1
2 spins, whereas in the spin-1 model the basic building blocks (effective

triplets) retain their integrity at all temperatures. The second problem of the S=1 mean-field

theory is related to the spin-mixing effect discussed in the main paper. Namely, the fact

that the local exchange field exerted from the neighboring tetrahedra admix a finite S = 2

amplitude into the triplet ground state, leading to renormalized values for the local spin

moments at zero temperature (Table 2).

To account for these two problems we solve the tetrahedral mean field (TMF) Hamiltonian

discussed in the main text (see Methods section) at finite temperatures. This can be done

numerically using e.g. an iterative self-consistent procedure. The full T -dependence of the

total magnetization is shown in Supplementary Figure 3 along with the previous mean-field

theories, QMC results on finite-size clusters as well as experimental data at 0.5 Tesla. Using

our ab initio values for the exchange couplings we find the transition temperature T
TMF,S= 1

2
c '

0.47JAF
S ' 79.9 K. So, although the tetrahedral mean-field theory captures better the T = 0

physics (local magnetizations, spin-mixing effect, etc) compared to the S = 1 mean-field

theory, the latter overestimates TC much less.

Cubic anisotropy from magneto-electric effect

As mentioned in the main text, one source of the cubic anisotropy constant K1 may come

from the magnetoelectric (ME) coupling. Here we show that the actual numerical value of

that contribution, as extracted from experimental ME data, is too small to be the relevant

source of this anisotropy.

The ME coupling in Cu2OSeO3 has the following form[19]:

VME(P,M) = λME (PxMyMz + PyMzMx + PzMxMy) , (14)
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where P is the electric polarization density and λME is the ME coupling constant. Integrating

out the polarization gives[19]:

P/χe = λME (MyMz,MzMx,MxMy) , (15)

where χe is the dielectric susceptibility. Replacing in Eq. (14) gives an extra contribution to

the energy

V ′ME(M) = λ2
MEχe

[
(MyMz)

2 + (MzMx)2 + (MxMy)
2
]
, (16)

which identifies the ME contribution to K1 to be KME
1 = λ2

MEχe. Note that the sign of the

prefactor is positive, regardless of the sign of the coupling constant λME, meaning that this

contribution favors the cubic [100] axes as the easy axis and the [111] axes as the hard axes, in

agreement with experiment.[19, 20] However, as we show below, KME
1 is too small compared

to the value of K1 ' 1.0 × 10−16 J m
A4 , which was found by fitting the magnetization process

along the (100) direction (see main text).

The dielectric constant can be extracted from the dielectric measurements of Figure 5 of

[19], which at low temperatures give

χe ' 6 ε0 = 5.31251× 10−11 A2 s2

J m
. (17)

Next, we use the experimental polarization data of Figure 17 of [19] to extract the low-T

polarization P ? at the field-aligned ferrimagnetic plateau state for the orientation with the

maximum response (θ = 45◦):

P ? ' 13.75 µC/m2 . (18)

The coupling constant λME then follows from formula (19) (in the notation of [19], λME =

ξ+/2):

λME =
P ∗

χeM2
sat(0)

' 2.1× 10−5 J m

A3 s
, (19)

where we used Msat(0) = 111.348 kA/m, for the low-temperature value of the magnetization

at the plateau. In turn, this gives

KME
1 = λ2

ME χe ' 2.3× 10−20 J m

A4 . (20)

which is about four orders of magnitude smaller than the above given value of K1. This shows

that the cubic anisotropy K1 does not originate in the ME coupling.

4. Lattice Summations

Here we give the explicit forms of a number of lattice summations that appear in the derivation

of the effective model in the trillium lattice. In what follows 〈ij〉 and 〈〈ij〉〉 denote NN and
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NNN of the trillium lattice, respectively. We begin with the sums that are needed for the

exchange portion of the energy density.

∑
〈ij〉

ηi,µ=
∑
〈〈ij〉〉

ηi,µ=−
∑
〈ij〉

ηj,µ=−
∑
〈〈ij〉〉

ηj,µ=(8, 4, 0),
∑
〈ij〉

ηi,µηj,ν=
∑
〈〈ij〉〉

ηi,µηj,ν =

−4 0 −4

0 −4 0

4 0 −4


µν

⇒
3∑

µ,ν=1

∑
〈ij〉

ηiµηjνLµ · Lν =
3∑

µ,ν=1

∑
〈〈ij〉〉

ηiµηjνLµ · Lν = −4(L2
1 + L2

2 + L2
3)

