

Identification of an alternative, distal transcription start site in Titin.

From outside to inside, track 1 shows the location of the subunits of titin; the gene is on the antisense strand and so is transcribed counterclockwise in this view. Track 2 shows the gene structure of titin with the exons shown as orange rectangles and the introns shown as black lines. Track 3 shows the location of transcription start sites identified by the analysis of CAGE data taken from human heart samples in the FANTOM5 consortium as identified using CAGEr. Track 4 shows the location of H3K4me3 ChIP–seq narrow peaks (a mark of active promoters) from fetal heart samples in the Epigenomics Roadmap data set. Track 5 shows H3K4me3 ChIP–seq peaks from adult heart (left ventricle) taken from the Epigenomics Roadmap data set. Track 6 shows H3K9ac (also a mark of active promoters) taken from the fetal heart samples in the Epigenomics Roadmap data set. Together these data show that in the heart there are likely two transcription start sites, the canonical transcription start site at the beginning of the gene and another transcription start site found close to the start A-band, which appears to be most strongly used in fetal heart but is still present in adult human heart.

Etiological fraction of TTNtv in 40 bins across the titin locus.

The constitutive (PSI > 90%) regions of titin are split into 40 bins ranging from the N terminus to the C terminus, and the etiological fraction of TTNtv for each individual region is plotted. The dashed line marks the position of the internal *Cronos* promoter. Purple, Z-disc; green, I-band; pink, A-band; blue, M-line.

Truncating mutations introduced to F344 rats.

(a) The proximal truncating variant in titin is a large deletion located near the Z-disc at the N terminus of the meta transcript (TTNtvZ). It spans from exon 2 (b) to exon 6 (c). Exons 3–5 are not present in TTNtvZ rats and can thus be used to assess transcription and translation from the wild-type allele in heterozygous animals. (d) The deletion causes a frameshift that results in a premature stop codon located in exon 7. (e) The truncating variant in the A-band is located in the large exon 312 and an indel that also causes a frameshift and introduces a stop codon shortly after.

RNA sequencing and ribosome profiling data for TTNtvA, TTNtvZ and wild-type rats.

(a,b) RNA-seq reads (a) and Ribo-seq reads (b) mapping to mitochondrial and ribosomal sequences were filtered out, and the remaining sequences were mapped to the genome. (c,d) Uniquely mapping RNA-seq (c) and Ribo-seq (d) reads were counted and used in later analyses to assess gene expression on the transcriptional and translational levels. (e) After adaptor trimming, Ribo-seq libraries displayed a size distribution typical for ribosome profiling experiments: ribosomes mostly protected RNA fragments of 28 and 29 bp in size.

Absence of truncated Ttn protein in TTNtvA and TTNtvZ rat hearts.

Representative titin gels and immunoblots from 3-month-old wild-type, TTNtvA and TTNtvZ rat hearts. (a) SDS–PAGE was performed on 2.5% polyacrylamide/1% agarose gels, and total protein was visualized by Coomassie blue staining. Each sample was analyzed in duplicate at lower (left) and higher (right) protein concentration. Mhc was used as a loading control. The relative Ttn/Mhc ratio was determined (below). Data are shown as means \pm s.e.m. (n = 4/group). (b) Immunoblotting analysis on 1.8% polyacrylamide/1% agarose gel transferred to PVDF and blotted with T12 antibody against titin and Novex3 (top). The corresponding PVDF blot was used as loading control (bottom).

Transcriptional and translational gene expression differences between wild-type and TTNtv rats.

(a,b) Differential gene transcription (a) and translation (b) is compared between TTNtv and wild-type rats. Both TTNtvA and TTNtvZ show highly correlated fold changes in differentially expressed genes (DEseq2 FDR \leq 0.05) when compared to control rats (Pearson correlation). Genes that were not differentially expressed in any comparison were not considered.

Differences in cardiac metabolism between wild-type, TTNtvA and TTNtvZ rats.

(**a**–**c**) Metabolite profiles showing branched-chain amino acids, including valine (**a**), leucine (**b**) and isoleucine (**c**). (**d**) Sum of measured glycolytic intermediates (metabolites are detailed in **Supplementary Table 3**). (**e**) Glucose-6-phosphate (G6P) levels in cardiac tissue from wild-type (n = 6) and TTNtv (TTNtvA, n = 6; TTNtvZ, n = 6) rats. Data are shown as mean ± s.d. (Dunnett).

Supplementary Figure 8

TTNtv rat hearts have normal energy substrate abundance.

