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Supplementary Figure 1. Characterization of the magnetic field sensor. (a) The quan-

tization axis uNV of the NV center’s electron spin is characterized by spherical angles (θ,φ) in

the (xyz) sample reference frame. (b) Structure of the spin sublevels in the NV defect’s ground

state. The ESR frequencies corresponding to the electron spin transitions ms = 0 → −1 and

ms = 0→ +1 are denoted by f− and f+, respectively. (c) ESR spectrum of ND75 in zero external

magnetic field. A fit to a sum of two Gaussian functions allows determining the parameters D and

E that characterize the NV center. The values are given in Supplementary Table 1.
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Supplementary Figure 3. Geometry of the ferromagnetic samples. The samples were

patterned into two perpendicular wires, one of width wc used for the calibration, the other of

width w for the DW study. Left panel: Schematic of the sample. Middle panel: Scanning electron

micrograph of the Ta/CoFeB/MgO sample, showing in color the magnetic domains (up in blue,

down in red) and the RF antenna (yellow). Right panel: Magneto-optical Kerr microscopy image

of the Ta/CoFeB/MgO sample after nucleation.
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ferromagnetic layer in the x direction. (b,c) Zeeman shift linecuts measured with ND75c across a

stripe of Ta/CoFeB/MgO (b) and across a stripe of Pt/Co/AlOx with ND79c (c). The red solid

line is the fit, as explained in the text. The blue curve is the topography of the sample recorded
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in Supplementary Note 3.
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Supplementary Figure 6. Micromagnetic calculations. (a) The DW is assumed to be

straight with a tilt angle φDW with respect to the y axis, perpendicular to the wire’s long axis. (b,c)

AFM image (top panel), Zeeman shift image (middle panel) and associated simulation (bottom

panel) corresponding to the DW studied in (b) Fig. 2 and (c) Fig. 4 of the main paper. The

simulation assumes a straight DW with φDW = 2◦ and ψ = π/2 in (b), and φDW = 6◦ and ψ = π

in (c). (d) Linecuts taken from the simulation of (c), illustrating the small effect of the chirality of

the Bloch DW. Near the maximum, the field is changed by ±0.5% with respect to the mean value.

In the case of (b), the change is even smaller (±0.3%).
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near the edges of the stripe. The plot shows the Zeeman shift calculated under similar conditions

as in Supplementary Figure 4(c), for two different values of DDMI. (b) The DMI also makes the

DW profile deviate from the profile Mz(x) = −Ms tanh(x/∆DW). The plot shows the Zeeman shift

calculated under similar conditions as in Fig. 4 of the main paper, for two different values of DDMI.
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ND74a ND74d ND74e ND74g ND75c ND79c

Figure 3(a) 3(b) 3(c) 3(d) 2 4

D (±0.2 MHz) 2867.1 2869.5 2866.6

E (±0.2 MHz) 3.1 3.3 4.3

θ (±2◦) 99◦ 102◦ 113◦ 42◦ 62◦ 87◦

φ (±2◦) −65◦ 27◦ −81◦ −7◦ −25◦ 23◦

Supplementary Table 1. Summary of the parameters (D,E, θ, φ) measured for the different NV

center magnetometers used in this work. The second row mentions the figures of the main paper

where the magnetometer is used.
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(a) Ta/CoFeB/MgO with ND75c

parameter pi nominal value p̄i uncertainty σpi
εd/pi

(%) εIs/pi
(%)

wc 1500 nm 30 nm 1.8 2.0

δdm 17 nm 2 nm 1.0 0.2

θ 62◦ 2◦ 0.9 0.7

φ −25◦ 2◦ 0.2 1.2

D 2969.5 MHz 0.2 MHz 1.0 1.6

E 3.3 MHz 0.2 MHz 0.5 0.5

εX =
√
ε2X/fit +

∑
i ε

2
X/pi

2.5 2.9

(b) Pt/Co/AlOx with ND79c

parameter pi nominal value p̄i uncertainty σpi εd/pi
(%) εIs/pi

(%)

wc 980 nm 20 nm 1.8 2.0

δdm 25 nm 3 nm 1.6 0.4

θ 87◦ 2◦ 0.2 0.1

φ 23◦ 2◦ < 0.1 1.4

D 2966.6 MHz 0.2 MHz 0.8 0.8

E 4.3 MHz 0.2 MHz < 0.1 < 0.1

εX =
√
ε2X/fit +

∑
i ε

2
X/pi

2.9 2.6

Supplementary Table 2. Summary of the uncertainty εX/pi on the value of the fit parameter X

