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Supplementary Figure 1 | Aluminum Filter Transmission. Transmission of a 300-nm thick, free-

standing Al foil used in the experiments (squares). The values are determined from the attenuation of 

near-IR driven harmonic peaks measured with the spectrometer, after mounting the filter on a gate valve 

to allow for insertion and removal in the XUV beam. Solid line: interpolated curve as used in the data 

evaluation described in the main paper. Dashed line: Simulated XUV transmission of a 300-nm thick Al 

filter including an oxide layer of 45 Å thickness on each side, for comparison. The transmission is 

calculated by taking into account multiple reflections within a transfer-matrix formalism, based on 

experimentally-determined optical response functions of Al and Al2O3 in the XUV.
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Supplementary Methods  

Model of Phase-matched High Harmonic Generation 

The generation of XUV harmonics was simulated by taking into account the time- and spatially-

dependent ionization and phase mismatch during the interaction of the intense driving field with 

a gas of Krypton atoms. The numerical calculations are based on a one-dimensional model of 

wave-propagation and on-axis strong-field harmonic emission. The corresponding plane-wave 

electric field for a given frequency  and wavevector k is expressed as 

     kztictzItzE   expRe/,2),( 00 . Here, c0 is the light speed and 0 the vacuum 

permittivity, with all equations in SI units. The intensity of the UV (or near-infrared) driving 

field is described by the Gaussian envelope 
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where I0 is the peak intensity,  is the full-width at half-maximum (FWHM) pulse duration, and 

zR the Rayleigh length. 

Wavevector mismatch. To take into account the phase mismatch during HHG, we define the 

wavevector difference 

    00  qkqkk     (2) 

between the q-th harmonic at frequency q and the fundamental at . This mismatch is the 

sum of several contributions:
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where (z,t) is the time-and spatially-dependent fraction of ionized atoms, and P is the gas 

pressure. The first term above describes the mismatch arising from the dispersion of the 

refractive index n of the charge-neutral atomic gas, 
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In turn, the second term represents the mismatch due to the plasma dispersion of the ionized gas 
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with (P) being the total gas density, e the electron charge, and me the free electron mass. The 

approximation is valid as long as the plasma frequency is well below the driving field frequency, 

which is well fulfilled for our pressures. Equation (5) represents 100% ionization and is 

accordingly scaled by the ionized fraction (z,t) in Eq. (3). This plasma wavevector mismatch is 

dominated by the fundamental wave since the underlying Drude polarizability scales with 1/2
, 

resulting in a significant reduction of the term in UV-driven HHG. 

 The third term derives from the atomic dipole phase D = -qI(z,t), accumulated by the 

ionized electron wavepacket as it gets accelerated and returned to the parent ion in the strong 

laser field. The corresponding wavevector mismatch is: 
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where q = 110
-14

 cm
2 
W

-1
 for the short trajectory contribution relevant in this study.

5
 Finally, 

the last contribution to the wavevector mismatch in Eq. (3) is the Gouy phase 
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due to the difference in geometric phase shifts in the Gaussian beam focus of the fundamental 

and harmonic laser fields. 

Ionization level.  The time-dependent ionization level (z,t) at each location was calculated 

within the framework of the Yudin-Ivanov (YI) model.
6
 The corresponding YI ionization rate is 

(in SI units): 
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with 
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where Eenv(z,t) is the envelope part of the electric field and  is the Keldysh parameter, governed 

by the ratio of the atomic ionization potential Ip and twice the ponderomotive energy Up of the 

driving field, i.e. 
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and moreover 
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The exponent factor in Eq. (8) is per the YI model
6
 given as 
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Note that in these expressions the phase   of the driving field is defined as being wrapped within 

a  interval, such that -/2 < (t) ≤ /2. Like the cycle-averaged Perelomov-Popov-Terent’ev 

(PPT) theory,
7
 the YI model encompasses arbitrary Keldysh parameters , starting from quasi-

static tunneling ionization ( ≪ 1) described by the model of Ammosov, Delone and Krainov 

(ADK)
8
 up to the limit of multi-photon ionization ( ≫ 1). The YI-model ionization rate is 

normalized such that the cycle-averaged  rate equals that of the PPT model, and thus includes the 

PPT Coulomb correction factor  
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In the above, 

 

















21
asin2




 ,  (16) 

 
21

2







 , and  (17) 

  
 







 1

0

212

1

exp

2





d

xx
xw

mm

m .  (18) 

Furthermore, the limits of the sum are given by the quantum threshold and a reasonable 

convergence limit
4,7
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To calculate the total ionization rate for each spatial position z, we solve Eq. (8) and related 

expressions, summing up the rates for the relevant highest atomic levels with l = 1, m = 0,±1. For 

Krypton, the ionization potential is Ip = 13.9996 eV, from which correspondingly n
*
  (2Ip)

-1/2
 = 

0.98583 and l
*
  n

*
−1 = -0.01417. The numerical calculation is sped up by taking into account 

that the integral in Eq. (18) can be expressed by Kummer’s confluent hypergeometric function 

1F1(a,b,z) as: 
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Moreover, N(t) varies slowly and needs to be evaluated only once per cycle. For each spatial 

position, the resulting rate w(t) with its sub-cycle dependence is integrated in time along a 

finely-discretized electric driving field E(z,t) to obtain the ionization level .  
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XUV Photon Flux and Enhancement Factor.  We express the number of XUV photons 

generated in the q-th harmonic at pressure P as 

 )(),()( 0S PqPN qq   ,   (21) 

Here, S is the single-atom efficiency (per harmonic) that scales with drive frequency 

approximately as 0
5
 around the cutoff due to the wavepacket quantum diffusion, driving field 

energy, and harmonic spacing.
9
 Moreover, q represents the enhancement factor arising from the 

spatio-temporal folding of XUV emission and phase-matching, obtained by integrating across the 

pulse duration and interaction volume:  
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following the models of C. Lai et al.
10

 and E. Constant et al.
11

 This takes into account the XUV 

emission via the ionization rate w,
10,12

  neutral gas density , and ground state depletion 1-, as 

well as the XUV attenuation and phase mismatch. In the above,
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dzqLtzPtz   represents the field attenuation from each point z up to 

the exit of the medium. The absorption length Labs ()= 1/()Pdepends on the neutral gas 

density  and XUV absorption cross section . Furthermore,  
max

),,(),,(
z

z
dzPtzkPtz  is the 

phase difference accumulated from the emission at z to the medium exit.  For the optical 

properties of Kr gas, the absorption cross section is  = 34 Mb at 22.3 eV,
13

 and the refractive 

index dispersion is modeled via the Sellmeier equation of Ref. 14.  
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