Clinical selection	Number of individuals
Number of polyps	
Between 5 and 10 polyps	3
Between 10 and 20 polyps	20
Between 20 and 50 polyps	22
More than 50 polyps	6
Type of polyps	
Adenomatous polyps	22
Adenomatous + hyperplastic polyps	22
Adenomatous + serrated polyps	1
Adenomatous + hyperplastic + serrated polyps	6
Also diagnosed with colorectal cancer	
Yes	21
No	30
Family history FDR (first degree relative)	
Polyposis	3
CRC	12
Polyposis + CRC	12
Negative/unknown	24

Supplementary Table 1. Clinical characteristics of the 51 individuals included for whole-exome sequencing.

Subject	Polyp type	Polyp number	Colorectal	FDR with CRC	NS BER gene
			cancer	or polyposis	
P07	A	50	Y	Y	NTHL1 (p.Gln90*)
P30	А	30	Y	Y	
P09	А	20	Y	Y	SMUG1 (p.Arg124*)
P23	А	20	Y	Y	NTHL1 (p.Gln90*)
P01 ^a	А	15	Y	Y	NTHL1 (p.Gln90*)
P22	А	15	Y	Y	
P15	А	10	Y	Y	
P08	А	250	Y	N	
P36	А	40	Y	N	
P03	А	25	Y	N	
P02	А	20	Y	N	
P52	A	15	Y	N	
P12	Α	10	Y	N	
P42	A	50	N	Y	
P49 ^a	A	40	N	Y	NTHL1 (p.Gln90*)
P25	A	20	N	Y	
P16	Α	10	N	Y	
P31	A	30	N	N	
P34	Α	30	N	N	
P58	А	16	N	N	
P19	A	15	N	N	
P57	Α	15	N	N	MPG (p.Arg118*)
P04	AH	25	Y	Y	
P20	AH	15	Y	Y	
P51	AH	10	Y	Y	
P05	AH	30	Y	N	
P28	AH	25	Y	N	
P26	AH	24	Y	N	
P24	AH	20	Y	N	
P38	AH	60	N	Y	
P44	AH	50	N	Y	
P37	AH	45	N	Y	
P32	AH	30	N	Y	
P27	AH	25	N	Y	
P46"	AH	17	N	Y	
P18	AH	15	N	Y	
P17	AH	14	N	Y	
P11	AH	10	N	Y	
P47°	AH	10	N	Y	
P45"	AH	5–10	N	Y	
P54	AH	21	N	N	OGG1 (p.Arg131*)
P53	AH	15	N	N	
P56	AH	15	N	N	
P41	AH	5–10	N	N	
P06	AHS	30	Y	N	
P43	AHS	50	N	Y	
P62	AHS	9	N	Y	
P35	AHS	30	N	N	
P29	AHS	25	N	N	
P55	AHS	12	N	N	
P14	AS	10	N	N	

Supplementary Table 2. Clinical characteristics of individuals included for exome sequencing.

List is ranked based on (i) polyp type, (ii) positive history of CRC development in the index patient, (iii) positive history of CRC or polyposis development in a first degree relative (FDR) of the index patients and (iv) the number of polyps present at time of diagnosis. Polyp type: A: Adenomatous polyps, H:Hyperplastic polyps, S:Serrated polyps. Polyp number: amount of polyps present at time of diagnosis. Colorectal cancer: positive (Y) if index patient developed CRC. FDR with CRC or polyposis: first degree relatives diagnosed with CRC and/or polyps; negative (N) if available clinical data of relatives did not mention a positive history of CRC or polyposis. NS BER gene: germline nonsense variant present in one of the base excision repair genes. For two families two (a) and three (b) family members were included.

Supplementary Table 3. Overview of exome sequencing statistics.

