

Supplementary Figure 1. The effect of different diets on Shannon index, number of species and equability. Adult mice were provided different diets for 3 weeks and then feces was collected. Microbiota composition was assessed by 16S sequencing using and final analysis used Qiime v1.6.0. The effect of the diets on alpha diversity metrics (Qiime) that showed significant differences between the groups (a) Shannon index, (b) number of observed species and (c) equability (Chao1). Control diet: black, high-fiber: blue, no-fiber: orange. Significance of individual comparisons was calculated in Qiime as nonparametric two-sample t-test using 1000 Monte Carlo permutations to calculate the p-value as per Qiime default.

Supplementary Figure 2. The effect of acetate concentration, and time, on the development of AAD. Adult (6 week old female C57Bl6) mice were provided with acetate at different concentrations (50, 100 and 200 mM, from 3 weeks prior to sensitization) or different lengths of time prior to sensitization and challenged with HDM. The effect of acetate concentration on (a) eosinophil number in BALF and (b) IL-5 and IL-13 release from MLN T cells. The effect of different lengths of time prior to sensitization (1, 2 and 3 weeks) on (c) eosinophil number in BALF and (d) IL-5 and IL-13 release from MLN T cells. The effect of different acetate when provided for 3 weeks

prior to sensitization only on (e) eosinophil number in BALF and (f) IL-5 and IL-13 release from MLN T cells. Data represent mean + SEM, n=6-8. Significance is represented by p<0.05, p<0.01, p<0.01, p<0.001, Student's t test. One representative experiment of two is shown.

Supplementary Figure 3. The effect of adjusted pH of the acetate solution on the development of AAD. Adult (6 week old female C57Bl6) mice were provided with acetate or acetate pH adjusted to the same as water then sensitized and challenged with HDM. The effect of acetate with adjusted pH on (a) eosinophil number in BALF and (b) IL-5 and IL-13 release from MLN T cells. Data represent mean + SEM, n=8. Significance is represented by **p<0.01, Student's t test. One representative experiment of two is shown.

Supplementary Figure 4. The effect of acetate on the development of OVA-

induced AAD. Adult (6 week old female C57Bl6) mice were provided with water or acetate then sensitized and challenged with OVA. The effect of acetate on (**a**) eosinophil number in BALF and (**b**) IL-5 and IL-13 release from MLN T cells. Data represent mean + SEM, n=8. Significance is represented by **p<0.05, **p<0.01, ***p<0.001, Student's t test. One representative experiment of two is shown. ND: not detected.

Supplementary Figure 5. The effect of acetate on established AAD. (a) Adult (6 week old female C57Bl6) mice were sensitized to HDM and challenged with HDM to induce AAD then provided acetate (or water as a control) before being challenged with HDM again to recapitulate AAD. The effect of acetate on (b) eosinophil number in BALF and (c) IL-5 and IL-13 release from MLN T cells. Data represent mean + SEM, n=8. Significance is represented by ***p<0.001, Student's t test. One representative experiment of two is shown. ND: not detected.

Supplementary Figure 6. The effect of propionate on the development of AAD.

Adult (6 week old female Balb/c) mice were provided with propionate in their drinking water then sensitized and challenged with HDM. The effect of propionate on (**a**) eosinophil number in BALF, (**b**) IL-5 and IL-13 release from MLN T cells and (**c**) IgE. Data represent mean + SEM, n=8. Significance is represented by *p<0.05, Student's t test. One representative experiment of two is shown.

Supplementary Figure 7. The effect of maternal intake of high-fiber diet and acetate on the development of AAD in the offspring, at 3 and 16 weeks. Pregnant mice (E13, C57Bl6) were provided with control, high-fiber diet, no fiber diet, or acetate. Female offspring were weaned onto control diet and water at 3 weeks of age. The effect of high-fiber diet or acetate, when AAD is induced at 3 weeks, on (a) eosinophil number in BALF and (b) IL-5 and IL-13 release from MLN T cells. The effect of high-fiber diet or acetate, when AAD is induced at 16 weeks, on (c) eosinophil number in BALF and (d) IL-5 and IL-13 release from MLN T cells. Data represent mean + SEM, n=8. Significance is represented by *p<0.05, **p<0.01, ***p<0.001, Student's t test. One representative experiment of two is shown. ND: not detected.

