
 
Supplementary Figure 1. Average crop yields. (a) Maize, (b) Rice, (c) Wheat, (d) Soybean. Averages are over the entire study 

period of 1979-2008. Note that the legend varies with the crop. Gray values indicate regions where crop is not harvested. 
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Supplementary Figure 2. Coefficient of determination of reduced temperature models (  
 ). White areas indicate where 

crop is not harvested or analysed. 



Supplementary Figure 3. Coefficient of determination of reduced precipitation models (  
 ). White areas indicate where 

crop is not harvested or analysed. 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Supplementary Figure 4. Location of weather stations with respect to where maize is harvested in the top ~100 United 
States maize production counties. All weather stations used are shown even though each station did not always have 
continuous weather monitoring and reporting. Counties analysed are shown with white polygons. All the top maize producing 
counties did not have weather stations. The weather stations have a sparse covering necessitating the use of statistically 
corrected gridded weather data that provide complete coverage.  



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Supplementary Figure 5. Scatter of station weather and CRU weather derived year-to-year yield variability explained 
by year-to-year variation in climate. The metric being compared is the R2 or coefficient of determination. The correlation 
coefficient is 0.54 at p<0.0001 (~100 counties). The CRU points are typically below the 1:1 line. 



 
 
 
 
 
 
 

Supplementary Figure 6. Updated main season crop planting and harvested dates for maize and wheat. The legend 
shows Julian days, or January 1 is day 1, and December 31 is represented as day 365. Gray values indicate regions where crop 
is not harvested. Left panels show planting dates and the right panels show the harvesting dates. 
 
 



 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Supplementary Figure 7. Illustrative example of how climate variability 

explains maize yield variability. (a) The reported maize yield from Shaanxi, 

China was linearly detrended following equation 1. (b) Linear detrending of 

seasonal air temperature following equation 2. (c) Selected model related the 

detrended yield with seasonal temperature. In general the statistical 

representation was more complex. Detrended crop yield and air temperature are 

scaled between 0 and 1 – y-axis (minimum and maximum values represent 0 

and 1) in the figure (c) for ease of representation; x-axis is the year.  
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Supplementary Figure 8. Model bias. The bias is scaled and thus the legend reflects a bias of -5% to +5%. White areas indicate 
where crop is not harvested or analysed.   



 
Supplementary Figure 9. Model significance levels as determined from conducting F-tests against a random climate 
model. Regions in green had p=0.01 (sample size study period of 3 decades per political unit; F-test) or models at 99% 
significance; yellow areas had significance between p=0.01 and p=0.05 or 99% to 95% significance (study period of 3 decades 
per political unit; F-test). Most of the regions had models at p=0.05 level. We additionally had included some more areas with p 
values between p=0.05 and p=0.1 or 90% to 95% confidence. White areas indicate where crop is not harvested or analysed. 





Supplementary Methods 1: Data 
 
 
1.1 Climate data 
  
For the climate and weather conditions influencing crop growing conditions we 
used the CRU TS3.10 [1] dataset. This dataset has a long history of development [2-
4] and has been extensively used in numerous climate related studies including land 
and agricultural studies [5-9]. Version TS3.10 [1] adds more station data that CRU 
acquired recently. However station observations covering the world from the varied 
data sources still requires homogenization and interpolation of the data to a grid of 
0.5 degree in latitude and longitude as explained in [1]. Other comparable climate 
datasets that have been used in agricultural studies are from the University of 
Delaware [http://climate.geog.udel.edu/] and the Global Precipitation Climatology 
Centre [10, 11]. TS3.10 and the UDEL temperature product, and TS3.10 and GPCC 
precipitation products are highly correlated. Lobell et al. [2011] [12] found similar 
results using either the CRU or the UDEL global climate dataset; hence we felt that 
using only the CRU TS3.10 was sufficient to conduct this study. 
   