					-			
Subject	NGS platform	Total bases	Total bases	% bases on	Average	Median	% regions	% regions
		sequenced	on / near	target	coverage of	coverage	≥ 10x	≥ 20x
		(Gb)	target (Gb)		targets		coverage	coverage
P01	SOLID 5500	5.48	4.36	73.72%	73.53	57	93.01%	84.97%
P02	SOLID 5500	6.14	4.91	74.11%	82.56	63.5	93.24%	86.06%
P03	SOLID 5500	6.31	4.98	73.01%	81.93	63	93.35%	86.09%
P04	SOLID 5500	6.78	5.44	74.35%	89.96	68	93.82%	87.19%
P05	SOLID 5500	6.75	5.43	74.60%	89.92	69	93.97%	87.75%
P06	SOLID 5500	6.53	5.09	72.07%	85.16	66	93.65%	87.05%
P07	SOLID 5500	6.91	5.53	74.15%	92.49	71	94.32%	88.22%
P08	SOLID 5500	4.77	3.81	73.99%	63.05	48	91.47%	81.37%
P09	SOLID 5500	6.56	5.23	73.77%	87.14	67	93.56%	86.72%
P11	Illumina Hi Seq	5.95	4.91	64.61%	77.39	75	98.72%	96.44%
P12	Illumina Hi Seq	6.68	5.56	64.71%	88.64	85	98.91%	97.03%
P14	Illumina Hi Seq	6.39	5.27	63.90%	83.95	80	98.89%	96.67%
P15	Illumina Hi Seq	6.82	5.59	63.33%	88.06	84	99.04%	97.10%
P16	Illumina Hi Seq	6.17	5.13	64.99%	78.60	75	98.90%	96.64%
P17	Illumina Hi Seg	6.50	5.32	63.18%	83.07	79.5	98.79%	96.53%
P18	Illumina Hi Seg	6.67	5.54	64.91%	91.96	87	98.98%	97.02%
P19	Illumina Hi Seg	7.33	6.16	66.18%	99.25	95	99.15%	97.55%
P20	Illumina Hi Seg	6.30	5.26	65.48%	80.08	76	98.85%	96.55%
P22	Illumina Hi Seg	7.15	5.96	65.32%	94.83	90.5	99.08%	97.42%
P23	Illumina Hi Seg	6.60	5.56	66.01%	88.32	85	98.84%	96.96%
P24	Illumina Hi Seg	7.30	6.13	66.46%	98.74	94	99.16%	97.56%
P25	Illumina Hi Seg	7.13	5.88	64.80%	93.43	89	99.08%	97.28%
P26	Illumina Hi Seg	5.25	4.35	64.89%	67.49	64	98.44%	95.26%
P27	Illumina Hi Seg	6.70	5.61	66.00%	89.73	86	98.91%	97.03%
P28	Illumina Hi Seg	6.89	5.75	65.95%	95.20	91	98.91%	97.04%
P29	Illumina Hi Seg	5.30	4.43	66.11%	69.76	66	98.52%	95.55%
P30	Illumina Hi Seg	5.93	4.96	65.68%	82.75	79	98.70%	96.42%
P31	Illumina Hi Seg	5.95	4.93	66.27%	82.55	79	98.82%	96.63%
P32	Illumina Hi Seg	6.72	5.57	65.84%	92.52	88	99.01%	97.13%
P34	Illumina Hi Seg	6.69	5.54	65.72%	89.33	85	98.96%	97.03%
P35	Illumina Hi Seg	6.49	5.44	66.12%	89.88	86	98.90%	96.96%
P36	Illumina Hi Seg	6.59	5.51	66.04%	89.65	85	98.95%	96.85%
P37	Illumina Hi Seg	5.90	4.88	65.84%	79.13	75	98.81%	96.33%
P38	Illumina Hi Seg	6.25	5.21	64.97%	85.67	81	98.79%	96.67%
P41	Illumina Hi Seg	6.16	5.15	66.73%	86.48	82.5	98.90%	97.01%
P42	Illumina Hi Seg	5.79	4.83	65.59%	75.93	72	98.81%	96.15%
P43	Illumina Hi Seg	6.37	5.36	67.08%	91.62	87	99.09%	97.26%
P44	Illumina Hi Seg	7.24	6.03	65.50%	98.67	94	98.96%	97.24%
P45	Illumina Hi Seg	5.37	4.44	65.16%	69.94	65	98.56%	94.92%
P46	Illumina Hi Seg	5.41	4.53	66.81%	83.99	79.5	98.93%	96.92%
P47	Illumina Hi Seg	6.65	5.63	67.64%	92.70	88.5	98.95%	97.25%
P49	Illumina Hi Seg	6.42	5.35	66.26%	84.96	76	98.96%	96.54%
P51	Illumina Hi Seg	6.76	5.65	65.61%	91.20	87	99.04%	97.15%
P52	Illumina Hi Seg	6.66	5.54	66.14%	90.33	86	99.08%	97.25%
P53	Illumina Hi Seg	6.76	5.62	65.81%	94.31	90	99.11%	97.33%
P54	Illumina Hi Seg	4.98	4.14	66.10%	64.22	61	98.39%	94.95%
P55	Illumina Hi Seg	5.61	4.69	65.29%	78.16	74	98.72%	96.39%
P56	Illumina Hi Seg	5.92	4.94	65.74%	79.13	75	98.74%	96.45%
P57	Illumina Hi Seg	5.92	4 93	65 71%	81 12	77	98 90%	96 59%
P58	Illumina Hi Seg	6.47	5 37	65.05%	87.48	83	98.93%	96.86%
P62	Illumina Hi Seg	4 87	4.06	66.26%	64 92	62	98 44%	94.89%
	arn ocy	,		00.2070	552	52	55.4470	5