Supplementary Figure 8. The effect of maternal high-fiber diet and acetate during lactation on the development of AAD in the offspring. (a) Lactating mice (E13, C57Bl6) were provided with control, high-fiber diet, or acetate. Female offspring were weaned onto control diet and water at 3 weeks of age and at 6 weeks, sensitized and challenged with HDM. The effect of high-fiber diet or acetate during lactation on (b) eosinophil cell number in BALF, (c) IL-5 and IL-13 release from MLN T cells, and (e) airway hyperresponsiveness in terms of airway resistance (R_L). Data represent mean + SEM, n=8. Significance is represented by **p<0.01, ***p<0.001, Student's t test. One representative experiment of two is shown. ND: not detected.

Supplementary Figure 9. The effect of maternal high-fiber diet and acetate on the development of AAD in the offspring, swapped at birth. (a) Pregnant mice (E13, Balb/c) were provided with control, high-fiber diet, or acetate. At birth, offspring were swapped to a mother that had received a control diet. Female offspring were weaned onto control diet and water at 3 weeks of age and at 6 weeks, sensitized and challenged with HDM. The effect of high fiber diet or acetate during on (b) eosinophil cell number in BALF, (c) IL-5 and IL-13 release from MLN T cells, (e) airway hyperresponsiveness in terms of airway resistance (R_L). Data represent mean + SEM, n=8. Significance is represented by *p<0.05, **p<0.01, ***p<0.001, Student's t test. One representative experiment of two is shown. ND: not detected.

Supplementary Figure 10. The effect of maternal high-fiber diet and acetate on the development of AAD in the offspring, swapped at birth. (a) Pregnant mice (E13, Balb/c) were provided with control, high-fiber diet, or acetate. At birth, offspring from mothers that received a control diet were swapped to mothers on high-fiber diet or acetate (Supplementary Figure 7a). Female offspring were weaned onto control diet and water at 3 weeks of age and at 6 weeks, sensitized and challenged with HDM. The effect on (b) eosinophil cell number in BALF, (c) IL-5 and IL-13 release from MLN T cells, (e) airway hyperresponsiveness in terms of airway resistance (R_L). Data represent mean + SEM, n=8. Significance is represented by ***p<0.001, Student's t test. One representative experiment of two is shown. ND: not detected.

Supplementary Figure 11. Microbiota analysis of mothers and transferred offspring. The composition of the microbiota was determined to be significantly different using (a) unweighted (p = 0.0003) and (b) weighted UniFrac (p = 0.0002) analysis. Mother (Balb/c) on control diet (black empty circles), mother on high fiber (blue empty circles), female offspring high-fiber to control (black filled circles), offspring control to high-fiber (blue filled circles).

Supplementary Figure 12. Effect of co-housing offspring on the development of AAD. (a) Pregnant mice (E13, Balb/c) were provided with water or acetate from E13. Offspring were transferred from control mother to control mother (C), 1. Control mother

to mother on acetate, 2. Mother on acetate to control mother or 3. Remained with control mother or 4. Remained with mother on acetate. All offspring were housed at a 1:1 ratio (kept:swapped). Female offspring were weaned at 3 weeks of age and at 6 weeks, sensitized and challenged with HDM. The effect of high-fiber diet or acetate on (**b**) eosinophil number in BALF, (**c**) IL-5 and (**d**) IL-13 release from MLN T cells. Data represent mean + SEM, n=8. Significance is represented by *p<0.05, **p<0.01, Student's t test. One representative experiment of two is shown.

Supplementary Figure 13. Percentage of infants with 2 or more general practitioner (GP) visits for cough or wheeze and percentage of infants with parent-reported wheeze in the first 12 months of life (mothers asthmatic, see Supplementary Table 4). Solid bars represent the group with SCFA concentrations below median (0.0514mM for acetate, 0.0371mM for propionate and 0.03558mM for butyrate) open bars represent the group with SCFA concentrations greater than or equal to median, n=55.

