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Supplementary Figure 1: Recombination rate inference from PSMC’!
MSMC for two haplotypes is a special case that we call PSMC’, in contrast to PSMC 
because we use SMC’ (Supplementary Note) as underlying coalescent model. Here we 
show the iterative estimation of the recombination rate for two demographic scenarios: i) a 
constant population size and ii) a bottleneck in the past. As can be seen, in both cases the 
estimated recombination rate converges quickly to the true value with very high accuracy. 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� !!
Supplementary Figure 2: SImulations of other scenarios!
See the Supplementary Note for details on these additional simulations. (a) MSMC 
results from simulated data which represents a much simplified CEU population size 
history with sharp changes. (b) Similar to a) but with a simplified YRI-like history. (c) A 
population split with subsequent migration. (d) A population split with subsequent 
population size changes. (e) Inference from 8 and 16 haplotypes. For 16 haplotypes, we 
needed to reduce the computational complexity by reducing the simulated sequence to 
1Gb instead of 3 Gb, and used a coarse-grained set of parameters with 20 time intervals 
instead of 40. 

Simulation
2 hapl.
4 hapl.
8 hapl.

ef
fe

ct
iv

e 
po

pu
la

tio
n 

si
ze

104

105

time [years ago]
103 104 105 106

Simulation
2 hapl.
4 hapl.
8 hapl.

ef
fe

ct
iv

e 
po

pu
la

tio
n 

si
ze

103

104

105

time [years ago]
103 104 105 106

100kya split sim.
100kya split, no mig.
100kya split, with mig.

migration

re
la

tiv
e 

cr
os

s 
co

al
es

ce
nc

e 
ra

te

0

0.2

0.4

0.6

0.8

1.0

time [years ago]
104 105

CEU-like pop.size
YRI-like pop.size
split time
MSMC, 4 hapl.re

la
tiv

e 
cr

os
s 

co
al

es
ce

nc
e 

ra
te

0

0.2

0.4

0.6

0.8

1.0 effective population size

104

105

time [years ago]
104 105

Simulation
8 hapl.
16 hapl.

ef
fe

ct
iv

e 
po

pu
la

tio
n 

si
ze

104

105

time [years ago]
103 104 105

a b

dc

e

Nature Genetics: doi:10.1038/ng.3015



Schiffels and Durbin, Supplementary Figures and Tables! Page �                                                                        3

� !!
Supplementary Figure 3: Testing Singleton Branch Length Estimates!
Here we compare MSMC estimates based on the estimates of Ts obtained via the HMM 
described in section 7 of the Supplementary Note (solid) with the true values of the 
singleton branch length as output in the simulation (dotted). (a) shows population size 
estimates, (b) shows split estimates. 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� !!
Supplementary Figure 4: Simulations with recombination hotspots!
To assess the effect of heterogeneous recombination rates across the genome, we 
simulated 100 chromosomes with 4 haplotypes of 1Mb each, (Supplementary Note). For 
practical reasons we could not scale up this simulation to 3Gb of total sequence or to more 
haplotypes. We used as input random chunks of the real human recombination map from 
the HapMap project. (a) This plot shows the effective population size estimates from both 
the standard simulation and simulations with the human recombination map. We see only 
small effects of variable recombination rates mostly in the two extreme ends of the 
estimated time interval. Some of that difference may also be caused by the much smaller 
total sequence length of the hotspot simulation in comparison to the standard simulation. 
(b) Here we show the two split scenarios at 10kya and 100kya. Again, the differences 
between the hotspot simulation and the standard simulation are only small. 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� !!
Supplementary Figure 5: Application to unphased data!
We generated datasets in which we deliberately “unphased” one or both diploid genomes 
in a setting of four haplotypes. In (a) we plot the population size estimates from two diploid 
individuals of which both are phased (red), one is unphased (blue) and both unphased 
(purple). In (b) we plot the relative cross coalescence rate estimates based on similarly 
unphased data. 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� !!
Supplementary Figure 6: Comparison of trio- vs. population-phasing and effect of 
unphased sites!
We tested, whether results from trio-phased data differs from population-phased phasing. 
We checked this for CEU and YRI, for which we have trio-sequences available. As shown 
in (a) and (b), the trio-phased results do not differ strongly from the population phased 
results (solid vs. dashed lines). When population-phasing our sequences, there are rare 
sites which are not present in the reference data set and are therefore not phased. There 
are two possibilities: i) leave them in as unphased sites (“all”), ii) remove them from the 
analysis (“restricted”). The two cases are shown in a) and b) as solid vs. dotted lines. As 
shown, for population size inference, removing unphased sites does not appear to improve 
estimates (in comparison to the trio-phased estimates), but for the population separation 
analysis, removing unphased sites gives smoother estimates in the most recent times and 
removes some non-monotonic artifacts (in CHB/GIH). 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� !
Supplementary Figure 7: Comparisons of population size estimates with two, four 
and eight haplotypes!
(a) We show the estimates based on four haplotypes (solid lines) together with estimates 
from two haplotypes (dotted lines). For clarity, we separated the curves based on African 
and Non-African samples. (b) This plot shows estimates based on eight haplotypes (thick 
lines) in comparison with the estimates based on four haplotypes (thin lines). 

YRI
MKK
LWK
CEU
TSI

CHB
JPT
GIH
MXL

ef
fe

ct
iv

e 
po

pu
la

tio
n 

si
ze

103

104

105

106

ef
fe

ct
iv

e 
po

pu
la

tio
n 

si
ze

104

105

time [years]
104 105

CEU
TSI
CHB
JPT

GIH
YRI
LWK

ef
fe

ct
iv

e 
po

pu
la

tio
n 

si
ze

103

104

105

106

107

108

109

ef
fe

ct
iv

e 
po

pu
la

tio
n 

si
ze

104

105

106

time [years ago]
103 104 105

a

b

Nature Genetics: doi:10.1038/ng.3015



Schiffels and Durbin, Supplementary Figures and Tables! Page �                                                                        8

� !!
Supplementary Figure 8: Replicate analysis with four haplotypes!
We generated a replicate set of population size and relative cross coalescence rate 
estimates, based on the two individuals in each population not used for the main analysis, 
as presented in Figures 3 and 4. In both figures, the replicate estimate is shown as 
dashed line, the original estimate as solid line. For clarity, African and Non-African 
estimates are separated. 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� !
Supplementary Figure 9: Comparison of relative cross coalescence rate estimates 
with four and eight haplotypes!
Here we show relative cross coalescence rate estimates based on eight haplotypes (four 
haplotypes from each population, in solid lines), with estimates from four haplotypes (two 
haplotypes from each population, in dotted lines). 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� !!
Supplementary Figure 10: Comparison with diCal!
A different method to estimate historical population sizes from multiple phased haplotypes 
was recently implemented in the software diCal (Supplementary Note). Here we have 
applied diCal to 8 haplotypes, each 10Mb long, simulated using the zig-zag population 
size history as in Figure 2. The relatively short length of 10Mb is the same length as used 
in Sheehan et al. 2013; with the current diCal implementation, analysis of larger data sets 
is not practical. We tested three different time intervals, using the parameter “-t”, which 
sets the left boundary of the last time interval in scaled units. With the “-t 1” option in the 
plot below, diCal obtains correct estimates between 20kya and 200kya (red curve), roughly 
the same period addressed by MSMC with 2 haplotypes.  To explore more recent times 
that we access with 4 or 8 haplotypes we tried to change the default time interval by using 
lower “-t” values (see Supplementary Note for details), but the resulting population size 
estimates were not so good (purple and blue lines). The method may be able to perform 
better if a more efficient implementation allows it to run on whole-genome sized datasets. 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Supplementary Table 1!
Sample names and populations  

!