∑
〈ij〉

(∂j − ∂i) = 2(7− 8y)∂z + 8(1− y)∂y,
∑
〈〈ij〉〉

(∂j − ∂i) = 2(9− 8y)∂z + 8(1− y)∂y

∑
〈ij〉

(ηiµ− ηjµ)(∂j − ∂i) = 4(7− 8y){∂z, ∂y, ∂x},
∑
〈〈ij〉〉

(ηiµ− ηjµ)(∂j − ∂i) = 4(9− 8y){∂z, ∂y, ∂x}

∑
〈ij〉

1

2
(∂j − ∂i)2 = (13− 28y + 16y2)∇2,

∑
〈〈ij〉〉

1

2
(∂j − ∂i)2 = (21− 36y + 16y2)∇2

⇒
∑

〈ij〉∪〈〈ij〉〉

1

2
Jij(∂j − ∂i)2 = J∇2 , where J ≡ (13− 28y + 16y2)J1 + (21− 36y + 16y2)J2

∑
〈ij〉

1

2
(ηiµ+ηjµ)(∂j−∂i)2 =8(3− 7y + 4y2){∂x∂y, ∂x∂z, ∂y∂z},

∑
〈〈ij〉〉

1

2
(ηiµ+ηjµ)(∂j−∂i)2 =8(5− 9y + 4y2){∂x∂y, ∂x∂z, ∂y∂z} .

Similarly for the DM energy we shall need the following sums:∑
〈ij〉

Dij(ηjµ − ηiµ) = −8(d2 + d3){ez, ey, ex},
∑
〈〈ij〉〉

Dij(ηjµ − ηiµ) = −8(d′2 + d′3){ez, ey, ex} ,

3∑
µ,ν=1

∑
〈ij〉

ηiµηjνDij · Lµ × Lν = −8(d2 − d3)[(L1 × L2)x + (L2 × L3)z + (L3 × L1)y] ,

3∑
µ,ν=1

∑
〈〈ij〉〉

ηiµηjνDij · Lµ × Lν = −8(d′2 − d′3)[(L1 × L2)x + (L2 × L3)z + (L3 × L1)y] ,

∑
〈ij〉

Dij(∂j − ∂i) = −D(∂x, ∂y, ∂z),

where D ≡ 2[d1 + d2(−3 + 4y) + 4d3(−1 + y)] + 2[d′1 + d′2(−5 + 4y) + 4d′3(−1 + y)].
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∑
〈ij〉∪〈〈ij〉〉

Dij(ηiµ + ηjµ)(∂j − ∂i) =


(q∂y, r∂x, 0), if µ = 1

(r∂z, 0, q∂x), if µ = 2

(0, q∂z, r∂y), if µ = 3

where q = −16(d2 + d′2)(−1 + y) and r = 4d3(3− 4y) + 4d′3(5− 4y).

∑
〈ij〉∪〈〈ij〉〉

Dij(∂j − ∂i)2 =

(
Γxyx ∂x∂y + Γxzx ∂x∂z, Γxxy ∂

2
x + Γyyy ∂

2
y + Γzzy ∂

2
z + Γyzy ∂y∂z,

Γxxz ∂
2
x + Γyyz ∂

2
y + Γzzz ∂

2
z + Γyzz ∂y∂z

)
,

where

Γxyx = 8(−1 + y)[d2(−3 + 4y) + d′2(−5 + 4y)],

Γxzx = 8(−1 + y)[d1 + d′1 + d3(−3 + 4y) + d′3(−5 + 4y)],

Γxxy = d3(3− 4y)2 + d′3(5− 4y)2, Γyyy = 16(d3 + d′3)(−1 + y)2, Γzzy = d3 + d′3,

Γyzy = 2(−3 + 4y)[d1 + 4d2(−1 + y)] + 2(−5 + 4y)[d′1 + 4d′2(−1 + y)],

Γxxz = 16(d2 + d′2)(−1 + y)2 + d3 + d′3, Γyyz = d2 + d′2 + (3− 4y)2d3 + (5− 4y)2d′3,

Γzzz = d2(3− 4y)2 + d′2(5− 4y)2 + 16(d3 + d′3)(−1 + y)2,

Γyzz = 8(d1 + d′1)(−1 + y) .
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[10] M. T. Czyżyk and G. A. Sawatzky, Local-density functional and on-site correlations: The

electronic structure of La2CuO4 and LaCuO3, Phys. Rev. B 49, 14211–14228 (1994).

[11] H. Xiang, C. Lee, H.-J. Koo, X. Gong and M.-H. Whangbo, Magnetic properties and

energy-mapping analysis, Dalton Trans. 42, 823–853 (2013).

16



[12] S. Todo and K. Kato, Cluster algorithms for general-S quantum spin systems, Phys. Rev.

Lett. 87, 047203 (2001).

[13] A. Albuquerque et al., The ALPS project release 1.3: open-source software for strongly

correlated systems, J. Magn. Magn. Mater. 310, 1187–1193 (2007).
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