The spatial resolution of our gridded crop data (see next section) is at 5 minutes 
globally. Thus, within each half degree grid cell of the CRU TS3.10 data are several 
crop grid cells. We assigned each of the 5 minute crop grid cell that was contained 
within a half degree CRU grid cell the identical reported weather value. Those that 
lay partly within more than a single CRU grid cell were assigned the value of the 
nearest CRU grid cell. However note that the analysis was done at the political unit 
level which can contain numerous CRU grid cells. What we computed was the 
harvested-area-weighted temperature and precipitation information for all of the 
grid cells within a political unit each year; this was the political unit’s climate value 
per month for any specific year.  
 
1.2 Crop data 
 
The crop yield and area harvested information came from the newly developed 
dataset noted in three of our previous reports [13-15]. In view of the importance of 
the Russian Federation especially for wheat and maize production we updated 
Russian maize and wheat statistics at the oblast / county level using an approach 
similar to those described in Ray et al. [2012] [14] specifically for this study; 
otherwise the rest of the crop data used is similar to the ones reported in [14, 15]. 
 
The crop statistics database provides information on crop yield and harvested areas 
for each of the four crops: maize, rice, wheat, and soybean at the 5 minute spatial 
resolution. The yield and harvested information does not distinguish between the 
primary crop and secondary crops such as rice or soybean grown in double 
cropping systems. Similarly, crops such as wheat that are grown as winter or spring 
wheat are not distinguished. There are several other agronomic distinctions in 
cropping systems, such as irrigated crops, different cultivars, upland and lowland 



crops that would likely have different levels of sensitivity to climate variability. We 
did not make these distinctions in our crop database. The original dataset covers the 
period of 1961 to 2008 and contains ~2.5 million unique statistics of maize, rice, 
wheat, and soybean harvested and yield information. We used the period 1979 to 
2008 for this study which contained ~2 million reported statistics on these four 
crops including the updated information for the Russian Federation [16-18]. 
  
 
1.3 Planting and harvesting dates  
 
We used the main growing season determined by the average planting and harvest 
date for each crop as given in [19]. The crop planting and harvest dates have varied 
in the last three decades due to climate as well as technological and socioeconomic 
changes at each political unit [20]. In a perfect modeling system we would have the 
planting and harvesting dates as a function of time. At this point we have not built a 
dataset reflecting temporal crop planting and harvest dates. Moreover, the climate 
information is monthly, reducing sensitivity of the analysis to planting and 
harvesting dates.  However, we did test the sensitivity of results at the top maize 
producing U.S. counties using daily station data and found statistically significant 
correlation (at p = 0.0) between monthly and daily climate data based analysis. In 
most global locations a few days advancement or delay in crop planting and 
harvesting still leads to the same month. Thus we used fixed crop planting and 
harvested dates as used in other studies [12, 21].  
 
We however updated the global maps of crop planting and harvest dates reported in 
[16] based on more recent information for some of the important agricultural 
countries such as China [22], India [23], Pakistan [24], Bangladesh [25], Nepal [26], 
Australia [27], South Africa [27], Brazil [17, 28] and Argentina [17, 29] 
(Supplementary Figure 6). We updated the planting and harvest dates for only 
maize and wheat. Rice crop appeared generally more accurate globally but note that 
in several global locations there is a significant second rice growing season. Our 
utilization of weather conditions 1 year prior to harvest of the main rice crops 
provides information regarding rice growing conditions for the secondary season. In 
future studies a more precise delineation of the main and the secondary growing 
season yields and weather conditions needs to be modeled.  
 