Sample ID Population

NA18526 CHB

NA18537 CHB

NA18555 CHB

NA18558 CHB

NA20845 GIH

NA20846 GIH

NA20847 GIH

NA20850 GIH

NA18940 JPT

NA18942 JPT

NA18947 JPT

NA18956 JPT

NA19017 LWK

NA19020 LWK

NA19025 LWK

NA19026 LWK

NA21732 MKK

NA21733 MKK

NA21737 MKK

NA21767 MKK

Sample ID Population

NA19735 MXL

NA19649 MXL

NA19669 MXL

NA19670 MXL

NA20502 TSI

NA20509 TSI

NA20510 TSI

NA20511 TSI

NA19238 YRI

NA19239 YRI

NA19240* YRI

NA18501 YRI

NA18502 YRI

NA12878* CEU

NA12891 CEU

NA12892 CEU

NA06985 CEU

NA06994 CEU

Sample ID Population
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Supplementary Table 2!
D statistic for historic gene flow from CHB to GIH!
!

!

CEU GIH CHB YRI # sites D statistic -log

A B B A 253926 0.0729 > 549

B A B A 219404

CHB GIH CEU YRI # sites

A B B A 291871 0.1417 > 2240

B A B A 219404

CEU GIH MXL (only 
Nat. Am.)

YRI # sites

A B B A 159754 0.0454 > 138

B A B A 145869

MXL (only 
Nat. Am.)

GIH CEU YRI # sites

A B B A 194481 0.1428 > 1514

B A B A 145869

Nature Genetics: doi:10.1038/ng.3015
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Supplementary Table 3!
Sample Population Statistics!!

Populatio
n

# called sites # segregating 
sites

# unphased % unphased Theta

CEU 2,132,078,340 3,973,757 124,972 3.14% 7.19E-04

CHB 2,132,530,333 3,734,161 148,046 3.96% 6.75E-04

GIH 2,137,960,203 4,180,134 279,164 6.68% 7.54E-04

JPT 2,128,798,051 3,689,030 106,160 2.88% 6.68E-04

LWK 2,110,232,589 5,498,240 225,690 4.10% 1.00E-03

MKK 2,132,615,842 5,199,644 334,893 6.44% 9.40E-04

MXL 2,113,376,228 3,958,912 131,396 3.32% 7.22E-04

TSI 2,133,276,458 4,031,944 124,492 3.09% 7.29E-04

YRI 2,133,075,233 5,646,792 197,841 3.50% 1.02E-03

Nature Genetics: doi:10.1038/ng.3015
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Supplementary Table 4!
Inbreeding and cryptic relatedness!

!

Population heterozygosity 
within samples π

heterozygosity across 
samples π

πc

CEU 7.40E-04 7.39E-04 0.998

CHB 6.98E-04 6.96E-04 0.998

GIH 7.65E-04 7.68E-04 1.004

JPT 6.97E-04 6.91E-04 0.992

LWK 9.58E-04 9.57E-04 1.000

MKK all 9.60E-04 9.22E-04 0.960

MKK (only 
NA21732 and 

NA21737)

9.56E-04 7.26E-04 0.760

MXL 7.14E-04 7.36E-04 1.030

TSI 7.42E-04 7.45E-04 1.003

YRI 9.85E-04 9.83E-04 0.998

Nature Genetics: doi:10.1038/ng.3015



Supplementary Note
The Multiple Sequentially Markovian Coalescent (MSMC)

Stephan Schiffels and Richard Durbin
Wellcome Trust Sanger Institute

1. MSMC Continuous Time Transition Probability
Each state of MSMC is defined by a triple Hi, j, tL with i < j, where i and j denote the indices of the two samples that coalesce first, and
t is the time of first coalescence. The condition i < j comes from the fact that we consider all unordered pairs of two individuals, of

which there are K
M
2 O in total, where M  is the number of haplotypes. We consider the conditional transition probability to switch from

the state Hk, l, sL to Hi, j, tL, given a recombination event at time u < s in leaf-branch m. 
We distinguish between three types of transitions, determined by how the first coalescence time changes or not: t < s, t = s, and t > s.
The three cases are detailed in the following.

ü Definitions
We  denote  the  scaled  rate  of  coalescence  between  branch  i  and  j  over  time  by  li, jHtL  and  always  assume  symmetric  rates
li, jHtL = l j,iHtL.We define the following convenient marginal rates: the total coalescence rate of branch i to all branches (including itself):

LiHtL =‚
j=1

M

li, jHtL,

and the overall total coalescence rate of any two branches:

LHtL = ‚
i=1

M-1

‚
j=i+1

M

li, jHtL.

 We also define these exponentiated integrals:

LmHt1; t2L = exp -‡
t1

t2
LmHnL „n

and

LHt1; t2L = exp -‡
t1

t2
LHnL „n

ü Equilibrium probability
The equilibrium probability is then given as

q0Ht, i, jL = li, jHtL LH0; tL,

which is normalized, as shown in section 11.

ü Transitions with t < s

As shown in the picture, for this transition to occur we need to have m œ 8i, j< and the resulting floating branch coalescence needs to
take place between i and j at time t and it must not coalesce with any other branch, including itself before t. This can be summarized as:

Schiffels and Durbin, Supplementary Note | 1
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qHi, j, t k, l, s, u, mLt<s =
li, jHtL LmHu; tL if m œ 8i, j< and u < t.
0 else

ü Transitions with t = s

For this to happen, one of two things must occur: Either, any branch with m – 8k, l< does coalesce later than t, or second, any floating
branch self-coalesces before time t (see Figure). This results in the following terms:

qHi, j, t k, l, s, u, mLt=s = ‡
u

t
lm,mHkL LmHu; kL „k + ! LmHu; tL if m ! k and m ! l

0 else

ü Transitions with t > s

Here we require m œ 8k, l<, i.e. the recombination needs to break the existing pair of first coalescence. A floating branch is then created
and it must not coalesce back with any branch (including itself) before time s. It is not necessary that this particular floating branch will
coalesce at time t, since any two other branches could coalesce then and hence make up the new pair Hi, jL. We therefore require that no
pair coalesces before time t, resulting in the term:

qHi, j, t k, l, s, u, mLt>s =
li, jHtL LmHu; sL LHs; tL if m œ 8k, l<
0 else.

ü Full transition probability
The three cases above can be summarized as:

qHi, j, t k, l, s, u, mL =

dHt - sL di,k d j,l ‡
u

t
lm,mHkL LmHu; kL „k + I1 - dm,kM I1 - dm,lM LmHu; tL +

Idm,i + dm, jM li, jHtL LmHu; tLQHt - uL for t § s

Idm,k + dm,lM l
i, jHtL LmHu; sL LHs; tL for t > s.

!We show in section 11 that this conditional probability is normalized, i.e. that

‚
i< j

M

‡
0

¶

qHi, j, t k, l, s, u, mL „ t = 1.

for fixed k, l, s, u and m.

The full transition probability is then a sum over both cases with and without recombination, integrating over the parameters s and m
with uniform probability density:

qHi, j, t k, l, sL = ‰-M r s dHt - sL di,k d j,l + I1 - ‰-M r sM
1

s

1

M
‡
0

s
‚
m=1

M

qHi, j, t k, l, s, u, mL „u

which results in the expression:

(1)qHi, j, t k, l, sL = dHt - sL di,k d j,l q1Hk, l, sL + q2Hi, j, t k, l, sL

with

(2)q1Hk, l, sL = ‰-M r t + I1 - ‰-M r tM
1

t

1

M
‡
0

t
‚
m=1

M

‡
u

t
lm,mHkL LmHu; kL „k + ‚

m!8i, j<

M

LmHu; tL „u

and

(3)q2Hi, j, t k, l, sL = I1 - ‰-M r sM
1

s

1

M
li, jHtL

Ÿ0
t
⁄m=8i, j<LmHu; tL „u if t < s

L Hs; tL Ÿ0
s
⁄m=8k,l<LmHu; sL „u if t > s.
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Note that because of the normalization we always have

(4)q1Hk, l, sL = 1 -‚
i< j

M

‡
0

¶

q2Hi, j, t k, l, sL „ t.