Gene	Subject	mRNA accession	mRNA change	Protein change	Mutation	CRC	Polyposis	Co-	Mode of	Pathogenic ⁴
		number			type*	phenotype	phenotype ⁻	segregation	inheritance	
APC	P35	NM_001127510	c.6403A>G	p.lle2135Val	MSS	Y	Y	ND	AD	N
POLD1	P15	NM_002691	c.371T>C	p.Val124Ala	MSS	Y	Y	ND	AD	N
POLD1	P17	NM_002691	c.961G>A	p.Gly321Ser	MSS	Y	Y	ND	AD	P ⁵
POLE	P18	NM_006231	c.665G>A	p.Arg222His	MSS	Y	Y	ND	AR/AD	N
POLE	P35	NM_006231	c.850A>G	p.Lys284Glu	MSS	Y	Y	ND	AR/AD	P ⁶
BLM	P51	NM_000057	c.488C>T	p.Ser163Phe	MSS	N	N	ND	AR	N
MSH2	P22	NM_000251	c.1144C>T	p.Arg382Cys	MSS	Y	N	ND	AR/AD	N
MSH6	P06	NM_000179	c.2651C>G	p.Ser884Cys	MSS	Y	N	ND	AR/AD	N
PMS2	P42	NM_000535	c.917T>C	p.Val306Ala	MSS	Y	N	ND	AR/AD	N
PMS2	P05	NM_000535	c.620G>A	p.Gly207Glu	MSS	Y	N	ND	AR/AD	N
ATM	P16	NM_000051	c.5938G>A	p.Gly1980Arg	MSS	N	N	ND	AR/AD	N
ATM	P65	NM_000051	c.5753G>C	p.Arg1918Thr	MSS	N	N	ND	AR/AD	N
ATM	P15	NM_000051	c.1564-1565del	p.Glu522fs	FS	N	N	ND	AR/AD	N
ATM	P20	NM_000051	c.1564-1565del	p.Glu522fs	FS	N	N	ND	AR/AD	N
BRCA2	P54	NM_000059	c.5645C>A	p.Ser1882*	NS	N	N	ND	AR/AD	N ⁷
CEBPA	P34	NM_004364	c.827A>G	p.Lys276Arg	MSS	N	N	ND	AD	N
CYLD	P26	NM_015247	c.100C>G	p.Gln34Glu	MSS	N	N	ND	AD	N
DICER1	P15	NM_030621	c.4195A>G	p.Lys1399Glu	MSS	N	N	ND	AD	N
DIS3L2	P01	NM_152383	c.520G>A	p.Asp174Asn	MSS	N	N	N	AR	N
GATA2	P45	NM_001145661	c.82G>A	p.Gly28Ser	MSS	N	N	N	AD	N
KIT	P28	NM_000222	c.1724A>T	p.Gln575Leu	MSS	N	N	ND	AD	N
NF1	P08	NM_001042492	c.529A>G	p.lle177Val	MSS	N	N	ND	AD	N
PTCH1	P17	NM_000264	c.1993C>T	p.Arg665Cys	MSS	N	N	ND	AD	N
RAD51D	P28	NM_001142571	c.137C>G	p.Ser46Cys	MSS	N	N	ND	AD	N
RHBDF2	P03	NM_024599	c.940G>A	p.Ala314Thr	MSS	N	N	ND	AD	N
TMEM127	P55	NM_001193304	c.433G>C	p.Gly145Arg	MSS	N	N	ND	AD	N
TSC1	P47	NM_000368	c.568C>T	p.Arg190Cys	MSS	N	N	N	AD	N
TSC1	P45	NM_000368	c.568C>T	p.Arg190Cys	MSS	N	N	N	AD	N
TSC2	P20	NM_000548	c.607T>G	p.Cys203Gly	MSS	N	N	ND	AD	N
TSC2	P46	NM_000548	c.1387A>G	p.Ile463Val	MSS	N	N	N	AD	N
WAS	P27	NM_000377	c.794C>G	p.Pro265Arg	MSS	N	N	ND	XR	N