(X = d and X = Is) related to parameter pi for the experiments on Ta/CoFeB/MgO with ND75c

(a) and on Pt/Co/AlOx with ND79c (b). The overall uncertainty εX is estimated with Eq. (S6),

assuming that all errors are independent. The standard deviations obtained from a series of 13

linecuts on Ta/CoFeB/MgO (resp. 9 linecuts on Pt/Co/AlOx) are εd/fit = 0.6% and εIs/fit = 0.3%

(resp. εd/fit = 1.4% and εIs/fit = 0.5%).
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(a) Ta/CoFeB/MgO with ND75c

parameter qi nominal value q̄i uncertainty σqi εΘ/qi(%)

d 123 nm 3 nm < 0.1

θ 62◦ 2◦ < 0.1

φ −25◦ 2◦ 0.2

φDW 2◦ 1◦ 1.1

εB⊥ =
√
ε2
B⊥/w

+ ε2
Bedge +

∑
i ε

2
Θ/qi

1.5

(b) Pt/Co/AlOx with ND79c

parameter qi nominal value q̄i uncertainty σqi εΘ/qi(%)

d 118 nm 4 nm < 0.1

θ 87◦ 2◦ < 0.1

φ 23◦ 2◦ 0.4

φDW 6◦ 2◦ 1.1

εB⊥ =
√
ε2
B⊥/w

+ ε2
Bedge +

∑
i ε

2
Θ/qi

2.1

Supplementary Table 3. Summary of the uncertainty εΘ/qi on the value of Θ related to param-

eter qi for the experiments on Ta/CoFeB/MgO with ND75c (a) and on Pt/Co/AlOx with ND79c

(b). The overall uncertainty εB⊥ is estimated with Eq. (S16), assuming that all errors are indepen-

dent. The relative error on the calibration field Bedge
NV (x) is estimated to be εBedge ≈ 1.0% in (a)

and εBedge ≈ 1.5% in (b). The effect of the stripe width uncertainty leads to an additional error

εB⊥/w < 0.1% in (a) and εB⊥/w = 0.9% in (b).
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Supplementary Note 1. Scanning-NV magnetometry

Experimental setup. The experimental setup combines a tuning-fork-based atomic force

microscope (AFM) and a confocal optical microscope (attoAFM/CFM, Attocube Systems), all

operating under ambient conditions. A detailed description of the setup as well as the method to

graft a diamond nanocrystal onto the apex of the AFM tip can be found in Ref.[1].

Characterization of the magnetic field sensor. The data reported in this work were obtained

with NV center magnetometers hosted in three different nanodiamonds, labeled ND74 (data of

Figure 3 of the main paper), ND75 (Figure 2) and ND79 (Figure 4). All nanodiamonds were ≈ 50

nm in size, as measured by AFM before grafting the nanodiamond onto the AFM tip. The magnetic

field was inferred by measuring the Zeeman shift of the electron spin resonance (ESR) of the NV

center’s ground state [2]. This is achieved by monitoring the spin-dependent photoluminescence

(PL) intensity of the NV defect while sweeping the frequency of a CW radiofrequency (RF) field

generated by an antenna fabricated directly on the sample.

The Hamiltonian used to describe the magnetic-field dependence of the two ESR transitions of

this S = 1 spin system is given by

H = hDS2
Z + hE(S2

X − S2
Y ) + gµBB · S , (S1)

where D and E are the zero-field splitting parameters that characterize a given NV center, h is

the Planck constant, gµB/h = 28.03(1) GHz.T−1 [3], B is the local magnetic field and S is the

dimensionless S = 1 spin operator. Here, the (XY Z) reference frame is defined by the diamond

crystal orientation, with Z being parallel to the NV center’s symmetry axis uNV, as shown in

Supplementary Figure 1(a).

The two ESR frequencies are denoted f+ and f− and the Zeeman shifts are defined by ∆f± =

f± − D [Supplementary Figure 1(b)]. In general, ∆f± are functions of BNV,‖ = |B · uNV| and

BNV,⊥ = ‖B× uNV‖. However, in the limit of small transverse fields (gµBBNV,⊥ � hD) [4], they

depend only on the magnetic field projection along the NV axis BNV,‖, following the relation

∆f±(BNV,‖) ≈ ±
√

(gµBBNV,‖/h)2 + E2 . (S2)