It will therefore suffice to constrain all further derivations to q2Hi, j, t k, l, sL and omit explicit expressions for q1Hk, l, sL. 

Note that the special case M = 2 does not reduce to the original PSMC model as derived in [1]. Instead it differs from PSMC in a subtle
way, because here we explicitly include the possibility that the floating branch coalesces back onto itself. This modification corre-
sponds to the introduction of SMC' [2] after SMC [3].

ü Piecewise constant coalescence rate
We introduce discrete ordered time boundaries Ta  for a = 0 … n with T0 = 0 and Tn = ¶. We define piecewise constant population
sizes which correspond to piecewise constant coalescence rates:

(5)li, jHtL = la
i, j for Ta § t < Ta+1.

We define the discretized marginal rates

La = ‚
i=1

M-1

‚
j=i+1

M

la
i, j

and

La
m =‚

i=1

M

la
i, j

In practice, we use quantile boundaries of the exponential distribution with mean K
M
2 O

-1
 (in time units of 2 N0 generations):

(6)Ta = -log 1 -
a

n
ìK

M
2 O.

Let the next lower time boundary from t1  be b, and the next lower time boundary from t2  be a. We use the shortcut Da = Ta+1 - Ta.
The exponentiated integrals LHt1; t2L and LmHt1; t2L are then expressed as:

LHt1; t2L a!b = exp -ITb+1 - t1MLb - ‚
k=b+1

a-1

Lk Dk - Ht2 - TaLLa .

LHt1; t2L a=b = expH-Ht2 - t1LLaL.

and similar formulas for LmHt1; t2L, replacing La with La
m.

With these expressions, we can compute all the integrals in the transition probability:

(7)

q2Hi, j, t; a k, l, s; bL t<s = I1 - ‰-M r sM
1

s

1

M
la
i, j
HtL ‡

0

t
‚

m=8i, j<

LmHu; tL „u

= I1 - ‰-M r sM
1

s

1

M
la
i, j

‚
g=0

a-1

‡
Tg

Tg+1
‚

m=8i, j<

LmHu; tL „u + ‡
Ta

t
‚

m=8i, j<

LmHu; tL „u

= I1 - ‰-M r sM
1

s

1

M
la
i, j

‚
g=0

a-1

‚
m=8i, j<

LmITg+1; tM ‡
Tg

Tg+1
‰-HTg+1-uLLg

m
„u + ‚

m=8i, j<
‡
Ta

t
‰-Ht-uLLa

m
„u

= I1 - ‰-M r sM
1

s

1

M
la
i, j

‚
g=0

a-1

‚
m=8i, j<

1

Lg
m
I1 - ‰-Dg Lg

m
M LmITg+1; tM + ‚

m=8i, j<

1

La
m
I1 - ‰-Ht-TaLLa

m
M ,

and

(8)

q2Hi, j, t; a k, l, s; bL t>s = I1 - ‰-M r sM
1

s

1

M
li, jHtL LHs; tL ‡

0

s
‚

m=8k,l<

LmHu; sL „u

= I1 - ‰-M r sM
1

s

1

M
la
i, j LHs; tL ‚

g=0

b-1

‚
m=8k,l<

‡
Tg

Tg+1
LmHu; sL „u + ‚

m=8k,l<
‡
Tb

s
LmHu; sL „u

Schiffels and Durbin, Supplementary Note | 3

Nature Genetics: doi:10.1038/ng.3015



(8)

= I1 - ‰-M r sM
1

s

1

M
la
i, j LHs; tL ‚

g=0

b-1

‚
m=8k,l<

‡
Tg

Tg+1
LmHu; sL „u + ‚

m=8k,l<
‡
Tb

s
LmHu; sL „u

= I1 - ‰-M r sM
1

s

1

M
la
i, j LHs; tL ‚

g=0

b-1

‚
m=8k,l<

LmITg+1; sM ‡
Tg

Tg+1
‰-HTg+1-uLLg

m
„u + ‚

m=8k,l<
‡
Tb

s
‰-Hs-uLLa

m
„u

= I1 - ‰-M r sM
1

s

1

M
la
i, j LHs; tL ‚

g=0

b-1

‚
m=8k,l<

1

Lg
m
I1 - ‰-Dg Lg

m
M LmITg+1; sM + ‚

m=8k,l<

1

Lb
m
I1 - ‰-Hs-TbLLb

m
M .

2. MSMC Discrete Time Transition Probability
We first compute the total weight of the equilibrium probability over each time interval:

q0Hi, j, aL = ‡
Ta

Ta+1
la
i, j LH0; tL „ t = la

i, j LH0; TaL ‡
Ta

Ta+1
‰-Ht-TaLLa „ t =

la
i, j

La

LH0; TaL I1 - ‰-Da LaM

For each time interval b we now compute the average coalescence time:

(9)

Ytb] =
1

q0HbL
‡
Tb

Tb+1

t q0Ht; bL „ t =
Lb

LI0; TbM H1 - ‰-Db LbL
‡
Tb

Tb+1

t LH0; tL „ t

=
Lb

I1 - ‰-Db lbM
‡
Tb

Tb+1

t ‰-Ht-TbLLb „ t

=
1

H1 - ‰-Db LbLLb

I1 + Lb Tb - ‰-Lb Db I1 + Lb Tb+1MM

Note that this expression for Ytb] has a numerical instability for Lb d 10-3. We set the following asymptotic values:

Ytb] =
ITb + Tb+1M ë2 for Lb < 10-3 and b + 1 < ¶

Tb + ILbM
-1 for Lb < 10-3 and b + 1 = ¶ .

To get discrete transition probabilities, we integrate the transition probability for each time interval a through @Ta; Ta+1D, replacing the
time s with Ytb]:

qHi, j, a k, l, bL = ‡
Ta

Ta+1
qIi, j, t k, l, Ytb]M „ t

ü First case: t<s
qHi, j, a k, l, bL a<b

= ‡
Ta

Ta+1
I1 - ‰-M r Xtb\M

1

Ytb]

1

M
la
i, j

‚
g=0

a-1

‚
m=8i, j<

1

Lg
m
I1 - ‰-Dg Lg

m
M LmITg+1; tM + ‚

m=8i, j<

1

La
m
I1 - ‰-Ht-TaLLa

m
M „ t

=

I1 - ‰-M r Xtb\M
1

Ytb]

1

M
la
i, j

‚
g=0

a-1

‚
m=8i, j<

1

Lg
m
I1 - ‰-Dg Lg

m
M LmITg+1; TaM ‡

Ta

Ta+1
‰-Ht-TaLLa

m
„ t + ‚

m=8i, j<

1

La
m

Da - ‡
Ta

Ta+1
‰-Ht-TaLLa

m
„ t

= I1 - ‰-M r Xtb\M
1

Ytb]

1

M
la
i, j

‚
g=0

a-1

‚
m=8i, j<

1

Lg
m
I1 - ‰-Dg Lg

m
M LmITg+1; TaM

1

La
m
I1 - ‰-Da La

m
M + ‚

m=8i, j<

1

La
m

Da -
1

La
m
I1 - ‰-Da La

m
M

ü Second case: t>s
qHi, j, a k, l, bL a>b

= ‡
Ta

Ta+1
I1 - ‰-M r Xtb\M

1

Ytb]

1

M
la
i, j LIYtb]; tM ‚

g=0

b-1

‚
m=8k,l<

1

Lg
m
I1 - ‰-Dg Lg

m
M LmITg+1; Ytb]M + ‚

m=8k,l<

1

Lb
m
I1 - ‰-HXtb\-TbLLb

m
M „ t

=
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I1 - ‰-M r Xtb\M
1

Ytb]

1

M
la
i, j LIYtb]; TaM

1

La

I1 - ‰-Da LaM ‚
g=0

b-1

‚
m=8k,l<

1

Lg
m
I1 - ‰-Dg Lg

m
M LmITg+1; Ytb]M + ‚

m=8k,l<

1

Lb
m
I1 - ‰-HXtb\-TbLLb

m
M

3. MSMC Emission Probability
An observation consists of an allele string O with alleles denoted as Oi œ 81, 0<. Real allele strings with letters 8A, C, T, G< can be
normalized to 81, 0<, approximating rare multi-allelic SNPs by merging of two arbitrary alleles.