Metabolite levels of ATP, ADP, AMP and ratio of phosphocreatine (PCr) to creatine (Cr) in 4-month-old wild-type (n = 6) and TTNtv (TTNtvA, n = 6; TTNtvZ, n = 6) rat hearts.

Relative expression of titin-associated proteins in wild-type and TTNtv rats.

(**a**,**b**) Relative difference (TTNtv/WT) in transcription (**a**) and translation (**b**) of titin-associated proteins showing a significant decrease in FHL1 and FHL2 expression in 8-week-old TTNtv (TTNtvA, n = 3; TTNtvZ, n = 3) as compared to wild-type (n = 4) rats. Data are shown as mean fold change ± s.e.m. *P < 0.05 (DEseq2 *P* value, not corrected for genome-wide testing).

mTORC1 signaling is altered in TTNtv rat hearts.

(a) Immunoblot analysis showing increased phosphorylation of mTOR (Ser2448), S6 kinase (Thr389) and 4EBP1 (Thr37/46) in TTNtv as compared to wild-type hearts in extracts from rats immediately after sacrifice. (b) Semiquantitative densitometry of band intensities from several immunoblots across separate experiments and shown as means \pm s.e.m. (Student's *t* test, Welsh correction). (c) Immunoblot analysis of phosphorylated mTOR (Ser2448) and S6 kinase (Thr389) in myocardial tissue following sham treatment or volume overload in wild-type and TTNtv rat hearts on the Langendorff apparatus perfused for the same duration. (d) Semiquantitative densitometry representation of band intensities from the blot in c and other experiments showing mTOR and S6K response to acute stress relative to wild-type unstressed hearts of the respective genotypes. Data are shown as means \pm s.d. (versus unstressed wild-type hearts, Student's *t* test, Welsh correction).

Young TTNtv rats display concentric remodeling.

Echocardiographic measurements of 4- to 8-month-old male wild-type (n = 4) and TTNtv (TTNtvA, n = 4; TTNtvZ, n = 4) rats. PLVWed (mm), posterior left ventricular wall thickness end diastole; PLVWes (mm), posterior left ventricular wall thickness end diastole; LVIDed (mm), left ventricular internal diameter end diastole; LVIDes (mm), left ventricular internal diameter end systole; EDV (μ I), end-diastolic volume; ESV (μ I), end-systolic volume; SV (μ I), stroke volume. EF (%), ejection fraction. *P* values indicate statistical analysis by two-way analysis of variance (ANOVA).

CMR in TTNtvA and TTNtvZ rats.

(**a**–**c**) SV (stroke volume) (**a**), LVEF (left ventricular ejection fraction) (**b**) and FWT (fractional wall thickening) (**c**) measured with CMR in 13- to 16-month-old male wild-type (n = 5) and TTNtv (TTNtvA, n = 8; TTNtvZ, n = 6) rats. Data are shown as means ± s.d. (Dunett).

Distribution of TTNtv detected in the general population for MRI.

The top track shows the distribution of TTNtv in healthy volunteers (HVOL) who were phenotyped using cardiac magnetic resonance imaging. The track below depicts the distribution of TTNtv from ExAC data. Only truncations located in exons with PSI >15% are shown.

Supplementary Tables Supplementary Table 1. Differential gene expression on the transcriptional and translational level as assessed by DESeq2 (FDR = 0.05). Green depicts down- and blue indicates up-regulated genes in TTNtv animals.