The parameters D and E were extracted from ESR spectra recorded at zero magnetic field using

the fact that f±(B = 0) = D ± E [see Supplementary Figure 1(b,c)]. In all the data shown in

this work, only the upper frequency f+ was measured. Thereafter, we will note the corresponding
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Zeeman shift ∆fNV = f+ − D, the subscript ‘NV’ reminding that it depends on the direction

uNV [Supplementary Figure 1(b)]. The experimental measurements of ∆fNV were compared to

theory by calculating the expected Zeeman shift through full diagonalization of the Hamiltonian

defined by Eq. (S1), given the theoretical B map. However, we note that since the condition

gµBBNV,⊥ � hD is usually fulfilled in our measurements, the formula (S2) is approximately valid,

so that in principle one could retrieve directly the value of BNV,‖ with good accuracy (< 0.1 mT).

The nanodiamonds were recycled several times to be used with different orientations uNV with

respect to the (xyz) reference frame of the sample. The various orientations are labeled with

small letters: ND74a, ND74d, ND74e, ND74g, ND75c, ND79c. The spherical angles (θ,φ) that

characterize the direction uNV were obtained by applying an external magnetic field of known

direction and amplitude with a three-axis coil system, following the procedure described in Ref. [5].

The measurement uncertainty of 2◦ (standard error) is related to the precision of the calibration

of the coils and their alignment with respect to the (xyz) reference frame.

Supplementary Table 1 indicates the parameters D, E, θ and φ measured for each NV

magnetometer used in this work, with the associated standard errors.

Quantitative stray field mapping. The experimental Zeeman shift maps were obtained by

recording ESR spectra while scanning the magnetometer with the AFM operated in tapping

mode. Each spectrum is composed of 11 bins with a bin size of 2 MHz, leading to a full range of 20

MHz. The integration time per bin is 40 ms, hence 440 ms per spectrum, that is, 440 ms per pixel

of the image. As illustrated in Supplementary Figure 2, only the upper frequency f+ is probed,

and the measurement window is shifted from pixel to pixel in order to track the resonance. Each

spectrum is then fitted with a Gaussian lineshape to obtain f+ and thus ∆fNV. The full width at

half maximum (FWHM) is typically 5-10 MHz, and the standard error on f+ is ≈ 0.3 MHz with

the above-mentioned acquisition parameters.
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Supplementary Note 2. Magnetic samples

Two samples, Ta/CoFeB/MgO and Pt/Co/AlOx, were investigated in this work. The

Ta/CoFeB/MgO trilayer was deposited on a Si/SiO2(100 nm) wafer using a PVD Timaris deposi-

tion tool by Singulus Tech. The film stack composition is Ta(5)/CoFeB(1)/MgO(2)/Ta(5), starting

from the SiO2 layer (units in nanometer). The stoichiometric composition of the as-deposited mag-

netic layer is Co40Fe40B20. The second sample was fabricated from Pt(3)/Co(0.6)/Al(1.6) layers

deposited on a thermally oxidized silicon wafer by d.c. magnetron sputtering. After deposition, the

aliminium layer was oxidized by exposure to an oxygen plasma. Both samples were patterned using

e-beam lithography and ion milling. A second step of e-beam lithography was finally performed in

order to define a gold stripline for RF excitation, which is used to record the Zeeman shift of the

NV defect magnetometer [cf. Supplementary Note 1].

Supplementary Figure 3 shows the general schematic of the samples, highlighting the regions

used for calibration linecuts (stripe of width wc) and DW measurements (stripe of width w) [cf.

Supplementary Note 3]. The use of two perpendicular wires ensures that the DW is approximately

parallel to the edges used for calibration. The final dimensions (height δdm, widths wc and w) of

the patterned structures were measured with a calibrated AFM. For the Ta/CoFeB/MgO sample,

δdm = 17± 2 nm and wc = w = 1500± 30 nm, whereas for the Pt/Co/AlOx sample δdm = 25± 3

nm, wc = 980±20 nm and w = 470±20 nm. The nucleation was achieved by feeding a current pulse

through the gold stripline for the Ta/CoFeB/MgO sample, and by applying pulses of out-of-plane

magnetic field for the Pt/Co/AlOx sample.
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Supplementary Note 3. Calibration of the experiment