ü Singleton branch length
To define the emission probabilities, we need to define the singleton branch length, Ts, a property of the tree that can not be expressed
through the hidden state alone. As shown in the following picture, the singleton branch length of the tree is the sum of all  those
branches which would give rise to singleton mutations, should a mutation occur on that branch. Note that this definition is defined for
minor allele counts. This means that Ts includes those branches of the tree which result in a derived allele count of M - 1 alleles. The
singleton branch length can be estimated locally from real  data in an approximately independent analysis  from MSMC itself,  see
section 6. For the following, we assume that we have an estimate of Ts at every position along the samples.

Note that the singleton branch length is not strictly independent from the first coalescence time. For MSMC we ignore this interdepen-
dency,  as  justified from simulations,  see main text  and Supplementary Figure 3.  Instead,  we treat  the local  estimate Ts  as  a  soft
constraint. This means that in the emission probabilities below we always consider maxHTs, M tL when we write Ts. This means that we
always set Ts = M t when we compute a term with M t > Ts. This is an evident requirement, as seen in the picture above: The sum of all
blue branches must be at least as long as M  times the first coalescence time t.

ü Emission categories
For more than two haplotypes, i.e. M > 2, the possible observations given state Ht, i, jL fall into the following categories, corresponding
to the list in Online Methods:
1. All alleles are the same, no mutation occured within the singleton branches nor in the rest of the tree, which happens with 

probability
eHO t, i, jL = 1 - m Ts.

In this formula, we ignore the rest of the tree outside of Ts: since we only know the average branch length of the tree, this would 
result simply in a constant factor, independent of the state Ht, i, jL at that position, and hence does not affect the normalized 
posterior probability across states.

2. The two alleles in samples i and j differ, Oi ! O j, and this is the only difference between any two samples. In this case, a mutation 
occurred in one of the leaf branches i or j, resulting in the emission probability

eHO t, i, jL = m t

3. Both leaves i and j have the same allele, Oi = O j, and exactly one of the other alleles differs from Oi and O j. In that case, a 
mutation occurred somewhere within the singleton branch length Ts of the tree, but outside the two leaf branches leading to i and j. 
Because this includes mutations with resulting allele count M - 1, as discussed above, the emission probability consists of two 
terms. First, the probability that a mutation occurs within Ts but somewhere higher up the tree than time t is mHTs - M tL. To turn 
this into the probability to observe a specific singleton, this needs to be normalized by the number of possible observations with 
minor allele count 1 outside the pair of first coalescence, which is M - 2. Second, a mutation may have occured more recently than 
t in the leaf branch carrying the singleton allele, which happens with probability m t:

eHO t, i, jL =
m HTs - M tL

M - 2
+ m t.

4. A higher frequency variant with minor allele count larger than 1 occured, but we have Oi = O j. This means that no mutation 
occurred anywhere within Ts so this results in the same probability as for category 1:

eHO t, i, jL = 1 - m Ts.

This ignores any terms from mutations higher up the tree, with the same argument as in category 1 above. For the same reason we 
do not normalize this term by the number of possible observations, as is necessary in the first term of category 2.

5. A higher frequency variant with minor allele count larger than 1 occured, but we have Oi ! O j. This requires at least two 
mutations, one within the pair of first coalescence and one outside, which we assume to occur with zero probability:
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eHO t, i, jL = 0

6. Some samples have no alleles called at a position. As in many other HMM implementations, we model missing data by setting the 
emission probability to 1 for all states:

eHO t, i, jL = 1.

4. MSMC Hidden Markov Model
We can now define a Hidden Markov Model, using the above defined transition and emission probabilities. For a given sequence of
length L, we define the observations as O1 … OL.
We define a forward variable f1Ha, i, jL … fLHa, i, jL by the recursion relation:

Ë Initialisation

f1Ha, i, jL = q0HaL eHO1 a, i, jL

Ë Recursion

fnHa, i, jL = eHOn a, i, jL ‚
b,8k<l<

qHa, i, j b, k, lL fn-1Hb, k, lL for 2 < n § L,

where the notation 8k < l< means that the sum over those indices is performed only through the set of unordered pairs, i.e. with the
constraint k < l or i < j.
The backwards variable b1Ha, i, jL … bLHa, i, jL is defined analogously:

Ë Initialisation

bLHa, i, jL = 1

Ë Recursion

bnHb, k, lL = ‚
a,8i< j<

eHOn+1 a, i, jL qHa, i, j b, k, lL bn+1Ha, i, jL for 1 § n < L.

Naively  implemented,  the  transition  complexity  of  the  forward-  and  backward-recursion  scales  quadratic  in  the  number  of  time
segments, and it scales as M4  with the number of haplotypes M . As we show in the following, this complexity can be reduced to the
second power of M  by exploiting symmetries in the transition matrix.

ü Exploiting the transition symmetries for optimization

We normally do not expect all K
M
2 O different coalescence rates (all pairs of indices i, j) per time interval to be different. Instead, we

normally consider the case in which our samples come in groups, forming subpopulations. 
More formally we define index sets I1, I2 ... InI , such that each pair index i, j is in exactly one index set. For example, if we consider
M = 4 haplotypes from only one population we have one index set I1 = 8H1, 2L, H1, 3L, H1, 4L, H2, 3L, H2, 4L, H3, 4L< in which all pair
indices are. If the haplotypes come from two different subpopulations, with the first two haplotypes from subpopulation 1 and the other
two from subpopulation 2, we have three index sets:
I1 = 8H1, 2L< Hfirst coalescence is within population 1L

I2 = 8H1, 3L, H1, 4L, H2, 3L, H2, 4L Hfirst coalescence is across populationsL

I3 = 8H3, 4L< Hfirst coalescence is within population 2L

We define the marginal index ji, j  to yield the index set in which a given pair i, j resides. We set equal coalescence rates for all pairs
Hi, jL within a given index set, and denote this coalescence rate for index set u by lau . We then have

la
i, j
= la

u with u = ji, j

Because the coalescence rates are symmetric within each index set, so are the transition probabilities:

qHa, i, j b, k, lL = q1Ia, ji, jM da,b di,k d j,l + q2Ia, ji, j b, jk,lM

We can exploit this fact to optimize the transition process in the forward- and backward-algorithm of the Hidden Markov Model.
Without optimization, we had the forward recursion:
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fnHa, i, jL = eHOn a, i, jL ‚
b,k<l

fn-1Hb, k, lL qHa, i, j; b, k, lL,

which scales as M4 (needs to be evaluated for all a, i, j, each of which has a sum over b, k, l).

To optimize, we define the following marginal forward variable:

FnHa, uL = ‚
i, jœ Iu

fnHa, i, jL

With this definition the recursion reads

fnHa, i, jL = eHOn a, i, jL fn-1Ha, i, jL q1Ia, ji, jM +‚
b,v

Fn-1Hb, vL q2Ia, ji, j; b, vM ,

which scales as ni2, where ni  is the number of index sets (which is rougly quadratic in the number of subpopulations) since no sum
across pair tuples are involved.
Similarly, for the unoptimized version of the backwards recursion we have

bnHb, k, lL = ‚
a,i< j

eHOn+1 a, i, jL bn+1Ha, i, jL qHa, i, j; b, k, lL.