Supplementary Figure 14. The effect of a high-fiber diet and acetate on WT
(C57Bl6) versus *Gpr43^{-/-}* mice (6 week old female). (a) Eosinophil number in BALF,
(b) IL-5 and (c) IL-13 release from MLN T cells. Data represent mean + SEM, n=10.
Significance is represented by *p<0.05, **p<0.01, ***p<0.001, Student's t test. One representative experiment of three is shown.

Supplementary Figure 15. Gene array heat map of lung tissue from fetus of mother
(C57B16) mice fed control, high-fibre diet or acetate. (A) High-fiber versus control, and
(B) Acetate versus control. Bolded names are shared between the high fiber and acetate groups. Gene arrays were performed using Affymetrix microarrays, and data was analysed using Affymetrix Transcriptome Analysis Console (TAC) 2.0 software.

Supplementary Figure 16. Evidence of known protein-protein interactions between top regulated genes (STRING9.1).

Supplementary Figure 17. Putative binding sites for Foxp3 in the Nppa promoter region as determined by Genomatrix software suite v3.1 maptInspector.

Supplementary Figure 18. Full size Western Blot image for Figure 8d ANP (top) and beta actin (bottom).

Supplementary Figure 19. Full size Western Blot image for Figure 8f ANP (left) and beta actin (right).

Supplementary Table 1. Calculated nutritional parameters for diets used in this study.

	Control	High fiber	No fiber
	(8720310)	(SF11-025)	(SF09-028)
Crude Fiber	3.2 %	4.7 %	0 %
AD Fiber	4.2 %	4.7 %	0 %
ND Fiber	11.2 %	n/a	n/a
Starch	29 %	63 % (all resistant)	0 %
Total	47.6 %	72.7 %	0 %
fiber/starch			
Protein	20 %	19.4 %	19.4 %
Total Fat	6 %	7 %	7 %
Digestible	12.8 MJ/kg	16.3 MJ/kg	16.9 MJ/kg
Energy			
Total calculat	ed digestible energy	from:	
Lipids	19 %	16 %	16 %
Protein	31 %	21 %	21 %
Carbohydrate	50 %	62 %	Replaced with
			dextrose
			monohydrate (62%)

AD: acid detergent

ND: Neutral detergent

Supplementary Table 2. Participant characteristics for pregnant women with and

without asthma who provided dietary data

	Maternal Asthma (n=42)	No Asthma (n=19)
Maternal age at recruitment (years);	28 (25, 31)	28 (23.5, 32.5)
median (IQR)		
Maternal self-reported smoking; n	8/42 (19%)	3/19 (15.8%)
(%)		
Gravida; median (IQR)	2 (1, 4)	2 (1, 2.5)
Parity; median (IQR)	1 (0, 1)	0 (0, 1.5)
Early pregnancy BMI; median	25.5 (22.9, 30.7)	29.5 (25.6, 32.1)
(IQR)		
Gestational age at serum collection	36 (35.3, 37)	36 (35, 36)
(weeks); median (IQR)		
Dietary Fiber (g); median (IQR)	18.5 (13.2, 25.7)	18.7 (15.5, 22.5)

IQR Interquartile range

Supplementary Table 3. Participant characteristics for pregnant women without

asthma and their infants

Maternal age at recruitment (years); median	28.6 (27.7, 31.9)
(IQR)	
Maternal self-reported smoking; n (%)	5/40 (12.5%)
Gravida; median (IQR)	2 (1, 2)
Parity; median (IQR)	1 (0, 1)
Early pregnancy BMI; median (IQR)	25.6 (23.7, 30.1)
Gestational age at serum collection (weeks);	37.6 (36.6, 38.4)
median (IQR)	
Infant age at assessment (months); median	12.1 (12.0, 12.8)
(IQR)	