Fit procedure. As discussed in the main text, a preliminary calibration of the experiment

is required in order to infer the probe-sample distance d and the saturation magnetization of

the sample Ms. This calibration is performed by measuring the Zeeman shift ∆fNV of the NV

magnetometer while scanning it across a stripe of the ferromagnetic layer in the x direction, as

depicted in Supplementary Figure 4(a). Since d is of the order of 100 nm in our experiments, one

has d � t where t is the thickness of the magnetic layer, so that the edges can be considered to

be abrupt, i.e. Mz(−wc < x < 0) = Ms and Mz = 0 otherwise, with wc the stripe width. In fact,

due to the topography of the sample, the effective distance between the NV spin and the magnetic

layer varies during the scan [see Supplementary Figure 4(a)]. This position-dependent distance can

be written as deff(x) = d+ δd(x), where δd(x) = 0 on average when the tip is above the stripe, and

δd(x) = −δdm on average when the tip is above the bare substrate. Here δdm is the total height

of the patterned structures [cf. Supplementary Note 2]. Experimentally, one has access to the

relative variations of deff(x) thanks to the simultaneously recorded AFM topography information,

hence one can infer the function δd(x). Therefore, only the absolute distance, characterized by d,

is unknown.

The stray field components above a single abrupt edge parallel to the y direction, positioned at

x = 0 (magnetization pointing upward for x < 0), are given by

Bedge
x (x) =

µ0Mst

2π

deff(x)

x2 + d2
eff(x)

Bedge
y (x) = 0

Bedge
z (x) = −µ0Mst

2π

x

x2 + d2
eff(x)

.

(S3)

These formulas correspond to the thin-film limit (d � t) of exact formulas, but the relative error

introduced by the approximation is < 10−5 in our case (d/t ∼ 100), which is negligible compared

with other sources of error (see below). The field above a stripe is then obtained by simply adding

the contribution of the two edges, namely

Bstripe(x) = Bedge(x)−Bedge(x+ wc) . (S4)

Using Eqs. (S3) and (S4), we obtain an analytical formula for the stray field above the stripe. A

fit function ∆f stripe
NV (x) is then obtained by converting the field distribution into Zeeman shift of

the NV defect after diagonalization of the Hamiltonian defined by Eq. (S1), with the characteristic
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parameters (θ, φ,E,D) of the NV magnetometer. The fit parameters are the maximum distance

d and the product Is = Mst. The geometric parameters of the stripe (width wc and height δdm),

measured independently, serve as references to rescale the length scales x and z in the linecut data

before fitting. Note that in assuming an uniformely magnetized stripe, we neglect the rotation of

the magnetization near the edges induced by the Dzyaloshinskii-Moriya interaction (DMI) [6]. The

effect of this rotation will be discussed in Supplementary Note 5.

In the following, we focus on the experiments performed (i) with ND75c on the Ta/CoFeB/MgO

sample and (ii) with ND79c on the Pt/Co/AlOx sample, corresponding to the experimental results

reported in Figures 2 and 4 of the main paper, respectively. Typical calibration linecuts are shown

in Supplementary Figure 4(b,c) together with the topography of the sample. The red solid line is

the result of the fit, showing a very good agreement with the experimental data.

Uncertainty analysis. Uncertainties on the fit parameters X = {Is, d} come from those on (i)

the NV center’s parameters (θ, φ,E,D), (ii) the geometric parameters of the stripe (wc, δdm) and

(iii) the fit procedure. There are therefore six independent parameters {pi} = {θ, φ,E,D,wc, δdm}
which introduce uncertainties on the outcome of the fit. In the following, these parameters are

denoted as pi = p̄i ± σpi where p̄i is the nominal value of parameter pi and σpi its standard error.

The uncertainties on θ, φ, E and D (resp. on wc and δdm) are discussed in Supplementary Note 1

(resp. in Supplementary Note 2). The nominal values and the standard errors on each parameter

pi are summarized in Supplementary Table 2.

The uncertainty and reproducibility of the fit procedure were first analyzed by fitting indepen-

dent calibration linecuts while fixing the parameters pi to their nominal values p̄i. As an example,

the histograms of the fit outcomes for X = {Is, d} are shown in Supplementary Figure 5(a,b) for

a set of 13 calibration linecuts recorded on the Ta/CoFeB/MgO sample with ND75c. From this

statistic, we obtain Is,p̄i = 926.3± 2.8 µA and dp̄i = 122.9± 0.7 nm. Here the error bar is given by

the standard deviation of the statistic. The relative uncertainty of the fit procedure is therefore

given by εd/fit = 0.6% for the probe-sample distance and εIs/fit = 0.3% for the product Is = Mst.