We define the marginal backward variable:

B
è
nHa, uL = ‚

Hi, jLœIu

bnHa, i, jL eHOn a, i, jL.

With this we get

bnHb, k, lL = eHOn+1 b, k, lL bn+1Hb, k, lL q1Ib, jk,lM +‚
a,u

B
è
n+1Ha, uL q2Ia, u; b, jk,lM,

ü Optimization for SNP-free regions
We now consider the interval @n1, n2D with length n2 - n1 = l  in which sites have no SNPs. We then have trivial emission probabilities
of
eHOn a, i, jL = e0HaL for n œ @n1, n2D.

ü Forward Recursion

We can then write the forward recursion through the entire region as

fnHa, i, jL = ‚
b,k<l

glHa, i, j b, k, lL fn-lHb, k, lL

with the matrix power gl, defined recursively:

g1Ha, i, j b, k, lL = qHa, i, j b, k, lL e0HaL

glHa, i, j b, k, lL = e0HaL ‚
g,m<n

gl-1Hg, m, n b, k, lL qHa, i, j g, m, nL.

We assume that we can write the propagation matrix in the form

glHa, i, j b, k, lL = da,b di,k d j,l g1l Ia, ji, jM + g2l Ia, ji, j b, jk,lM,

with g11Ha, uL = q1Ha, uL e0HaL and g21Ha, u b, vL = q2Ha, u b, vL e0HaL.

We can hence write the recursion equation using this form and the similar form for the transition matrix:

glHa, i, j b, k, lL

= e0HaL ‚
g,m<n

Idg,b dm,k dn,l g1l-1Hg, jm,nL + g2l-1Ig, jm,n b, jk,lMM Ida,g di,m d j,n q1Ia, ji, jM + q2Ia, ji, j g, jm,nMM

= e0HaL ‚
g,m<n

Idg,b dm,k dn,l g1l-1Hg, jm,nL da,g di,m d j,n q1Ia, ji, jM + g2l-1Ig, jm,n b, jk,lM da,g di,m d j,n q1Ia, ji, jM +

dg,b dm,k dn,l g1l-1Hg, jm,nL q2Ia, ji, j g, jm,nM + g2l-1Ig, jm,n b, jk,lM q2Ia, ji, j g, jm,nMM

Schiffels and Durbin, Supplementary Note | 7

Nature Genetics: doi:10.1038/ng.3015



= e0HaL da,b di,k d j,l g1l-1Ia, ji, jM q1Ia, ji, jM + g2l-1Ia, jk,l b, ji, jM q1Ia, ji, jM +

g1l-1Ib, jk,lM q2Ia, ji, j b, jk,lM +‚
g,w

±Iw ± g2l-1Ig, w b, jk,lM q2Ia, ji, j g, wM

where °Iu ° is the number of pairs in the set Iu.

We read off the two recursion relations:

g1l Ha, uL = e0HaL g1l-1Ha, uL q1Ha, uL,

and g2l Ha, u b, vL = e0HaL g2l-1Ha, u b, vL q1Ha, uL + g1l-1Hb, vL q2Ha, u b, vL +‚
g,w

±Iw ± g2l-1Hg, w b, vL q2Ha, u g, wL

Given the form of the propagation matrix gl, we can make use of the above defined marginal forward vector FnHaL:

fnHa, i, jL = fn-lHa, i, jL g1l Ia, ji, jM +‚
b,v

g2l Ia, ji, j b, vM Fn-lHb, vL

ü Backward Recursion

Similarly, for the backward recursion, we have

bnHb, k, lL = ‚
a,i< j

hlHa, i, j b, k, lL bn+lHa, i, jL

with

h1Ha, i, j b, k, lL = g1 = qHa, i, j b, k, lL e0HaL

hlHa, i, j b, k, lL = ‚
g,m<n

hl-1Ha, i, j g, m, nL qHg, m, n b, k, lL e0HgL

We try to write hl in the form

hlHa, i, j b, k, lL = da,b di,k d j,l h1l Ia, ji, jM + h2l Ia, ji, j b, jk,lM,

with h11Ha, uL = q1Ha, uL e0HaL and h21Ha, u b, vL = q2Ha, u b, vL e0HaL.

For the recursion it then follows:

hlHa, i, j b, k, lL

= ‚
g,m<n

e0HgL Ida,g di,m d j,n h1l-1Ia, ji, jM + h2l-1Ia, ji, j g, jm,nMM Idg,b dm,k dn,l q1Hg, jm,nL + q2Ig, jm,n b, jk,lMM

= ‚
g,m<n

e0HgL Ida,g di,m d j,n h1l-1Ia, ji, jM dg,b dm,k dn,l q1Hg, jm,nL + h2l-1Ia, ji, j g, jm,nM dg,b dm,k dn,l q1Hg, jm,nL +

da,g di,m d j,n h1l-1Ia, ji, jM q2Ig, jm,n b, jk,lM + h2l-1Ia, ji, j g, jm,nM q2Ig, jm,n b, jk,lMM

= da,b di,k d j,l h1l-1Ia, ji, jM q1Ia, ji, jM e0HaL + h2l-1Ia, ji, j b, jk,lM q1Ib, jk,lM e0HbL +

e0Ia, ji, jM h1l-1Ia, ji, jM q2Ia, ji, j b, jk,lM +‚
g,w

±Iw ±h2l-1Ia, ji, j g, wM q2Ig, w b, jk,lM e0HgL,

from which we read off the two recursion relations:

h1l Ha, uL = e0HaL h1l-1Ha, uL q1Ha, uL, and h2l Ha, u b, vL =

h2l-1Ha, u b, vL q1Hb, vL e0HbL + e0HaL h1l-1Ha, uL q2Ha, u b, vL +‚
g,w

±Iw ±h2l-1Ha, u g, wL q2Hg, w b, vL e0HgL

We can again use a marginalized version of the backward variable for speed up:

bnHb, k, lL = h1l Ib, jk,lM bn+lHb, k, lL +‚
a,u

h2l Ia, u b, jk,lM Bn+lHa, uL

with
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BnHa, uL = ‚
k,lœIu

bnHa, k, lL,

which is different from B
è
nHa, uL, as it does not use the emission probability.

ü Missing data
For contiguous segments of missing data, we can apply the same recipe as for homozygous regions, simply replacing the emission
probability e0Ha, i, jL with 1 for all states. All the matrix powers as described above can then be computed with the same recursion
formulas.

5. Parameter Re-estimation
The objective function in the Baum-Welch algorithm is defined as

FIq, qM = ‚
a,b,8i< j<,8k<l<

logIqIa, i, j b, k, l; qMM XHa, i, j b, k, l; O, qL.

with

XHa, i, j b, k, l; O, qL =‚
n=2

L

xnHa, i, j b, k, l; O, qL

and

xnHa, i, j b, k, l; O, qL = fnHb, k, lL qHa, i, j b, k, l; qL eHOn+1 a, i, jL bn+1Ha, i, jL

Here, q denotes the set of parameters to be learned, which are all coalescence rates la
i, j and the recombination rate r.

The re-estimated parameters are obtained by optimizing over q:

q ' = argmax
q
-

FIq, qM.

We can write the objective function as

FIq, qM = ‚
a,b,8i< j<,8k<l<

logIq1Ia; qM da,b di,k d j,l + q2Ia b; qMM XHa, i, j b, k, l; O, qL.

We now separate out the diagonal part of the sum:

FIq, qM = ‚
a

logIq1Ia; qM + q2Ia a; qMM XdiagHa; O, qL +

‚
a,b

logIq2Ia b; qMM XoffHa b; O, qL

and define the two separate sums:

XdiagHa O, qL = ‚
8i< j<

XHa, i, j a, i, j; O, qL

and

XoffHa b; O, qL = ‚
8i< j<,8k<l<

XHa, i, j b, k, l; O, qL I1 - da,b di,k d j,lM.