 
 
Supplementary Methods 2: Statistical analysis 
 
 
2.1 Setting up of the statistical models 
 
We set up the statistical models in three steps. We first computed the harvested-
area-weighted average seasonal and average annual (12 months prior to harvest 
month including the harvest month) temperature and precipitation information at 



each of the political units that harvested a crop (maize, rice, wheat, and soybean). In 
the next second step we detrended the climate and yield information by taking out 
the linear trends for climate and the best fit yield model following [12 and 14] for 
yields: 
 

             (1) 
            (2) 
            (3) 

 
where Y, T, and P are the observed yield, temperature and precipitation, and the 
subscript ‘d’ denotes the detrended values, ‘l’ denotes the linear fit, and ‘b’ denotes 
the best fit from among constant, linear, quadratic, and cubic fit. The best fit in turn 
was determined using AIC [30]. The * denotes the initial value similar to detrending 
noted in [12]. 
 
We used the crop yield trend modeling described in Ray et al., 2012 [i.e. reference 
14] but other investigations into crop yield modeling are also present. Specifically in 
[14] comparisons with the statistical method presented in another study [e.g. 30], 
which in turn were further investigations from other recently published methods 
[31,32] was shown. The yield modeling method presented in [14] was applied to 
national level data to compare against the national scale yield modeling presented in 
[30] and gave similar results. Yield modeling however continues to be an area of 
active research [33,34], but their performance at our level of high spatial resolution 
globally remains unknown, as other studies have been either regional studies or 
national scale studies. Future studies could investigate these developing techniques 
of yield modeling in global analysis of yield variability. 
  
Only those political units that harvested a crop (maize, rice, wheat, and soybean) at 
least half of the years of the study period entered into our analysis. This means that 
a political unit needed to harvest maize crop more than 15 out of the maximum 30 
years to enter into our maize analysis and so on. 
 
In the third step we built linear regressions connecting     with the single and 
squared forms of    and   . Note, that there are both seasonal and annual forms of 
the climate variables. Thus, eight types of climate variables are possible and 27 
different forms of: 
 

    (     ) (4) 
 
were generated. We had a sufficiently large number of permutations to cover a large 
set of statistical relations between the observed crop yields variability and climate 
variability. 
 
Since we tracked ~13,500 political units this meant ~1.5 million statistical 
equations were generated for the four crops. We identified the best fit equation 
using the Akaike Information Criterion (AIC) [35] from the 27 equations at each 



political unit which resulted in using the best ~50,000 equations to draw on our 
results and conclusions for the four crops. Supplementary Figure 7 gives an example 
of this process from Shaanxi province, China. Supplementary Figure 1 provides the 
average distribution of crop yields. 
 
2.2 Determining yield variability explained by climate variability 
 
From the 27 regression equations the equation with the lowest AIC was further 
analyzed. Even though the model chosen fit the data best it may still be a poor model 
and no better than a model that related the variability in crop yields to random 
climate variations or a null model. Thus we conducted an ANOVA or F-test at the p = 
0.10 level to determine whether the chosen model was statistically significantly 
better than a random climate model. Only in those political units where the chosen 
model was statistically significant at the p = 0.10 or less level we further reported 
how much of the yield variability was explained by climate variability. Political units 
where the p value was greater than 0.10 indicated that there was no statistically 
significant relationship in crop yield variability and climate variability. We classified 
these political units as those where we could not detect statistically significant 
climate variability impacts on crop yields as “no effect” in Figure 2 in the main text. 
 
The coefficient of determination, or explained variance for the chosen model, i.e. the 
one with the lowest AIC (equation 4), is statistically the ‘complete model’ explained 
variance or R2 which is plotted as categorical maps in Figure 2 in the main text. 
Reduced models of temperature and precipitation were also generated with only 
temperature and precipitation terms. If the selected model had only temperature 
terms then only the reduced model for temperature was generated and vice versa. 
The reduced models give an indication of how important temperature and 
precipitation variability was in explaining yield variability and the R2 of these 
models are given in Supplementary Figures 2 and 3. 
 
 
 
 
2.3 Global maps 
 
Even though the global maps are plotted at the grid cell the analysis was conducted 
only per political unit and the result for the political unit mapped onto all the grid 
cells. The bias of the selected model at each political unit, and for each crop, is 
plotted in Supplementary Figure 8. 
 