We now estimate the relative uncertainty on the fit outcomes (εd/pi , εIs/pi) linked to each in-

dependent parameter pi. For that purpose, the set of calibration linecuts was fitted with one

parameter pi fixed at pi = p̄i ± σpi , all the other five parameters remaining fixed at their nominal

values. The resulting mean values of the fit parameters X = {d, Is} are denoted Xp̄i+σpi
and
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Xp̄i−σpi and the relative uncertainty introduced by the errors on parameter pi is finally defined as

εX/pi =
Xp̄i+σpi

−Xp̄i−σpi
2Xp̄i

=
∆X,pi

2Xp̄i

. (S5)

To illustrate the method, we plot in Supplementary Figure 5(c,d) the histograms of the fit out-

comes while changing the zero-field splitting parameter D from D̄ − σD to D̄ + σD. For this

parameter, the relative uncertainties on d and Is are εd/D = 1.0% and εIs/D = 1.6%. The same

analysis was performed for all parameters pi and the corresponding uncertainties are summarized

in Supplementary Table 2. The cumulative uncertainty is finally given by

εX =

√
ε2X/fit +

∑
i

ε2X/pi , (S6)

where all errors are assumed to be independent.

Following this procedure, we finally obtain d = 122.9±3.1 nm and Mst = 926±26 µA (or Ms ≈
0.926 MA.m−1) for the Ta/CoFeB/MgO sample, and d = 119.0± 3.4 nm and Mst = 671± 18 µA

(or Ms ≈ 1.12 MA.m−1) for the Pt/Co/AlOx sample, in good agreement with the values reported

elsewhere for similar samples [7-9].
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Supplementary Note 4. Micromagnetic calculations

While the calibration linecuts were fitted with analytic formulas, the predictions of the stray

field above the DWs were obtained using micromagnetic calculations in order to accurately describe

the DW fine structure. We first used the micromagnetic OOMMF software [5,10] to obtain the

equilibrium magnetization of the structure. For the Ta/CoFeB/MgO sample, the nominal values

used in OOMMF are: anisotropy constant K = 5.9 · 105 J.m−3 (obtained from the measured

effective anisotropy field of 107 mT [7]), exchange constant A = 20 pJ.m−1, film thickness t = 1

nm, stripe width w = 1500 nm, cell size 2.5× 2.5× 1 nm3. For the Pt/Co/AlOx sample, we used:

K = 1.3 · 106 J.m−3 (measured effective anisotropy field of 920 mT), A = 18 pJ.m−1, t = 0.6 nm,

w = 470 nm, cell size 2.5 × 2.5 × 0.6 nm3. The saturation magnetization Ms was obtained from

the product Mst determined from calibration linecuts [cf. Supplementary Note 3].

We considered a straight DW with a tilt angle φDW with respect to the y axis. As illustrated

in Supplementary Figure 6, this angle was directly inferred from the Zeeman shift images, leading

to φDW ≈ 2 ± 1◦ for the DW studied in Fig. 2 of the main paper, and φDW ≈ 6 ± 2◦ for the DW

studied in Fig. 4 of the main paper. The uncertainty on φDW enables us to account for the fact

that the DW is not necessarily rigorously straight. This point will be discussed in Supplementary

Note 5.

The calculation of the stray field was then performed with four different initializations of the

DW magnetization: (i) right-handed Bloch, (ii) left-handed Bloch, (iii) right-handed Néel and

(iv) left-handed Néel. To stabilize the Néel configuration, the DMI at one of the interfaces of

the ferromagnet was added, as described in Ref. [6]. The value of the DMI parameter was set

to |DDMI| = 0.5 mJ.m−2, which is large enough to fully stabilize a Néel DW. The additional

consequences of a stronger DMI will be discussed in Supplementary Note 5.

Once the equilibrium magnetization was obtained, the stray field distribution B(x, y) was calcu-

lated at the distance d by summing the contribution of all cells. Knowing the projection axis (θ,φ),

we finally calculate the Zeeman shift map ∆fNV(x, y) by diagonalizing the NV center’s Hamilto-

nian [cf. Supplementary Note 1]. Under the conditions of Figs. 2 and 4 of the main paper, the

difference of stray field near the maximum between left-handed and right-handed Bloch DWs is

predicted to be < 0.5% [Supplementary Figure 6(d)]. Since this is much smaller than the standard

error [cf. Supplementary Note 5], we plotted the mean of these two cases, which is simply referred

to as a Bloch DW, and added the deviation induced by the two possible chiralities to the displayed

standard error.
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Supplementary Note 5. Uncertainties of the domain wall stray field predictions

In this Section, we analyze how the uncertainties on the preliminary measurements affect the

final predictions of the Zeeman shift above the DW. To keep the analysis simple and insightful,

we use the approximate analytic expressions of the stray field of an infinitely long DW [Eqs. (1),

(2) and (3) of the main paper]. Furthermore, we focus our attention on the positions where the

DW stray field is maximum, since this is what provides information about the DW nature [see

Figs. 1(c) and 1(d) of the main paper]. Finally, we use the approximation ∆fNV ≈ gµBBNV,‖/h

[cf. Supplementary Note 1], which is quite accurate near the stray field maximum and allows us

to consider the magnetic field BNV,‖ rather than the Zeeman shift ∆fNV. For clarity the subscript

‖ will be dropped and the projected field will be simply denoted BNV.