Now the objective function reads:

FIq, qM = ‚
a

logIq1Ia; qM + q2Ia a; qMM XdiagHa O, qL + ‚
a!b

logIq2Ia b; qMM XoffHa b; O, qL

The advantage with this form is that  Xoff can be efficiently computed using the marginal forward- and backward-variables from above.
We first write

XoffHa bL =‚
n=1

L-1

xoff
n Ha bL and XdiagHaL =‚

n=1

L-1

xdiag
n HaL

with
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xoff
n Ha bL = ‚

8i< j<,8k<l<

fnHb, k, lL qHa, i, j b, k, lL eHOn+1 a, i, jL bn+1Ha, i, jL I1 - da,b di,k d j,lM

= ‚
8i< j<,8k<l<

fnHb, k, lL q2Ha bL eHOn+1 a, i, jL bn+1Ha, i, jL I1 - da,b di,k d j,lM

= FnHbL q2Ha bL B
è
nHaL - da,b ‚

8i< j<

fnHa, i, jL q2Ha aL eHOn+1 a, i, jL bn+1Ha, i, jL

and

xdiag
n HaL = ‚

8i< j<,8k<l<

fnHb, k, lL qHa, i, j b, k, lL eHOn+1 a, i, jL bn+1Ha, i, jL da,b di,k d j,l

= ‚
8i< j<

fnHa, i, jL Hq1HaL + q2Ha aLL eHOn+1 a, i, jL bn+1Ha, i, jL

ü Constrained optimization
The Baum-Welch algorithm in principle lets us re-estimate all coalescence rates and recombination rates. However, in practice we
constrain the number of free parameters:
Parameter Constraints:

Ë For fixed a and u, all coalescence rates la
i, j with ji, j = u need to be equal, where ji, j denotes the index sub-group as defined in the 

beginning of chapter 4.
Ë Parameters for neighbouring time intervals may be constrained to be equal, according to a defined pattern. For human data and one 

single population, we usually use 40 time intervals, with quantile boundaries as in equation 6, and the most recent 10 intervals left 
as freel parameters, and the other 30 intervals joined to pairs of 2, leading to 25 free coalescence rate parameters. For samples 
coming from two subpopulations, we usually use 30 time intervals, with the first 8 being independent, and the latter 22 being 
joined to pairs of two, leading to 19 free parameters within each population and 19 additional free parameters for the coalescence 
rate across populations.

Ë All coalescence rates across populations must be smaller or equal to the mean rate within the two populations, such that the 
relative cross coalescence rate in interval a, ga = 2 la

12 ê Hla
11 + la

22L remains between 0 and 1.
Ë All coalescence rates must be positive.

Ë The recombination rate must be positive.

These constraints can be incorporated into numerical optimization techniques using logarithmic and tangential variable transforms (see
[4]).

6. Estimating the singleton branch length
The local singleton branch length of the tree can be estimated approximately from the data. For that we build an HMM inspired from
PSMC or PSMC’ (MSMC with 2 haplotypes), with observations being a sequence of “1”, “0” and “.”. Here, “1” denotes a position with
minor allele count 1 (a singleton), “0” denotes any other called position and “.” denotes missing data. The hidden state of this HMM is
the singleton branch length Ts. It is straight forward to see that the emission probability of that model is:
eH1 TsL = 1 - m Ts, eH0 TsL = m Ts, eH. TsL = 1.

This is very similar to the PSMC/PSMC’ emission probability, with the only difference being a missing factor 2 in front of Ts, see
below.
It is difficult to derive an analytically exact transition probability for that model, since the recombination process that changes one tree
to another does not only depend on the singleton branch length. However, we find that simple heuristics are good enough: We know
that most recombination events that change the singleton branch length occur within the singleton branch length itself, which happens
with probability r Ts. For the probability conditional on there being a recombination event, we now simply approximate the process by
the analogous expression from PSMC’, equations 1, 2 and 3, using a constant population size (to avoid having to re-estimate Ts every
iteration of MSMC) and replacing t = Ts ê2. The factor 1 ê2 is important because PSMC considers half the total branch length as its
hidden state, whereas here we use the branch length Ts itself as hidden state.
We again discretize the state space similarly to MSMC using quantile boundaries:

Ts,i = -log 1 -
i

nTs
ìH2 + 1 ê HM - 1LL

where 2 + 1 ê HM - 1L is the expected singleton branch length: It is the sum of the leaf branch length of the tree (which is 2 in units of
2 N0) and that part of the tree which gives rise to variants with derived allele frequency M - 1 (which is 1 ê HM - 1L in units of 2 N0).
We then run this HMM via the forward- backward-algorithm to obtain local posterior probabilities. For the discretization intervals, we
We then use the maximum posterior path as best local estimate of Ts. The reason why this simple approach works so well despite all the
approximations is the fact that the maximum likelihood path of Ts is very much dominated by the local emission rates, and not so much
by the transition rates.
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We then run this HMM via the forward- backward-algorithm to obtain local posterior probabilities. For the discretization intervals, we
We then use the maximum posterior path as best local estimate of Ts. The reason why this simple approach works so well despite all the
approximations is the fact that the maximum likelihood path of Ts is very much dominated by the local emission rates, and not so much
by the transition rates.

ü Testing the singleton branch length estimation with simulations
To test how the approximations in our singleton branch length estimation influence the demographic inference, we can use the true
singleton branch length locally directly to use for Ts  in the MSMC emission probability. As shown in Supplementary Figure 3, this
comparison reveals that both the HMM estimation of Ts  and the true value obtained from the actual trees from the simulation are
remarkably similar, revealing almost no effect of either the approximation involved in using PSMC’s transition probability, nor in using
a constant effective population size for the estimation.
There is one important note about comparing with the true singleton branch length from simulations. It is quite tedious to compute from
the Newick-trees (output from MaCS [6] and ms [5] coalescent simulators) the full minor allele singleton branch length. As defined
above, Ts does not only include true singletons, but also mutations with derived allele count M - 1. In these comparisons, we therefore
change the definition  slightly to T

è
s, which includes only singletons with derived allele count 1. This is very easy to extract from the

Newick-tree format, since it is simply the sum of all leaf branches. Correspondingly, in the MSMC emission probability we have to use
a slightly different term for category 2: eHO t, i, jL = mIT

è
s - 2 tM ë HM - 2L, which is straight forward to see, given the slightly simpler

definition of T
è
s. We use the modified definition T

è
s  only for the MSMC runs using the true singleton branch lengths (dotted lines in

Supplementary Figures 3).

7. Coalescent simulations
ü Zig-Zag simulation

We first generated a single population with a zig-zag type population history, implemented in ms [5] as a sequence of exponential
growths and declines:

ms 4 1 -t 7156.0000000 -r 2000.0000 10000000 -eN 0 5 -eG 0.000582262 1318.18 -eG 
0.00232905 -329.546 -eG 0.00931619 82.3865 -eG 0.0372648 -20.5966 -eG 0.149059 5.14916 -eN 
0.596236 0.5 -T

Here, the first parameter (4) is the number of haplotypes, which we varied among 2, 4 and 8.

ü Split simulation
In the second scenario we simulated a single population with MaCS [6] that split into two constant size populations. The command line
for this case is:

macs 4 30000000 -t 0.0007156 -r 0.0002 -I 2 2 2 -ej 0.116 2 1 -T

We again generated a dataset with 8 haplotypes for this scenario, replacing the first command line argument with “8”, and the three
parameters after “-I” with “2 4 4”. Also, the parameter following “-ej” determines the scaled time of the split, where 0.116 corresponds
a split 100kya using our generation time and mutation rate. We simulated various values for the split time between 10kya and 150kya,
simply scaling the parameter after “-ej”.
Since MaCS can simulate faster and more efficiently, we simulate 30Mb per simulation. With ms, we only simulate 10Mb. Note that ms
is needed to simulate negative growths, which MaCS currently cannot do.