IQR Interquartile range

Supplementary Table 4. Participant characteristics for pregnant women with asthma

and their infants

Maternal age at recruitment (years); median	27.5 (24.7, 32.0)
(IQR)	
Maternal self-reported smoking; n (%)	4/55 (7.3%)
Gravida; median (IQR)	2 (1, 3)
Parity; median (IQR)	1 (0, 1)
Early pregnancy BMI; median (IQR)	28.0 (24.1, 31.7)
Gestational age at serum collection (weeks);	35.9 (33.9, 37.1)
median (IQR)	
Infant age at assessment (months); median	12.3 (12.0, 12.8)
(IQR)	

IQR Interquartile range

Supplementary Table 5. Gene expression (by microarray) relative to control

(increase or decrease > 2-fold change, p<0.05)

	High fiber	vs. Control	Acetate vs.	Control
Up-regulated	Vmn1r132	+2.18	Krt4	+3.32
	Vmn1r151	+2.08	Pzp	+2.18
	Angptl3	+2.01	Serpina1	+2.14
			Fgg	+2.03
Down-regulated	Nppa	-9.91	Nppa	-10.71
	Pln	-4.94	Pln	-4.13
	Ankrd1	-4.26	Nppb	-3.87
	Actn2	-3.26	Ankrd1	-3.46
	Actc1	-3.01		
	Ttn	-2.92		
	Tnnt2	-2.84		
	Reg3g	-2.77		
	Casq2	-2.70		
	Myh6	-2.68		
	Scgb3a1	-2.42		
	Lum	-2.38		
	Tnnc1	-2.26		
	Rxfp1	-2.09		
	Hspb7	-2.04		
	Dcn	-2.01		

Bolded names are shared between the high fiber and acetate groups

Supplementary Table 6. Ingenuity systems analysis of down-regulated genes

(decrease > 1.5-fold, p < 0.05)

	High-fiber vs. Control	Acetate vs. Control
Тор	1. Cardiovascular Disease,	1. Cardiac Hypertrophy,
networks	Skeletal and Muscular Disorders,	Cardiovascular Disease,
	Cardiovascular System	Developmental Disorder (22)
	Development and Function (48)	2. Embryonic Development, Hair
	2. Cellular Development, Cell	and Skin Development and
	Morphology, Cancer (12)	Function, Organ Development
	3. Cell-To-Cell Signaling and	(3)
	Interaction, Cancer (3)	
	4. Organ Morphology,	
	Reproductive System	
	Development and Function,	
	Developmental Disorder 2	
	5. Amino Acid Metabolism,	
	Molecular Transport, Small	
	Molecule Biochemistry (2)	
Diseases and	Cardiovascular Disease (16)	Cardiovascular Disease (4)
disorders	Skeletal and Muscular Disorders	Skeletal and Muscular Disorders
	(10)	(4)
	Developmental Disorder (13)	Developmental Disorder (4)
	Organismal Injury and	Connective Tissue Disorders (1)
	Abnormalities (17)	Hereditary Disorder (3)
	Cancer (16)	