Out-of-plane stray field contribution B⊥. We first consider the out-of-plane contribution to

the DW stray field, B⊥(x), which is the only contribution for a Bloch structure. The stray field

components above the DW can be written, in the (xyz) axis system (see Supplementary Figure 7),

as 

B⊥x (x) =
µ0Mst

π

d cosφDW

[(x− xDW) cosφDW]2 + d2

B⊥y (x) =
µ0Mst

π

d sinφDW

[(x− xDW) cosφDW]2 + d2

B⊥z (x) = −µ0Mst

π

(x− xDW) cosφDW

[(x− xDW) cosφDW]2 + d2
,

(S7)

where xDW is the position of the DW (for a given y).

We stress that this is twice the stray field above an edge of the film [see Eq. (S3)] expressed in

a rotated coordinate system. Therefore, stray field measurement above the edge can be used as a

reference which enables detecting any deviations from the Bloch profile. As explained below, this

is a central point of the analysis.

The projection of B⊥(x) along the NV center’s axis is given by

B⊥NV(x) =
∣∣∣sin θ cosφB⊥x (x) + sin θ sinφB⊥y (x) + cos θB⊥z (x)

∣∣∣ (S8)

=
µ0Mst

π

1

[(x− xDW) cosφDW]2 + d2
|d sin θ cos(φ− φDW)− (x− xDW) cosφDW cos θ| .(S9)

We now link B⊥NV(x) to the calibration measurement. For simplicity, we consider only one of the
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two edges of the calibration stripe, e.g. the edge at x = 0. We can thus write the projected field

above the edge, at a distance d, as

Bedge
NV (x) =

∣∣∣sin θ cosφBedge
x (x) + sin θ sinφBedge

y (x) + cos θBedge
z (x)

∣∣∣ (S10)

=
µ0Mst

2π

1

x2 + d2
|d sin θ cosφ− x cos θ| . (S11)

Comparing Eqs. (S9) and (S11), one finds the relation

B⊥NV

(
x

cosφDW
+ xDW

)
= 2Bedge

NV (x)Θd,θ,φ,φDW
(x) , (S12)

where we define

Θd,θ,φ,φDW
(x) =

∣∣∣∣d sin θ cos(φ− φDW)− x cos θ

d sin θ cosφ− x cos θ

∣∣∣∣ . (S13)

Since Bedge
NV (x) is experimentally measured, in principle one can use Eq. (S12) to predict

B⊥NV(x) by simply evaluating the function Θd,θ,φ,φDW
(x) as defined by Eq. (S13). As φDW ∼ 0

implies Θd,θ,φ,φDW
(x) ∼ 1, it comes that, in a first approximation, B⊥NV(x) can be obtained

without the need for precise knowledge of any parameter. In other words, the calibration

measurement, performed under the same conditions as for the DW measurement,

allows us to accurately predict the DW field even though those conditions are not

precisely known. This is the key point of our analysis.

Strictly speaking, Θd,θ,φ,φDW
(x), hence B⊥NV(x), does depend on some parameters as soon as

φDW 6= 0, namely on {qi} = {d, θ, φ, φDW}. To get an insight into how important the knowledge

of {qi} is, we need to examine how sensitive Θd,θ,φ,φDW
(x) is with respect to errors on {qi}. Owing

to the sine and cosine functions in Eq. (S13), the smallest sensitivity to parameter variations

(vanishing partial derivatives) is achieved when either (i) θ ∼ 0 (projection axis perpendicular to

the sample plane) or (ii) θ ∼ π/2 (projection axis parallel to the sample plane) combined with

φ ∼ 0 and φ − φDW ∼ 0. However, case (i) cannot be achieved in our experiment, because the

out-of-plane RF field cannot efficiently drive ESR of a spin pointing out-of-plane. We therefore

target case (ii), that is, θ ∼ π/2 and φ − φDW ∼ 0. For that purpose, we use a calibration edge

that is as parallel to the DW as possible (φDW → 0) and we seek to have a projection axis that is

as perpendicular to the DW plane as possible (θ → π/2 and φ → 0). This is why we employ two

perpendicular wires for the calibration and the DW measurements, respectively [cf. Supplementary

Note 2]. Conversely, in the worst case of φDW ∼ π/2 (calibration edge perpendicular to the DW)
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with θ ∼ π/2, one would have Θd,θ,φ,φDW
(x) ∼ φ − φDW, directly proportional to the errors on φ

and φDW.