ü Simulations with sharp population size changes
We simulated two histories with sharp population size changes. One which mimics the true changes observed in CEU (see Supplemen-
tary Figure 2a):

macs 4 30000000 -t 0.0007156 -r 0.0002 -eN 0.0 10.8300726663 -eN 0.00116452394261 
1.08300726663 -eN 0.0174678591392 0.216601453326 -eN 0.0465809577045 1.08300726663 -eN 
0.0873392956959 3.24902179989 -eN 0.232904788522 1.08300726663 -T

and one which mimics the history observed in YRI (see Supplementary Figure 2b):

macs 4 30000000 -t 0.001 -r 0.0004 -eN 0.0 8.25 -eN 0.0025 0.825 -eN 0.0416666666667 2.475 
-eN 0.166666666667 0.825 -T

Again, we replaced the first parameter “4” with “2” and “8” to simulate fewer or more haplotypes.
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ü Population split with migration
This command line simulates a population split 100kya with subsequent migration of 0.0002 per generation until 50kya, as seen in
Supplementary Figure 2c.

ms 4 10000000 -t 10000 -r 4000 -I 2 2 2 -ej 0.116 2 1 -eM 0.058 16 -T

ü Population split with population size changes
This simulates a population that split into two populations 120kya with varying population size changes resembling the CEU/YRI split
without any migration, as seen in Supplementary Figure 3d.

macs 4 30000000 -t 0.001 -r 0.0004 -I 2 2 2 -eN 0 9.5  -en 0.000833333333333 1 0.95 -en 
0.0025 2 0.95 -en 0.0125 1 0.19 -en 0.0333333333333 1 0.95 -en 0.0416666666667 2 2.85 -ej 
0.05 2 1 -eN 0.166666666667 0.95 -T

ü Hotspot simulations
We used the software msHot [7] to simulate sequences under the true recombination map in Humans, obtained from the HapMap
project. We simulated 100 chromosomes, each with 1Mb long sequences for 4 haplotypes. We chose the same command line as for the
zig-zag simulation, with a scaled recombination rate of 4 N0 r = 0.00055, a scaled mutation rate of 4 N0 m = 0.0007156 and additional
parameters

-v n <start_1> <end_1> <l_1> <start_2> <end_2> <l_2> ... <start_n> <end_n> <l_n>,

where each block of recombination rates is taken from a random chunk of the true human recombination map. The <l_i> values are
given as multiples of the average recombination rate in humans of 1 cM/Mb.

8. Comparison with diCal
We applied diCal [8] to 10Mb of simulated sequence from 8 haplotypes. This sequence length was used in [8] to demonstrate the
method, it is currently not practical to run it on longer data sets. We used the following command line to run diCal:

java -Xmx65G -d64 -jar diCal-v1.2/diCal.jar -F "chr1.fasta,chr2.fasta,...,chr10.fasta" -c 
10 -I params.txt -n 8 -p "3 2 2 2 2 2 2 2 3" -t 1

where “chr1.fasta”, “chr2.fasta”,... denote 10 fasta files, each with 8 haplotypes of length 1Mb. We also tried “-t 0.5” and “-t 0.1” (see
Supplementary Figure 10).

9. Processing Genomic Data
In contrast to PSMC [1], we do not need to bin all data into bins of 100bp but can simply go through every basepair in the genome. As
described above, we optimized MSMC for efficient traversal of SNP-free homozygous segments, as well as missing data segments.
In practice, the MSMC implementation takes as input files simple tab-separated files, one for each chromosome, such as this:

1   58432   63  TCCC
1   58448   16  GAAA
1   68306   15  CTTT
1   68316   10  TCCC
1   69552   8   GCCC
1   69569   17  TCCC
1   801848  9730    CCCA
1   809876  1430    AAAG
1   825207  1971    CCCT,CCTC
1   833223  923 TCCC

Here, the columns are:

1. Chromosome

2. Position of the SNP in the chromosome

3. Number of called bases since the last SNP, including the site at this position.

4. The alleles at the site in question. Comma-separated variations can account for missing phasing information, as in seen in the line 
before the last line in the example above. In practice, we simply average the emission probability at that site over all variations.

We account for missing data in this format through the third column. This number is always larger than zero since it always includes
the site at that position. However, if the number of called bases is smaller than the physical distance since the last SNP, the rest is
assumed to be missing. This encoding of missing data neglects information about the exact positions of missing bases, but simply gives
the total number of them since the last called site. In practice, we assume that all missing bases since the last called base form a
contiguous block right after the last called base. This way we only need to apply the recursion in the forward- and backward vector
twice: once for the block of missing data and once for the block of homozygous called bases. The error in this approximation should be
negligible,  since  the  forward-  and  backward  variables  will  typically  change  on  much  larger  genomic  lengthscales  than  between
individual SNPs, such that the exact distribution of missing bases between two SNPs should not affect the inference.
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We account for missing data in this format through the third column. This number is always larger than zero since it always includes
the site at that position. However, if the number of called bases is smaller than the physical distance since the last SNP, the rest is
assumed to be missing. This encoding of missing data neglects information about the exact positions of missing bases, but simply gives
the total number of them since the last called site. In practice, we assume that all missing bases since the last called base form a
contiguous block right after the last called base. This way we only need to apply the recursion in the forward- and backward vector
twice: once for the block of missing data and once for the block of homozygous called bases. The error in this approximation should be
negligible,  since  the  forward-  and  backward  variables  will  typically  change  on  much  larger  genomic  lengthscales  than  between
individual SNPs, such that the exact distribution of missing bases between two SNPs should not affect the inference.
In our implementation on github, we provide scripts that facilitate the generation and processing of these input files from e.g. BAM
files or Complete Genomics VCF files. We also provide additional documentation about the software as a README on github.

10. Relationship to Island-Migration models
In deriving the transition- and equilibrium probabilities for times of first coalescences we have parameterized our model using effective
coalescence rates between all pairs of lineages, li, jHtL. This parameterization is very general and allows us to model a) scenarios in
which all haplotypes are sampled from one population, li, jHtL ª lHtL, with no differences between rates between different lineages; and
b) scenarios with haplotypes sampled from different subpopulations. In the latter case, it is interesting to ask how our parameterization
relates to a model with two separated populations and time-dependent migration between them.
Consider the case of  two populations with time-dependent  population sizes N1HtL  and N2HtL,  and a time-dependent  and symmetric
migration rate mHtL between them. We believe that such a parameterization is equivalent to a parameterization using coalescence rates
within populations, l11HtL and l22HtL, and a cross coalescence rate l12HtL, where the indices here mean populations, not lineages. We
mean by “equivalent” that  for every two-island model with symmetric migration rates,  parameterized by 8N1HtL, N2HtL, mHtL<,  there
exists a mapping 

8N1HtL, N2HtL, mHtL<Ø 9l11HtL, l12HtL, l22HtL=

such that the distribution of first coalescence times, q0HtL, is the same in both models. 

We can indeed show this for the special case of two haplotypes drawn from different subpopulations, as shown below. We further
hypothesize that the equivalence holds for more general island-migration models, too, but we emphasize that we cannot prove this.

It is important to highlight the fact that what we term “relative cross-coalescence rate”, defined as gHtL = 2 l12HtL ê Hl11HtL + l22HtLL in the
article, is not equivalent to the migration rate. The exact relationship is more subtle, even for the special case of two haplotypes (see
below) and in principle would involve numerical solutions to differential equations. However, intuitively, it may help to imagine the
migration rate mHtL as being closely related to the rate of change of the relative cross-coalescence rate gHtL: Consider a situation in
which two populations have been separated since time T, but that there was a brief period of relatively strong migration between them
around time Tm < T, where times are counted backwards in time. The expected relative cross coalescence rate gHtL would then be:

gHtL =
0 for t < Tm
0 < gm < 1 for Tm < t < T
1 for t ¥ T,

i.e. a step-like function, in which the brief pulse of migration would increase gHtL to some intermediate value gm, before it would reach 1
at the split time T. Clearly, if migration is more ongoing rather then short and strong, gHtL would increase more steadily, in a well
defined way which is however difficult to derive analytically.