Supplementary Table 4. Potential deleterious variant calls in known cancer predisposing genes.

1) FS: frameshift variant, MSS: missense variant and NS: nonsense variant. Only missense variants with a minor allele frequency of <0.1% and phyloP score of >3.0 were selected (see online methods).

2) Presence (Y) or absence (N) of increased risk for the development of CRC or polyposis in individuals with monoallelic (autosomal dominant inheritance) or biallelic (autosomal recessive inheritance) mutations.

3) AD: Autosomal Dominant, AR: Autosomal Recessive, XR: X-linked Recessive.

4) Variant considered to be causative for observed polyposis phenotype, based on *in silico* predictions using SIFT, Align GVGD, and PolyPhen. P: possibly causative, N: not likely causative.

5) Variant located in the exonuclease domain of POLD1 (aa 304–517); SIFT: Deleterious (score: 0), Align GVGD: C55 (GV: 0.00 - GD: 55.27) and PolyPhen2: possibly damaging (score: 0.880).

6) Variant located in the exonuclease domain of POLE (aa 268–471); SIFT: Deleterious (score: 0), Align GVGD: Class C0 (GV: 353.86 - GD: 0.00), and PolyPhen2: probably damaging (score: 1.000).

7) Patient diagnosed with breast cancer at young age and has a positive family history of early onset BC. Increased risk for polyposis and CRC is unlikely. Mutation was known prior to exome sequencing.

All variants were observed in a heterozygous state and no signs of compound heterozygosity was found. For applied selection criteria, see main text.

Supplementary Table 5a. Genes with protein-truncating heterozygous variant calls in multiple unrelated individuals.

Gene	Subjects	Number of	CPG	mRNA accession	mRNA change	Protein changes
		variants		number		
ATM	P15,P20	1	Y	NM_000051	c.1564-1565del	p.Glu522fs
ATXN3	P34;P54	2	Ν	NM_004993	c.915_916ins20; c.873del	p.Gly306fs; p.Lys291fs
C14orf37	P06;P20	1	N	NM_001001872	c.698del	p.Thr233fs
CALCR	P03;P38	1	N	NM_001164737	c.1460del	p.Asn487fs
GRIN3B	P32;P36	2	N	NM_138690	c.3085_3086insGA; c.2211dup	p.Pro1029fs; p.Lys738fs
MMP25	P42;P55	1	N	NM_022468	c.352C>T	p.Arg118*
OR4S1	P49;P54	2	N	NM_001004725	c.831_832del; c.50_51insC	p.Pro278fs; p.Glu17fs
PGLS	P02;P11	2	Ν	NM_012088	c.640-1G>T; c.550C>T	p.?; p.Gln184*
RBFOX3	P15;P24;P25;P29;P44;P55	1	Ν	NM_001082575	c.26_29del	p.Gln9fs
SSPO	P02;P31	2	N	NM_198455	c.7682G>A; c.2626del	p.Trp2561*; p.Pro876fs
TAS2R46	P18;P20	1	N	NM_176887	c.262del	p.Trp88fs
TLL2	P26;P57	2	N	NM_012465	c.1268-1G>A; c.1201dup	p.?; p.Ser401fs
TTC3	P29;P30	2	N	NM_001001894	c.1066C>T; c.5268_5271dup	p.Arg356*; p.Thr1758fs
WDR63	P07;P26	2	N	NM 145172	c.1917+1G>A; c.1956dup	p.?; p.Asp653fs