Molecular	Cell Death and Survival (14)	Lipid Metabolism (2)
and Cellular	Cell Morphology (13)	Small Molecule Biochemistry (3)
Functions	Cellular Assembly and Organization	Drug Metabolism (3)
	(13)	Molecular Transport (4)
	Cellular Function and Maintenance	Nucleic Acid Metabolism (2)
	(13)	
	Cell Signaling (10)	
Physiological	Cardiovascular System	Endocrine System Development and
System	Development and Function (16)	Function (2)
Development	Organ Morphology (17)	Cardiovascular System
and Function	Skeletal and Muscular System	Development and Function (4)
	Development and Function (18)	Tissue Morphology (3)
	Embryonic Development (13)	Embryonic Development (6)
	Organ Development (16)	Organ Development (6)
Тор	Organ Development (16) Calcium Signaling	Organ Development (6) Cardiomyocyte Differentiation via
Top Canonical	Organ Development (16) Calcium Signaling Cellular Effects of Sildenafil	Organ Development (6) Cardiomyocyte Differentiation via BMP Receptors
Top Canonical Pathways	Organ Development (16) Calcium Signaling Cellular Effects of Sildenafil (Viagra)	Organ Development (6) Cardiomyocyte Differentiation via BMP Receptors Granzyme A Signaling
Top Canonical Pathways	Organ Development (16) Calcium Signaling Cellular Effects of Sildenafil (Viagra) Epithelial Adherens Junction	Organ Development (6) Cardiomyocyte Differentiation via BMP Receptors Granzyme A Signaling Protein Kinase A Signaling
Top Canonical Pathways	Organ Development (16) Calcium Signaling Cellular Effects of Sildenafil (Viagra) Epithelial Adherens Junction Signaling	Organ Development (6) Cardiomyocyte Differentiation via BMP Receptors Granzyme A Signaling Protein Kinase A Signaling Nitric Oxide Signaling in the
Top Canonical Pathways	Organ Development (16) Calcium Signaling Cellular Effects of Sildenafil (Viagra) Epithelial Adherens Junction Signaling ILK Signaling	Organ Development (6) Cardiomyocyte Differentiation via BMP Receptors Granzyme A Signaling Protein Kinase A Signaling Nitric Oxide Signaling in the Cardiovascular System
Top Canonical Pathways	Organ Development (16) Calcium Signaling Cellular Effects of Sildenafil (Viagra) Epithelial Adherens Junction Signaling ILK Signaling Actin Cytoskeleton Signaling	Organ Development (6) Cardiomyocyte Differentiation via BMP Receptors Granzyme A Signaling Protein Kinase A Signaling Nitric Oxide Signaling in the Cardiovascular System Sperm Motility
Top Canonical Pathways Top	Organ Development (16) Calcium Signaling Cellular Effects of Sildenafil (Viagra) Epithelial Adherens Junction Signaling ILK Signaling Actin Cytoskeleton Signaling MEF2C – inhibited (p=3.03x10 ⁻²⁰)	Organ Development (6) Cardiomyocyte Differentiation via BMP Receptors Granzyme A Signaling Protein Kinase A Signaling Nitric Oxide Signaling in the Cardiovascular System Sperm Motility GATA4 – inhibited (p=5.35x10 ⁻⁸)
Top Canonical Pathways Top upstream	Organ Development (16) Calcium Signaling Cellular Effects of Sildenafil (Viagra) Epithelial Adherens Junction Signaling ILK Signaling Actin Cytoskeleton Signaling MEF2C – inhibited (p=3.03x10 ⁻²⁰) TBX5 – inhibited (p=1.09x10 ⁻¹⁹)	Organ Development (6)Cardiomyocyte Differentiation viaBMP ReceptorsGranzyme A SignalingProtein Kinase A SignalingNitric Oxide Signaling in theCardiovascular SystemSperm MotilityGATA4 – inhibited (p=5.35x10 ⁻⁸)YAP1 – inhibited (p=1.51x10 ⁻⁷)
Top Canonical Pathways Top upstream regulators	Organ Development (16) Calcium Signaling Cellular Effects of Sildenafil (Viagra) Epithelial Adherens Junction Signaling ILK Signaling Actin Cytoskeleton Signaling MEF2C – inhibited (p=3.03x10 ⁻²⁰) TBX5 – inhibited (p=5.45x10 ⁻¹⁷)	Organ Development (6)Cardiomyocyte Differentiation viaBMP ReceptorsGranzyme A SignalingProtein Kinase A SignalingNitric Oxide Signaling in theCardiovascular SystemSperm MotilityGATA4 – inhibited (p=5.35x10 ⁻⁸)YAP1 – inhibited (p=1.51x10 ⁻⁷)NKX2-5 – inhibited (p=3.13x10 ⁻⁷)

	MYOCD – inhibited $(p=2.15 \times 10^{-14})$	MYOZ2 – inhibited ($p=3.81x10^{-7}$)
Ton Ton		
100 10x	Сагшас пурегігорпу	Сагшас нурегьторпу
Lists	Cardiac Fibrosis	Cardiac Fibrosis
	Cardiac Necrosis/Cell Death	Increases Bradycardia
	Hepatic Fibrosis	Increases Heart Failure
	Increases Bradycardia	Cardiac Necrosis/Cell Death

Data are listed in order of statistical significance.