To be more quantitative, we use Eq. (S12) to express the uncertainty on the prediction B⊥NV(x)

as a function of the uncertainties on the various quantities, which gives

εB⊥ =

√
ε2
Bedge +

∑
i

ε2Θ/qi . (S14)

Here, εBedge is given by the measurement error of Bedge
NV (x), whereas εΘ/qi is the uncertainty on

Θ{qi} introduced by the error on the parameter qi ∈ {d, θ, φ, φDW}, the other parameters being

fixed at their nominal values, as defined by

εΘ/qi =
Θq̄i+σqi

−Θq̄i−σqi
2Θq̄i

. (S15)

The results are summarized in Supplementary Table 3 for the cases considered in Figs. 2

(Ta/CoFeB/MgO sample) and 4 (Pt/Co/AlOx sample) of the main paper. εΘ/qi is evaluated

for x = xmax, which is the position where the field B⊥NV(x) is maximum. It can be seen that the

dominating source of uncertainty, though small (≈ 1%), is the error on φDW, while the errors on

d, θ and φ have a negligible impact.

In practice, to obtain the theoretical predictions shown in the main paper and in Supplemen-

tary Figure 6, we do not use explicitly Eq. (S12), but rather use the set of parameters {Is, d, θ, φ}
determined following the calibration step, and put it into the stray field computation [cf. Supple-

mentary Note 4]. This allows us to simulate more complex structures than the idealized infinitely

long DW considered above, in particular the finite-width wires studied in this work. However, we

stress that, as far as the uncertainties are concerned, this is completely equivalent to using Eq.

(S12), since Bedge
NV (x) is fully characterized by the set {Is, d, θ, φ} [cf. Supplementary Note 3]. The

main difference comes from the influence of the edges of the wire, of width w, on the DW stray

field. The standard error σw then translates into a relative error εB⊥/w on the DW field B⊥NV. For

the Ta/CoFeB/MgO sample, w = 1500 ± 30 nm, which gives a negligible error εB⊥/w < 0.1% for

the field calculated at the center of the stripe. For the Pt/Co/AlOx sample, the stripe is narrower,

w = 470± 20 nm, leading to εB⊥/w = 0.9%. The overall uncertainty on the prediction B⊥NV, for a

DW confined in a wire, then becomes

εB⊥ =

√
ε2
B⊥/w

+ ε2
Bedge +

∑
i

ε2Θ/qi . (S16)

The overall errors are indicated in Supplementary Table 3. For Ta/CoFeB/MgO (Fig. 2 of the main

paper), the overall standard error is found to be ≈ 1.5%, whereas for Pt/Co/AlOx (Fig. 4) it is
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≈ 2.1%, in both cases much smaller than the difference between Bloch and Néel DW configurations.

We stress that the overall uncertainties are kept small (< 3%) despite the fact that the

uncertainties on individual parameters like the probe-to-sample distance, the NV center’s axis

or the saturation magnetization MS, might be larger. This is made possible thanks to the

well-thought calibration strategy that avoids propagation of of those errors. The key point of this

strategy is that the stray field above a Bloch DW is simply twice the stray field above the edge of

the film. Therefore, the measurement above the edge serves as a reference measurement so that

any deviation from the Bloch profile will be detected, without any assumption or input parameter.

In-plane stray field contribution B‖. According to Eq. (2) of the main paper, the in-plane

contribution to the DW stray field, B‖(x), is proportional to Is and to the DW width ∆DW =√
A/Keff , where A is the exchange constant and Keff the effective anisotropy constant. The values

of A reported in the literature for Co and CoFeB thin films range from 10 to 30 pJ.m−1 (see

e.g. Refs. [11,12]). Based on this range, we deduced a range for ∆DW, namely 15-25 nm for the

Ta/CoFeB/MgO sample and 4.4-7.6 nm for the Pt/Co/AlOx sample. This amounts to a relative

variation
σ∆DW
∆DW

≈ 25% around the mid-value of ∆DW. Thus, εB‖ is dominated by the uncertainty

on the DW width, that is, εB‖ ≈ σ∆DW
∆DW

≈ 25%. All other errors can be neglected in comparison.