CPG: cancer predisposing gene.

Sup	plementary	/ Table 5b.	Homozvgous	variant calls	s resulting in	protein truncation.

Gene	Subject	mRNA accession	mRNA change	Protein	Coverage	%Var.	Mutation	CPG	Rec.	Co-
		number		change		Reads	Туре			segr.
AHCTF1	P24	NM_015446	c.6419-2A>C	p.?	62	100	CSS	N	1	ND
ATXN3	P34	NM_004993	c.916_917insC	p.Gly306fs	120	76.6	FS	N	1	ND
САМКК2	P43	NM_001270486	c.1614_1615insAAAA	p.Gly539fs	106	95.7	FS	N	2	N
	P45				69	100				
CDCP2	P33	NM_201546	c.1224_1225insGC	p.Met409fs	64	100	FS	N	1	ND
COL28A1	P07	NM_001037763	c.882+1G>T	p.?	98	74	CSS	N	1	ND
COL6A6	P42	NM_001102608	c.1282+1G>C	p.?	75	73.3	CSS	N	1	ND
CTSA	P15	NM_000308	c.107_108del	p.Leu36fs	68	73.9	FS	N	1	ND
DCHS2	P23	NM_017639	c.6024dup	p.Tyr2009fs	33	76.7	FS	N	1	ND
MROH6	P25	NM_001100878	c.2027dup	p.Cys677fs	11	72.7	FS	Ν	3	ND
	P33				16	85.7				
	P39				10	100				
MRPS18C	P20	NM_016067	c.150+2T>G	p.?	37	81.08	CSS	N	1	ND
MTCH1	P47	NM_001271641	c.30del	p.Trp11fs	16	73.3	FS	N	2	N
	P49				27	100				
MZT2A	P26	NM_001085365	c.33del	p.Ser12fs	12	83.3	FS	N	2	ND
	P52				11	100				
NTHL1	P01	NM_002528	c.268C>T	p.Gln90*	26	73.1	NS	N	4	Y
	P07				39	84.6				
	P23				119	99.2				
	P49				168	100				
ORAI1	P12	NM_032790	c.141_142insT	p.Pro47fs	36	76.5	FS	N	1	ND
PIF1	P62	NM_025049	c.145G>T	p.Glu49*	11	72.7	NS	N	1	N
RASAL3	P11	NM_022904	c.1239_1252del	p.Ala414fs	28	73.7	FS	N	1	ND
SAMD1	P22	NM_138352	c.336_337insC	p.Ala113fs	10	90	FS	N	1	ND
ZNF84	P01	NM_003428	c.2192_2193del	p.Arg731fs	14	78.6	FS	N	1	N

CPG: cancer predisposing gene, Rec.: number of times the specific variant was observed in our cohort, Co-segr.: co-segregation of variant with disease in family (ND: not determined, N: no co-segregation, Y: co-segregation confirmed). NS: nonsense variant, FS: frameshift (insertion or deletion) and CSS: canonical splice site. Variant calls with at least 10 reads and >70% variant reads are depicted.

Population	# Allele ^{p.Gin90*}	# Allele ^{total}	# Homozygotes	Allele Frequency
European (Dutch)	17	4,658	0	0.003650
European (Finnish)	25	6,748	0	0.003705
European (Non-Finnish)	154	66,850	0	0.002304
Other	1	916	0	0.001092
Latino	5	11,598	0	0.000431
African	2	10,514	0	0.000190
South Asian	2	16,626	0	0.000120
East Asian	0	8,740	0	0
Total	206	126,650	0	0.001627

Supplementary Table 6. Frequency of the p.Gln90* variant in *NTHL1* in different ethnic groups.