(Number) = score/number of molecules related to the result.

Bolded names are shared between the high fiber and acetate groups.

Supplementary Table 7. Ingenuity systems analysis of up-regulated genes (increase

> 1.5-fold, p<0.05)

	High-fiber vs. Control	Acetate vs. Control
Тор	1. Lipid Metabolism, Molecular	1. Developmental Disorder,
networks	Transport, Small Molecule	Hematological Disease,
	Biochemistry (25)	Hereditary Disorder (39)
	2. Embryonic Development, Hair	2. Cell-To-Cell Signaling and
	and Skin Development and	Interaction, Digestive System
	Function, Organ Development	Development and Function,
	(3)	Gastrointestinal Disease (26)
	3. Organ Morphology, Embryonic	3. Hair and Skin Development
	Development, Organ	and Function, Dermatological
	Development (3)	Diseases and Conditions,
	4. Hereditary Disorder,	Developmental Disorder (2)
	Neurological Disease,	
	Carbohydrate Metabolism (3)	
Diseases and	Inflammatory Response (3)	Developmental Disorder (12)
disorders	Neurological Disease (3)	Hematological Disease (9)
	Cardiovascular Disease (5)	Hereditary Disorder (15)
	Developmental Disorder (4)	Immunological Disease (9)
	Endocrine System Disorders (1)	Cancer (19)
Molecular	Cellular Assembly and Organization	Cell-To-Cell Signaling and
and Cellular	(3)	Interaction (13)
Functions	Lipid Metabolism (5)	Cell Death and Survival (11)
	Small Molecule Biochemistry (6)	Protein Synthesis (10)

	Vitamin and Mineral Metabolism (3)	Lipid Metabolism (14)
	Cell Death and Survival (2)	Small Molecule Biochemistry (15)
Physiological	Tissue Development (4)	Hematological System
System	Hematological System	Development and Function (14)
Development	Development and Function (3)	Tissue Development (12)
and Function	Connective Tissue Development and	Immune Cell Trafficking (11)
	Function (2)	Organismal Functions (6)
	Digestive System Development and	Cardiovascular System
	Function (2)	Development and Function (5)
	Hepatic System Development and	
	Function (2)	
Тор	Acute Phase Response Signaling	Acute Phase Response Signaling
Canonical	LXR/RXR Activation	LXR/RXR Activation
Pathways	FXR/RXR Activation	Coagulation System
	Hepatic Cholestasis	Extrinsic Prothrombin Activation
	PPAR RXR Activation	Pathway
		Intrinsic Prothrombin Activation
		Pathway
Тор	HNF1A (p=3.41x10 ⁻⁶)	HNF1A (p=8.88x10 ⁻²⁰)
upstream	Tcf 1/3/4 (p=4.81x10 ⁻⁶)	Nitrofurantoin (p=1.58x10 ⁻¹⁵)
regulators	Acetaminophen (p=7.06x10 ⁻⁵)	Tcf 1/3/4 (p=7.61x10 ⁻¹⁵)
	Hmgn3 (p=1.48x10 ⁻⁴)	Methapyrilene (p=2.61x10 ⁻¹⁴)
	Methotrexate $(p=3.27 \times 10^{-4})$	Ciprofibrate (p=3.33x10 ⁻¹²)
Тор Тох	LXR/RXR Activation	LXR/RXR Activation
Lists	Negative Acute Phase Response	Positive Acute Phase Response

Proteins	Proteins
LPS/IL-1 Mediated Inhibition of	Negative Acute Phase Response
RXR Function	Proteins
Cytochrome P450 Panel - Substrate	FXR/RXR Activation
is a Xenobiotic (Mouse)	Liver Necrosis/Cell Death
Cytochrome P450 Panel - Substrate	
is a Xenobiotic (Rat)	

Data are listed in order of statistical significance.

(Number) = score/number of molecules related to the result.

Bolded names are shared between the high fiber and acetate groups.