One could also choose Bayesian Information Criterion (BIC) as the criterion to 
identify the best equation from the 27 regression equations [36], but we continued 
to use AIC similar to our previous studies [14,15]. Political units where crop yields 
completely failed would not report any harvested areas and production. These areas 
evidently would be undergoing an extreme event and these situations of total crop 
failure would not enter into the current analysis as harvested areas reported would 



then be zero. The numbers reported in the summary data table for each country and 
crop are weighted by harvested area. Further Supplementary Figure 9 provides the 
spatial locations of p values of the selected models for two increasingly higher 
confidence limits (p=0.05 and p=0.01). The models selected at the less restricted p-
value of 0.1 generally included models at p=0.05 or less. 
 
 
2.4 Sensitivity to time period analyzed 
 
Our study period spanned the thirty years from 1979 to 2008. We also conducted 
separate analyses to determine how sensitive the explained crop yield variability 
was to the length of time studied. As expected, results were slightly different. 
Simulations for a twenty-five year period from 1984 to 2008 resulted in climate 
variability explaining 40%-45% of the overall yield variability. Over a thirty-five 
year period (1974 to 2008) the numbers were 29%-34%. Our second set of 
sensitivity analysis involved conducting thirty year analyses but starting the 
simulations from one and two years earlier to 1979, i.e. 1978 and 1977. In both 
cases the results were nearly identical to numbers for analysis starting in 1979. 
When simulations started off from 1978, we found that a nearly similar 32%-39% of 
crop yield variability was explained by climate variability and for the analysis from 
1977 to 2006 the numbers were 34%-39%.  
 
 
2.5 Use of gridded weather versus station data 
 
Since the yield is measured at each political unit, the weather information should 
appropriately represent all crop-harvested areas within the political unit and valid 
for each political unit similar to the procedure used in [12]. Gridded weather data 
such as the CRU [1] use station data, which have sparse coverage (see for example 
the coverage in the top maize counties of the United States - Supplementary Figure 
4) to build a complete coverage through statistical analyses. Direct use of station 
data, which essentially represents only a short fetch around the site of the ground 
station (Supplementary Figure 4), should not be used to analyze the relationship 
between crop yields when measured at the political unit (covering a vast area) and 
weather. On the other hand if the yield is measured at a specific location, for 
example a farmer’s field, then gridded weather data should not be directly used 
without appropriate downscaling of the data on account of relatively coarser 
gridded data at this scale. A better approach would then be to use a nearby sited 
station weather information. Our analysis being at a political unit, the unit of yield 
measurement, we upscaled the gridded weather data (as described in section 1.1, 
above) to match the yield measurement spatial unit, a method similarly used in [12]. 
We however conducted an alternate study to show how different our results would 
have been if spatial mismatch using direct station data was used. Since we did not 
build the CRU data, the analysis also serves as a rough check of the CRU data. 
  



We selected the top ~100 maize producing counties in the United States 
(representing ~25% of total United States maize production) to perform this 
additional experiment. Over the study period we accessed all the archived weather 
station data for all the ~100 counties [37] and used the average of all, essentially 
point measurements, within a county boundary to generate a seasonal and annual 
weather for the county. The stations in general had very poor coverage of the county 
maize harvested areas (Supplementary Figure 4). Note that the CRU gridded data is 
essentially station data with statistically estimates of the weather in non-covered 
areas resulting in complete coverage over all land areas [1].  
 
Next we conducted our statistical modeling directly using the station data and 
determined the year-to-year yield variability explained by year-to-year weather 
station derived climate variability (using the coefficient of determination R2 metric). 
Finally we correlated the station analysis R2 with the CRU weather derived R2 for all 
counties considered. The scatter plot (Supplementary Figure 5) shows both these R2 
per county. The correlation was significant (0.54 at p<0.001). 
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