Supplementary Table 7. Homozygous stretches observed in the exome data of polyposis patients.

Subject	Family	Total length of homozygous segments (Mb)	P-Value ¹	NTHL1 homozygous segment ²
P01	А	7,3	0,35	Ν
P07 *	В	20,2	0,027	Y
P23	С	25,1	0,006	Y
P49	А	9,0	0,28	N

1) Compared to 200 controls to determine possible significant enrichment of homozygous segments in the corresponding exomes; onesided, right-tailed z-test. (average length of homozygous segments in controls: 4,2Mb; StDev: 8,3).

2) Homozygous region encompassing the genomic locus of the *NTHL1* gene.

* consanguinity confirmed based on family history. For further details: see online methods.

Sample	Gene	mRNA accession	mRNA	AA Change	Base
		number	change		Subst.
P07	APC	NM 001127510	c.2269C>T	p.Gln757*	C:G>T:A
P07	APC	NM 001127510	c.4285C>T	p.Gln1429*	C:G>T:A
P07	ERBB3	NM 001982	c.695C>T	p.Ala232Val	C:G>T:A
P07	ERBB4	NM 005235	c.1183G>T	p.Val395Phe	C:G>A:T
P07	FANCG	NM 004629	c.1402G>A	p.Ala468Thr	C:G>T:A
P07	KRAS	NM 033360	c.35G>A	p.Glv12Asp	C:G>T:A
P07	РІКЗСА	NM 006218	c.2176G>A	p.Glu726Lvs	C:G>T:A
P07	PIK3CA	NM 006218	c.353G>A	p.Glv118Asp	C:G>T:A
P07	RNF213	NM 001256071	c.10853G>A	p.Glv3618Asp	C:G>T:A
P07	SEPT9	NM 001113491	c.1321C>T	p.Pro441Ser	C:G>T:A
P07	SYNE1	NM 033071	c.16285A>G	p.Lys5429Glu	T:A>C:G
P07	TP53	NM 000546	c.853G>A	p.Glu285Lys	C:G>T:A
P07	ZNF521	NM 015461	c.1490G>A	p.Arg497Gln	C:G>T:A
P07	NF1	NM 001042492	c.6678G>A	p.Leu2226Leu	C:G>T:A
P07	RNF213	NM 001256071	c.13704G>A	p.Val4568Val	C:G>T:A
P07	SMARCA4	 NM 001128845	c.4038C>T	p.Tyr1346Tyr	C:G>T:A
P07	SOX11	NM 003108	c.693C>T	p.Asp231Asp	C:G>T:A
P23	APC	NM 001127510	c.1909G>A	p.Gly637Arg	C:G>T:A
P23	APC	NM 001127510	c.4405C>T	p.Gln1469*	C:G>T:A
P23	APC	NM 001127510	c.3268C>T	p.Gln1090*	C:G>T:A
P23	ARID1A	NM 006015	c.6208C>T	p.Gln2070*	C:G>T:A
P23	BRAF	NM 004333	c.1780G>A	p.Asp594Asn	C:G>T:A
P23	KRAS	NM 033360	c.38G>A	p.Glv13Asp	C:G>T:A
P23	РІКЗСА	NM 006218	c.1624G>A	p.Glu542Lys	C:G>T:A
P23	PTCH1	NM 001083602	c.3219G>A	p.Met1073lle	C:G>T:A
P23	SMAD4	 NM 005359	c.1255G>A	p.Gly419Arg	C:G>T:A
P23	TP53	NM 000546	c.722C>T	p.Ser241Phe	C:G>T:A
P23	ATR	NM 001184	c.2850G>A	p.Pro950Pro	C:G>T:A
P23	PTPRT	NM 133170	c.3486G>A	p.Ala1162Ala	C:G>T:A
P23	RALGDS	NM 006266	c.225C>T	p.Val75Val	C:G>T:A
P23	TCF3	NM 003200	c.1743C>T	p.Asn581Asn	C:G>T:A
P23	TRIM33	NM_015906	c.1914C>T	p.Thr638Thr	C:G>T:A
P69	APC	NM_001127510	c.4285C>T	p.Gln1429*	C:G>T:A
P69	KRAS	NM_033360	c.35G>T	p.Gly12Val	C:G>A:T
P69	LPHN3	NM_015236	c.252T>G	p.Tyr84*	T:A>G:C
P69	<i>РІКЗСА</i>	NM_006218	c.1624G>A	p.Glu542Lys	C:G>T:A
P69	PIK3CG	NM_001282427	c.1703C>A	p.Thr568Lys	C:G>A:T
P69	ROS1	NM_002944	c.5104G>T	p.Val1702Phe	C:G>A:T
P69	SETD2	NM_014159	c.535G>A	p.Glu179Lys	C:G>T:A
P69	TCF3	NM_003200	c.1670G>A	p.Arg557Gln	C:G>T:A
P69	TP53	NM_000546	c.743G>A	p.Arg248Gln	C:G>T:A
P69	BCL9	NM_004326	c.660+1G>A	p.?	C:G>T:A
P69	CSMD3	NM_198123	c.8778T>A	p.Pro2926Pro	T:A>A:T
P69	ITGA9	NM_002207	c.1299C>T	p.Gly433Gly	C:G>T:A
P69	PRKDC	NM_006904	c.5532G>A	p.Val1844Val	C:G>T:A

