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Supplementary Information 

 

Supplementary Note 1 

The theoretical limits for the single cutoff energy scheme as described in the article were 
determined using a model that includes only essential losses.  Both cases (i.e., PV and STPV) 
follow the same model as described in Wu et al. and Lenert et al.1,2 in order to treat the 
photovoltaic conversion as ideal. When illuminated by the solar spectrum, the model gives the 
same results as the Shockley-Queisser detailed balance formulation3. The ultimate power is 
calculated by assuming an EQE of unity above the PV’s electronic bandgap, Eg 
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where λg = hc/Eg (h is Planck’s constant and c is the speed of light in vacuum) and Qb,λ is the 
spectral emissive power, determined by the blackbody temperature of the emitting body and its 
spectral emittance. This ultimate power, as in the previously mentioned publications, is reduced 
in two ways: X, the open circuit voltage (Voc) is below the bandgap voltage (Vg) (equation (S2)) 
and Y, the impedance must be matched to define the maximum output power that may be 
extracted from the single junction (equation (S3)): 
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where RE>Eg is the flux of emitted photons with energies above the bandgap.  
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Defined by the relation 
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Thus the final power density that may be extracted from the PV converter is given by 

XYpP umax  (S5) 

The incoming power is simply the spectral integration of the incoming photon spectrum, Qb,λ. 

The efficiency is the ratio of the maximum power, Pmax, to the incoming power. For STPVs, this 
efficiency is multiplied by the essential photo-thermal efficiency which is derived in the 
blackbody limit. It is given by 
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The heat generation rate is calculated using a First Law analysis, requiring the difference in the 
input power and the sum of the electrical power density and essential losses to be generated as 
thermal energy.  
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Supplementary Figure 1 | Ratio of the theoretical conversion efficiencies of solar PV to STPV 
represents the required performance of a realistic (with parasitic losses) spectral converter to 
match the solar PV efficiency. 

 

Supplementary Figure 2 | Optimum emitter temperature as a function of PV bandgap for a 
single cutoff emitter. Monotonic increase in temperature is expected in order to populate higher 
energy states.  
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Supplementary Figure 3 | (a) The 4 cm2 PV, with a bonded optical filter covering the 4 cells. 
The active PV participates radiatively and electrically while the inactive PV participates only 
radiatively. (b) FTIR reflectance spectra of the rugate filter bonded to different substrates. The 
optical properties of the rugate / black paint combination are much closer to those of the rugate / 
Ag combination. Also shown is the spectral response of the underlying InGaAsSb PV converter.  

 

 

Supplementary Figure 4 | Cell temperature dependence. (a) Temperature obtained by a type J 
thermocouple sandwiched between the PV cell and the copper cooling block during the 
recording of each data point. Cell temperatures do not vary more than 6 K between the large 
absorber STPV and PV runs, with the STPV cell being slightly warmer. (b) Relative change in 
power produced by the PV cell for a given constant input spectrum while varying the 
temperature.  
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Supplementary Figure 5 | Increasing input power. (a) Optical image of the configuration 
which allows ~20% increase in input broadband white light to the absorber plane. (b) Data from 
manuscript Figure 4a which shows which optical configuration each data point was recorded at. 
Open squares represent the combined light sources while closed circles represent the primary 
solar simulator beam only.  
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