• • •	•	log 2 Fold Change TTNtv / WT		Adj. P-value TTNtv vs WT					
		RNA	-seq	Ribo	-seq	RNA-seq		Ribo-seq	
Ensembl ID	Gene Symbol	TTNtvA	TTNtvZ	TTNtvA	TTNtvZ	TTNtvA	TTNtvZ	TTNtvA	TTNtvZ
ENSRNOG0000000164	Lamp2	0.01	0.03	0.18	0.18	0.028	n.s.	n.s.	n.s.
ENSRNOG0000001522	Metap1d	-0.08	-0.06	-0.03	0.04	n.s.	1.2E-06	n.s.	n.s.
ENSRNOG0000003189	Cited1	0.14	0.33	0.11	0.19	n.s.	0.011	n.s.	n.s.
ENSRNOG0000003284	Epn3	0.29	0.41	0.04	0.06	n.s.	0.002	n.s.	n.s.
ENSRNOG0000003626	Atp5h	-0.01	0.03	-0.08	0.05	0.002	0.001	n.s.	n.s.
ENSRNOG0000004078	Eno3	-0.23	-0.18	-0.39	-0.27	n.s.	n.s.	5.3E-06	0.024
ENSRNOG0000005670	Art4	0.43	0.40	0.39	0.49	5.6E-04	2.2E-03	n.s.	0.003
ENSRNOG0000006509	Srgap3	0.25	0.31	-0.02	0.20	n.s.	0.028	n.s.	n.s.
ENSRNOG0000007545	Angptl4	0.09	0.25	0.03	0.30	n.s.	0.016	n.s.	n.s.
ENSRNOG0000007674	Nacad	0.27	0.36	0.18	0.35	n.s.	0.013	n.s.	n.s.
ENSRNOG0000009691	Lrrn2	0.45	0.44	0.21	0.17	1.7E-04	3.1E-04	n.s.	n.s.
ENSRNOG0000011076	Ank2	-0.02	-0.08	0.23	0.33	n.s.	n.s.	n.s.	0.016
ENSRNOG0000011491	Dnajc13	-0.04	-0.04	0.08	0.17	n.s.	0.008	n.s.	n.s.
ENSRNOG0000014933	Dnttip1	0.03	-0.03	0.01	-0.01	3.3E-03	0.000	n.s.	n.s.
ENSRNOG0000015852	Arhgap35	0.02	-0.04	0.14	0.08	n.s.	0.016	n.s.	n.s.
ENSRNOG0000015912	Ptdss2	-0.06	-0.10	0.06	0.06	n.s.	0.003	n.s.	n.s.
ENSRNOG0000016483	Myo16	0.49	0.64	0.37	0.45	3.4E-05	5.8E-10	n.s.	n.s.
ENSRNOG0000016892	Nr2f6	-0.05	-0.23	-0.10	-0.03	n.s.	0.028	n.s.	n.s.
ENSRNOG0000017460	Imp3	0.00	-0.12	0.01	0.01	n.s.	0.003	n.s.	n.s.
ENSRNOG0000017503	Ppargc1b	-0.14	-0.24	-0.17	-0.22	0.001	0.001	n.s.	n.s.
ENSRNOG0000017786	Acta1	-0.42	-0.39	-0.53	-0.41	n.s.	n.s.	0.003	n.s.
ENSRNOG0000018610	Pde6d	0.05	-0.04	0.05	0.02	1.8E-08	0.003	n.s.	n.s.
ENSRNOG0000019028	Znrf2	-0.06	-0.13	-0.04	0.00	n.s.	0.003	n.s.	n.s.
ENSRNOG0000019094	Gstm2	0.06	0.04	0.03	-0.03	n.s.	0.016	n.s.	n.s.
ENSRNOG0000020263	Atp1a3	0.52	0.34	0.99	0.71	n.s.	n.s.	n.s.	1.8E-06
ENSRNOG0000020373	Dap3	-0.04	-0.01	-0.14	-0.12	n.s.	0.008	n.s.	n.s.
ENSRNOG0000020417	Gsk3a	-0.03	-0.07	-0.09	0.00	0.001	0.003	n.s.	n.s.
ENSRNOG0000020641	RGD1560789	-0.16	-0.32	-0.21	-0.08	n.s.	0.034	n.s.	n.s.
ENSRNOG0000020650	Slc17a7	0.49	0.53	0.31	0.34	3.4E-05	2.5E-06	n.s.	n.s.
ENSRNOG0000020915	Setd2	-0.05	-0.12	-0.11	-0.10	n.s.	0.001	n.s.	n.s.
ENSRNOG0000021095	Fxyd3	0.40	0.33	0.25	0.26	6.5E-04	1.6E-02	n.s.	n.s.
ENSRNOG0000021242	Adam33	0.27	0.48	0.09	0.18	n.s.	0.000	n.s.	n.s.
ENSRNOG0000022178	Dcdc5	-0.25	-0.35	-0.19	-0.28	n.s.	0.015	n.s.	n.s.
ENSRNOG0000025518	Lrrc16b	0.19	0.30	-0.05	0.16	n.s.	0.001	n.s.	n.s.
ENSRNOG0000027959	Ppp1r12c	-0.13	-0.13	-0.25	-0.45	n.s.	n.s.	n.s.	0.001
ENSRNOG0000028498	Wdr1	-0.05	-0.02	-0.05	-0.04	n.s.	0.016	n.s.	n.s.
ENSRNOG0000029662	Wdfy4	0.51	0.45	0.32	0.39	1.5E-07	1.4E-05	n.s.	n.s.
ENSRNOG0000030285	Epha3	-0.01	0.16	0.23	0.42	n.s.	n.s.	n.s.	0.016
ENSRNOG0000031890	Ncam1	0.36	0.37	0.38	0.43	n.s.	n.s.	0.014	0.001
ENSRNOG0000033893	Cacna1h	0.34	0.36	0.24	0.30	0.034	0.008	n.s.	n.s.
ENSRNOG0000039582	RGD1561161	0.19	0.15	0.28	0.37	n.s.	n.s.	n.s.	0.039
ENSRNOG0000040201	Atp6ap1I	0.28	0.38	0.22	0.34	n.s.	0.001	n.s.	n.s.
ENSRNOG0000042245	Dcaf7	-0.06	-0.12	0.03	-0.03	0.034	n.s.	n.s.	n.s.
ENSRNOG0000045992	Tlr8	-0.02	-0.06	0.40	0.42	n.s.	n.s.	n.s.	0.029
ENSRNOG0000046468	Ptgfr	0.31	0.49	0.41	0.57	n.s.	n.s.	n.s.	0.001
ENSRNOG0000046772	Fam83c	0.26	0.35	0.11	0.08	n.s.	0.016	n.s.	n.s.
ENSRNOG0000050145	Ahnak	0.08	0.01	0.32	0.35	n.s.	n.s.	n.s.	0.030
ENSRNOG0000050841	Ache	0.11	0.36	0.13	0.28	n.s.	0.003	n.s.	n.s.