Supplementary Table 8. Somatic base substitutions in comprehensive cancer panel genes in CRCs of individuals with biallelic *NTHL1* mutations.

Sample	mRNA	AA	# reads	# reads	%Var. Reads	%Var. Reads Rv	Base
	change*	Change	Fw	Rv	Fw		Subst.
P49 (2)	c.1417C>T	p.Gln473*	7,463	9,506	13.1	13.6	C:G>T:A
P49 (1)	c.2097G>A	p.Trp699*	6,011	1,791	24.6	34.2	C:G>T:A
P49 (3)	c.3688C>T	p.Gln1230*	6,609	6,544	42.2	42.0	C:G>T:A
P49 (3)	c.3880C>T	p.Gln1294*	2,306	2,218	32.8	54.7	C:G>T:A
P71 (2)	c.739C>T	p.Gln247*	4,087	4,101	18.7	18.6	C:G>T:A
P71 (1)	c.2995C>T	p.Gln999*	1,748	4,768	16.1	10.1	C:G>T:A

Supplementary Table 9. Somatic mutations in *APC* in colorectal adenomas of individuals with biallelic *NTHL1* mutations.

*NM_001127510. Numbers between brackets represent corresponding polyp sample.

Supplementary Table 10. Somatic base substitutions in comprehensive cancer panel genes in CRCs of individuals with biallelic *MUTYH* mutations.

Sample	Gene	mRNA accession	mRNA	AA Change	Base
		number	change		Subst.
MAP1	ADAMTS20	NM_025003	c.1723G>A	p.Gly575Arg	C:G>T:A
MAP1	PIK3CG	NM_001282427	c.1912G>T	p.Glu638*	C:G>A:T
MAP1	SMAD4	NM_005359	c.1572G>T	p.Trp524Cys	C:G>A:T
MAP1	SMARCA4	NM_001128845	c.4296G>T	p.Met1432lle	C:G>A:T
MAP2	APC	NM_001127510	c.4120G>T	p.Glu1374*	C:G>A:T
MAP2	KRAS	NM_033360	c.436G>A	p.Ala146Thr	C:G>T:A
MAP2	NLRP1	NM_033004	c.2415G>T	p.Lys805Asn	C:G>A:T

MUTYH germline mutations. MAP1: p.Pro405Leu (homozygous) and MAP2: p.Pro405Leu (heterozygous) and p.Asp161His (heterozygous).