In the micromagnetic calculations [cf. Supplementary Note 4], we used the value of A that gives

the mid-value of ∆DW, that is A = 20 pJ.m−1 for Ta/CoFeB/MgO (∆DW = 20 nm) and A = 18

pJ.m−1 for Pt/Co/AlOx (∆DW = 6.0 nm).

For an arbitrary angle ψ of the in-plane magnetization of the DW, the projected stray field

writes

Bψ
NV(x) = B⊥NV(x) + cosψB

‖
NV(x) , (S17)

where it is assumed that |B‖NV| < |B⊥NV|. We deduce the expression of the absolute uncertainty for

Bψ
NV

σBψ =
√
σ2
B⊥ + cos2 ψσ2

B‖ , (S18)

where σB⊥ = εB⊥B⊥NV and σB‖ = εB‖B
‖
NV. This is how the confidence intervals shown in Figs. 2

and 4 of the main paper were obtained. Finally, the confidence intervals for cosψ were defined as

the values of cosψ such that the data points remain in the interval [Bψ
NV−σBψ ; Bψ

NV +σBψ ]. The
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interval for the DMI parameter was deduced using the relation [13]

DDMI =
2µ0M

2
s t ln 2

π2
cosψ , (S19)

which holds for an up-down DW provided that | cosψ| < 1.

Effects of a large DMI constant. So far, we have only considered, for simplicity and to

avoid introducing additional parameters, the effect of DMI on the angle ψ of the in-plane DW

magnetization. In doing so, two other effects of DMI have been neglected: (i) the DMI induces a

rotation of the magnetization near the edges of the ferromagnetic structure [6] and (ii) the DW

profile in the presence of DMI slightly deviates from the profile Mz(x) = −Ms tanh(x/∆DW) [13].

The first (second) effect modifies the stray field above the calibration stripe (above the DW). Here

we quantify these effects for the case of Pt/Co/AlOx, for which the DMI is expected to be strong.

Recently, Martinez et al. have estimated that a value DDMI = −2.4 mJ.m−2 associated with

the spin Hall effect would quantitatively reproduce current-induced DW velocity measurements in

Pt/Co/AlOx [14]. On the other hand, Pizzini et al. have inferred a similar value of DDMI = −2.2

mJ.m−2 from field-dependent DW nucleation experiments [15]. This is≈ 70% of the threshold value

Dc above which the DW energy becomes negative and a spin spiral develops. Taking DDMI = −2.5

mJ.m−2, we predict that the magnetization rotation at the edges reaches ≈ 20◦ [6]. As a result,

the field maximum above the edge is increased by ≈ 1.8% under the conditions of Supplementary

Figure 4(c) [see Supplementary Figure 8(a)]. This is of the order of our measurement error, so

that this DMI-induced magnetization rotation cannot be directly detected in our experiment. In

fitting the data of Supplementary Figure 4(b), the outcome for Is and d is changed by a similar

amount: we found d = 119.0 ± 3.4 nm and Is = 671 ± 18 µA without DMI, as compared with

d = 121.0 ± 3.4 nm and Is = 670 ± 17 µA if DDMI = −2.5 mJ.m−2 is included. The difference is

below the uncertainty, therefore it does not affect the interpretation of the data measured above

the DW.

To quantify the second effect, we performed the OOMMF calculation with two different values

of DDMI that stabilize a left-handed Néel DW: DDMI = −0.5 mJ.m−2, as used for the simulations

shown in the main paper, and DDMI = −2.5 mJ.m−2. The stray field calculations, under the same

conditions as in Fig. 4 of the main paper, show an increase of the field maximum by ≈ 0.5% for

the stronger DMI [see Supplementary Figure 8(b)]. Again, this is well below the uncertainty of the

measurements.

Besides, it is worth pointing out that these two effects tend to compensate each other, since the
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first one tends to increase the estimated distance d, thereby decreasing the predicted DW field,

while the second one tends instead to increase the predicted DW field. Overall, we conclude that

neglecting the additional effects of DMI provides predictions for the Néel DW stray field that are

correct within the uncertainty, even with a DMI constant as large as 70% of Dc. We note finally

that the predictions for the Bloch case, as plotted in Fig. 2 and 4 of the main paper, are anyway

not affected by the above considerations, since the Bloch case implies no DMI at all.
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