		Concentration (pmol/mg tissue)								
Acylcarnitine	WT (n=5)		TTNtv	A (n=5)	TTNtv2	2 (n=5)	TTI	Ntv	Ratio	P value
	Mean	SD	Mean	SD	Mean	SD	Mean	SD		
C2	394.91	43.55	528.12	104.03	297.18	86.89	412.65	137.78	1.04	0.717
C3	4.36	0.99	5.76	1.68	4.84	1.84	5.30	1.80	1.22	0.213
C4	8.99	1.78	11.11	1.26	7.79	1.65	9.45	2.23	1.05	0.693
C5:1	0.56	0.11	0.50	0.08	0.61	0.18	0.55	0.14	0.99	0.966
C5	1.26	0.43	1.24	0.42	1.78	0.90	1.51	0.69	1.20	0.404
C4-OH	8.02	2.43	9.98	2.85	8.20	5.40	9.09	4.21	1.13	0.544
C6	3.16	0.92	2.45	0.80	1.40	0.58	1.93	0.71	0.61	0.036
C5-OH/C3-DC	3.67	0.51	4.23	0.66	3.08	0.53	3.66	0.82	1.00	0.971
C4-DCC6-OH	10.77	1.78	13.32	2.02	9.63	2.12	11.47	2.63	1.07	0.553
C8	1.14	0.43	0.87	0.36	0.53	0.23	0.70	0.25	0.61	0.081
C5-DC	0.49	0.05	0.50	0.05	0.41	0.05	0.45	0.07	0.92	0.226
C8-OH/C6-DC	0.38	0.08	0.41	0.14	0.20	0.10	0.30	0.16	0.80	0.235
C12:1	0.54	0.20	0.49	0.17	0.33	0.09	0.41	0.11	0.76	0.235
C12	1.91	0.71	1.54	0.61	0.95	0.49	1.25	0.46	0.66	0.110
C12:1-OH	0.09	0.02	0.08	0.03	0.05	0.02	0.06	0.02	0.68	0.041
C12-OH/C10-DC	0.12	0.03	0.12	0.03	0.07	0.04	0.10	0.04	0.78	0.139
C14:2	0.70	0.32	0.55	0.30	0.47	0.22	0.51	0.19	0.73	0.270
C14:1	2.93	0.97	2.68	0.79	1.95	0.80	2.31	0.68	0.79	0.251
C14	7.54	2.77	5.97	2.56	4.61	1.68	5.29	1.36	0.70	0.147
C14:2-OH	0.41	0.16	0.30	0.18	0.33	0.21	0.31	0.15	0.75	0.271
C14:1-OH	1.48	0.47	1.20	0.54	0.81	0.31	1.00	0.34	0.68	0.090
C14-OH/C12-DC	0.80	0.13	0.74	0.13	0.63	0.28	0.69	0.20	0.86	0.219
C16:2	1.42	0.61	1.24	0.50	1.11	0.39	1.17	0.29	0.83	0.431
C16:1	7.94	2.46	6.81	1.84	4.85	2.55	5.83	2.02	0.73	0.142
C16	39.33	12.07	29.09	11.32	21.63	9.28	25.36	7.62	0.64	0.059
C16:2-OH	0.50	0.13	0.38	0.15	0.32	0.12	0.35	0.10	0.70	0.069
C16:1-OH/C14:1-DC	1.71	0.46	1.48	0.46	1.28	0.59	1.38	0.42	0.81	0.213
C16-OH	2.11	0.35	2.11	0.22	1.94	0.93	2.03	0.65	0.96	0.760
C18:3	2.29	1.04	1.35	1.05	1.05	0.24	1.20	0.31	0.52	0.077
C18:2	17.85	8.08	11.51	7.94	9.49	2.42	10.50	2.42	0.59	0.111
C18:1	39.98	13.59	29.46	12.27	20.50	10.26	24.98	8.64	0.62	0.068
C18	12.03	3.78	6.56	4.63	6.02	1.85	6.29	1.55	0.52	0.025
C18:2-OH/C16:2-DC	0.94	0.32	0.85	0.25	1.02	0.57	0.93	0.39	1.00	0.993
C18:1-OH/C16:1-DC	2.62	0.59	2.58	0.37	2.27	1.20	2.43	0.84	0.93	0.618
C18-OH/C16-DC	0.71	0.20	0.60	0.19	0.58	0.25	0.59	0.17	0.83	0.265
C20:4	1.72	0.64	0.92	0.82	0.85	0.36	0.89	0.35	0.51	0.040
C20:3	0.51	0.17	0.32	0.20	0.31	0.13	0.32	0.10	0.62	0.067
C20:2	0.71	0.19	0.65	0.13	0.70	0.48	0.68	0.33	0.95	0.794
C20:1	1.37	0.37	1.20	0.29	1.19	0.71	1.20	0.49	0.88	0.468
C20	0.31	0.09	0.24	0.08	0.20	0.11	0.22	0.08	0.71	0.098
C20:1-OH/C18:1-DC	0.32	0.08	0.34	0.03	0.29	0.16	0.32	0.11	1.00	0.985
C20-OH/C18-DC	0.15	0.06	0.11	0.06	0.08	0.02	0.09	0.03	0.60	0.094
C22:4	0.12	0.04	0.07	0.06	0.07	0.05	0.07	0.05	0.59	0.076
C22:1	0.13	0.04	0.14	0.03	0.12	0.05	0.13	0.04	1.04	0.798
C22	0 11	0.03	0 15	0.02	0.07	0.01	0 1 1	0.05	1 04	0 825