Supplementary Figure 1. Loss of *NTHL1* RNA expression in homozygous p.Gln90* carriers due to nonsense-mediated decay. EBV-transformed B-lymphocytes derived from two homozygous p.Gln90* carriers (P01 and P49, family A) show approximately ten-fold reduced *NTHL1* RNA expression compared to EBV-transformed B-lymphocytes derived from controls. Partial rescue of *NTHL1* expression is obtained after treatment with cyclohexamide (CHX) which indicates that expression is reduced due to nonsense-mediated decay. Data were normalized using the expression of the housekeeping gene *HPRT*. Experiments were performed in duplo and depicted results reflect the data obtained from two independent experiments; error bars represent the standard deviation based on the relative expression levels of *NTHL1* in all included samples.

Supplementary Figure 2. Read depth analysis of exome data. Read depth of P07 (Top panel, red dots, SOLiD exome sequencing data) and P23 (Bottom panel, orange dots, Illumina exome sequencing data) compared to 7 and 40 *NTHL1* wild type samples, respectively (grey dots). Both P07 and P23 are homozygous around the *NTHL1* locus (blue bars; **Supplementary Fig. 6**), but median read-depth analysis of chromosome 16 shows that large genomic deletions encompassing this locus are not present.

Supplementary Figure 3. Validation and co-segregation analysis by Sanger sequencing. The c.268C>T (p.Gln90*) variant in *NTHL1* was present in all clinically affected members of families A (P01 and P49), B (P07, P71 and P72), and C (p23 and P69). WT: wild type control negative for the c.268C>T variant in the *NTHL1* gene. Arrow: the change of guanine to adenine results in the introduction of a stop codon.

Supplementary Figure 4. Recurrent truncating and missense variants in the NTHL1 gene and ethnic distributions. Upper part: eight truncating variants are recurrently (≥2 calls) encountered in our inhouse database, or the database from the Exome Aggregation Consortium [Nov., 2014 accessed]. All variants were encountered in a heterozygous state. The p.Gln90* variant (red underlined) is present in subjects from different descent, but significantly enriched in European cohorts. Lower panel: seventeen missense variants were recurrently (≥10 calls) encountered in our in-house- or ExAC databases. Frequencies of these variants are depicted for the different populations and, based on insilico predictions, most of these missense variants are predicted to be benign polymorphisms.

Supplementary Figure 5. Continued on next page.

Supplementary Figure 5. Genome-wide autozygosity mapping. Homozygosity/autozygosity mapping based on exome data from four patients (P01, P07, P23 and P49) from three families confirms homozygous stretches (black regions) encompassing the NTHL1 locus in P07 and P23 (red arrow). Overall, homozygous stretches were more abundant in P07 and P23 compared to P01 and P49 due to consanguinity (family B) or predicted consanguinity (family C) in these families (see supplementary table 7), but overlap of homozygous regions between P07 and P23 was only observed at the NTHL1 locus. Yellow regions represent heterozygous regions, numbers correspond to chromosomal numbering and y-axis defines the genomic position on the corresponding chromosome. For details, see online methods.

Chr16: 2,000,000 2,020,000 2,040,000 2,060,000 2,080,000 2,100,000 2,120,000 2,140,000 2,160,000 2,180,000 2,200,000

Supplementary Figure 6. Haplotype analysis around the NTHL1 locus. (a) B-allele frequency plots extracted from the exome sequencing data of P01 and P49 (family A), P07 (family B), and P23 (family C). Both individuals from family A encompass heterozygosity around the *NTHL1* locus, whereas homozygous stretches encompassing the *NTHL1* locus were present in P07 and P23. Boundaries of the homozygous regions in P07 (~7 Mb) and P23 (~10 Mb) are indicated by asterisks connected by dashed lines. **(b)** Haplotype analysis of a 1-Mb genomic locus encompassing the *NTHL1* gene (red line). At least three different haplotypes were observed in four carriers of the p.Gln90* variant in the *NTHL1* gene. The presence of a recombination hotspot (recombination rate: 18.9 cM/Mb¹⁷) upstream of the *NTHL1* p.Gln90* locus (chr16:2,096,239) may explain the observed variability in haplotypes. Blocks represent informative SNPs in close proximity (1 Mb region) of the *NTHL1* p.Gln90* locus; (A) and (B) represent major and minor alleles, respectively.