ü Constant migration rate, two haplotypes
Consider two haplotypes, each of which drawn from two separate populations. Let us first consider constant parameters NiHtL ª Ni and a
constant migration rate mHtL ª m. As shown in [9] the distribution of first coalescence times q0HtL can in that case be computed from the
matrix exponential of a Markov rate matrix. The five states of the Markov process are then: S11, both genes are in population 1; S22,
both genes are in population 2; S12, one gene is in population 1 and the other is in population 2; S1, the genes have coalesced and the
single gene is in population 1; and S2, the genes have coalesced and the single gene is in population 2. It is straight forward to write
down the 5ä5 rate matrix, ", for this process using the three parameters N1, N2 and m, as shown in the referenced article. The probabil-
ity density of first coalescence times can then be expressed as the probability that starting with state S12 the system will eventually be in
one of the absorbing states S1 or S2, which can be expressed by a matrix exponential:

PSiHtL = @expH" tLDSi,S12
where the indices denote the end and the start state. The probability density of coalescent times, q0,HobolthHtL is then

q0,HobolthHtL =
1

2 N1
PS1HtL +

1

2 N2
PS2HtL

We can now very easily show that a single time-dependent parameter lcHtL,  which denotes the effective rate of cross-coalescence
between the two lineages, is sufficent to parameterize this probability density. As defined in chapter 1, the equilibrium probability of
first coalescence times in this special case can be expressed as
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q0HtL = lcHtL exp -‡
0

t
lcHt 'L „ t ' .

We can rewrite this as 

q0HtL =
„LHtL

„ t
expH-HLHtL - LH0LLL

with LHtL  being defined as the anti-derivative „LHtL ê„ t = lcHtL.  It  is  then clear  that  the function LHtL  which solves the differential
equation

„LHtL

„ t
expH-HLHtL - LH0LLL = q0,HobolthHtL

leads directly to the desired solution for lcHtL. This shows that for this special case, both parameterizations are equivalent.

ü Time dependent migration rate
If population sizes and migration rates are time-dependent,  the approach from [9] needs to be modified. In that case, the Markov
transition matrix is itself time-dependent, expressed as "HtL, and the formula for the equilibrium density can still be expressed as a
matrix exponential, but with an additional integral:

PSiHtL = Bexp ‡
0

t
"Ht 'L „ t ' F

Si,S12
,

which still can in principle be parameterized via a single rate lcHtL as shown above.

ü More general cases
In the more general case, if more than one haplotype is sampled from either or both of the two populations, if more than two popula-
tions are present, or if recombination comes into play, we still hypothesize that effective coalescence rates within and between popula-
tions are sufficient to model any island-migration model with symmetric migration rates. But as long as we lack a formal proof of this,
we acknowledge that it is not entirely clear whether our parameterization is exactly mappable to an island model or whether it only
approximates it in the most general case.

11. Normalization Proofs
ü Helpers

We define the antiderivative fi, jHtL  with „
„t
fi, jHtL = li, jHtL.  Also we define FiHtL =⁄j=1

M fi, jHtL  such that „
„t
FiHtL = LiHtL,  and similarly

FHtL =⁄i< jf
i, jHtL such that „

„t
FHtL = LHtL.

We then have

LmHt1; t2L = exp -‡
t1

t2
LmHnL „n = ‰F

mHt1L-FmHt2L

and

LHt1; t2L = exp -‡
t1

t2
LHnL „n = ‰FHt1L-FHt2L.

We then have:

(10)‡
s

t
LHuL LHs; uL „u = ‡

s

t
F ' HuL ‰FHsL-FHuL „u = ‰FHsL ‡

FHsL

FHtL
‰-z „ z = ‰FHsLI‰-FHsL - ‰-FHtLM = 1 - LHs; tL

and similarly

(11)‡
s

t
LmHuL LmHs; uL „u = 1 - LmHs; tL

ü Normalization of the equilibrium probability
The equilbrium probability is

qHi, j, tL = li, jHtL LH0; tL.

We check normalization by integrating
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‚
i< j

M

‡
0

¶

qHi, j, tL „ t = ‡
0

¶

‚
i< j

M

li, jHtL LH0; tL „ t = ‡
0

¶

LHtL LH0; tL „ t = 1 - LH0; ¶L = 1

using equation 10.

ü Normalization of the conditional transition probability
In a bit more formal style, the total transition probability can be expressed using Kronecker-Deltas and the Heavyside-function Q. We
have
qHi, j, t k, l, s, u, mL =

dHt - sL di,k d j,l ‡
u

t
lm,mHkL LmHu; kL „k + I1 - dm,kM I1 - dm,lM LmHu; tL +

Idm,i + dm, jM li, jHtL LmHu; tLQHt - uL for t § s

Idm,k + dm,lM l
i, jHtL LmHu; sL LHs; tL for t > s.

Now the normalization needs to hold for the total parameter space of the triple Hi, j, tL:

(12)

‚
i< j

M

‡
0

¶

qHi, j, t k, l, s, u, mL „ t

=‚
i< j

M

‡
0

¶

dHt - sL di,k d j,l ‡
u

t
lm,mHkL LmHu; kL „k + I1 - dm,kM I1 - dm,lM LmHu; tL „ t

+‚
i< j

M

‡
0

s
Idm,i + dm, jM li, jHtL LmHu; tLQHt - uL „ t

+‚
i< j

M

‡
s

¶

Idm,k + dm,lM l
i, jHtL LmHu; sL LHs; tL „ t =

We compute all three terms separately:

First        Term:

‚
i< j

M

‡
0

¶

dHt - sL di,k d j,l ‡
u

t
lm,mHkL LmHu; kL „k + I1 - dm,kM I1 - dm,lM LmHu; tL „ t

= ‡
u

s
lm,mHkL LmHu; kL „k + I1 - dm,kM I1 - dm,lM LmHu; sL

Second            Term:

‚
i< j

M

‡
0

s
Idm,i + dm, jM li, jHtL LmHu; tLQHt - uL „ t

=‚
i< j

M

‡
u

s
Idm,i + dm, jM li, jHtL LmHu; tL „ t

=‚
i!m

‡
u

s
lm,iHtL LmHu; tL „ t

= ‡
u

s
HLmHtL - lm,mHtLL LmHu; tL „ t

Third         Term:

‚
i< j

M

‡
s

¶

Idm,k + dm,lM l
i, jHtL LmHu; sL LHs; tL „ t

= Idm,k + dm,lM LmHu; sL ‡
s

¶

LHtL LHs; tL „ t

The       sum        of     all      terms:

‡
u

s
lm,mHkL LmHu; kL „k + I1 - dm,kM I1 - dm,lM LmHu; sL

+‡
u

s
HLmHtL - lm,mHtLL LmHu; tL „ t
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+Idm,k + dm,lM LmHu; sL ‡
s

¶

LHtL LHs; tL „ t

= I1 - dm,kM I1 - dm,lM LmHu; sL + ‡
u

s
LmHtL LmHu; tL „ t + Idm,k + dm,lM LmHu; sL ‡

s

¶

LHtL LHs; tL „ t

= I1 - dm,kM I1 - dm,lM LmHu; sL + H1 - LmHu; sLL + Idm,k + dm,lM LmHu; sL H1 - LHs; ¶LL

= LmHu; sL + H1 - LmHu; sLL
= 1

Ñ
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