Supplementary Table 8. Ingenuity systems analysis of all differentially regulated

	High-fiber vs. Control	Acetate vs. Control
Тор	1. Cardiovascular Disease,	1. Cardiovascular Disease,
networks	Skeletal and Muscular	Hematological Disease,
	Disorders, Cardiovascular	Hematological System
	System Development and	Development and Function
	Function (57)	(35)
	2. Cellular Assembly and	2. Cell-To-Cell Signaling and
	Organization, Cellular Function	Interaction, Inflammatory
	and Maintenance, Embryonic	Response, Developmental
	Development (24)	Disorder (19)
	3. Embryonic Development, Hair	3. Cardiac Hypertrophy,
	and Skin Development and	Cardiovascular Disease,
	Function, Organ Development	Developmental Disorder (11)
	(3)	4. Lipid Metabolism, Molecular
	4. Cell Cycle, Cell Death and	Transport, Small Molecule
	Survival, Gastrointestinal	Biochemistry (11)
	Disease (3)	5. Embryonic Development, Hair
	5. Cell-To-Cell Signaling and	and Skin Development and
	Interaction, Cancer (3)	Function, Organ Development
		(3)
Diseases and	Cardiovascular Disease (21)	Cancer (26)
disorders	Skeletal and Muscular Disorders	Gastrointestinal Disease (20)
	(12)	Hepatic System Disease (13)

genes (decrease or increase > 1.5-fold change, p<0.05)

	Developmental Disorder (17)	Developmental Disorder (11)
	Organismal Injury and	Hematological Disease (12)
	Abnormalities (18)	
	Cancer (18)	
Molecular	Cell Morphology (12)	Lipid Metabolism (19)
and Cellular	Cellular Assembly and Organization	Small Molecule Biochemistry (21)
Functions	(14)	Vitamin and Mineral Metabolism
	Cell Death and Survival (16)	(11)
	Cellular Function and Maintenance	Cell-To-Cell Signaling and
	(14)	Interaction (17)
	Cell Signaling (10)	Cell Death and Survival (17)
Physiological	Cardiovascular System	Hematological System Development
System	Development and Function (18)	and Function (19)
Development	Organ Morphology (19)	Organismal Functions (9)
and Function	Skeletal and Muscular System	Tissue Development (18)
	Development and Function (18)	Immune Cell Trafficking (14)
	Embryonic Development (15)	Cardiovascular System
	Organ Development (19)	Development and Function (11)
Тор	Calcium Signaling	Acute Phase Response Signaling
Canonical	Cellular Effects of Sildenafil	LXR/RXR Activation Coagulation
Pathways	(Viagra) Epithelial Adherens	System
	Junction Signaling	Intrinsic Prothrombin Activation
	Acute Phase Response	Pathway

		Pathway
Тор	MEF2C – inhibited $(p=4.83 \times 10^{-18})$	HNF1A – activated ($p=2.82x10^{-18}$)
upstream	$TBX5 - inhibited (p=1.01x10^{-17})$	Hmgn3 – activated ($p=4.59 \times 10^{-14}$)
regulators	GATA4 – inhibited ($p=4.94x10^{-15}$)	Tcf1/3/4 –activated (p=5.43x10 ⁻¹⁴)
	HAND2 – inhibited ($p=2.04 \times 10^{-14}$)	Methapyrilene – inhibited
	MYOCD – inhibited $(p=7.02 \times 10^{-18} $	$(p=1.11x10^{-12})$
		Ciprofibrate – inhibited (p=1.74x10 ⁻
		¹²)
Тор Тох	Cardiac Hypertrophy	LXR/RXR Activation
Lists	Cardiac Fibrosis	Positive Acute Phase Response
	Cardiac Necrosis/Cell Death	Proteins
	Hepatic Fibrosis	Negative Acute Phase Response
	LPS/IL-1 Mediated Inhibition of	Proteins FXR/RXR Activation
	RXR Function	Cardiac Fibrosis

Data are listed in order of statistical significance.

(Number) = score/number of molecules related to the result.

Bolded names are shared between the high fiber and acetate groups.