suraners time table if we about the about the second and the secon

	Concentration (Innovg tissue)										
Metabolite	WT (WT (n=6)		TTNtvA (n=6)		TTNtvZ (n=6)		TTNtv		TTNtv/WT	
	Mean	SD	Mean	SD	Mean	SD	Mean	SD	Ratio	P value	
Dihydroxyacetone phosphate	176	64	183	49	172	46	177	46	1	0.96	
Fructose 1,6-diphosphate	271	129	297	138	299	127	298	126	1.1	0.68	
Fructose 6-phosphate	349	156	380	152	409	167	394	153	1.1	0.57	
Glucose 1-phosphate	117	50	125	49	132	54	129	49	1.1	0.63	
Glucose 6-phosphate	1460	715	1605	709	1773	805	1689	728	1.2	0.54	
Lactic acid	13744	2540	15430	2501	14835	3163	15132	2736	1.1	0.31	
Phosphoenolpyruvic acid	10	2	10	2	11	1	11	2	1.1	0.43	

Supplementary Table 3. Metabolite measurements of glycolysis intermediates from WT and TTNtv hearts.

M-b
≺
≺ ≺
≺ ≺
≺ ≺
Y Y
≺ ≺
≺ ≺
~
¥
~
×
×
×
ү ү
Present in Present in N2BA N2B

Supplementary Table 4. TTNtvs in expressed exons (PSI>15%) in healthy individuals who underwent cardiac MRI in the Digital Heart Project.

Supplementary Table 5: For each cardiac phenotype two linear regression models were built to adjust for the known contribution of clinical variables. The first model was optimized to minimize the Bayesian Information Criterion. To the optimized first model, the *ttn* genotype was then added to create a second model and details of this presented here. The two models were then compared using ANOVA. BSA = body surface area; LVEDV = left ventricular end diastolic volume; LVESV = left ventricular end systolic volume; LVEF = left ventricular ejection fraction; LVM = left ventricular mass; SBP = systolic blood pressure; TTNtv = titin truncating variants.

Phenotype	Model Terms	Unstandardized Coefficient	Standardized Coefficient	Standard Error	Component P value	Full model		P value for comparison between
	4.6 0	0.00	0	7.40	0.50	Adjusted R ²	P value	models
LVEDV	(Intercept)	-3.99	0	7.46	0.59			
(ml)	Age (years)	-0.54	-0.23	0.04	1.13 x10 ⁻³¹			
	Gender (male)	13.8	0.21	1.44	3.52 x10 ⁻²¹			
	SBP (mmHg)	0.15	0.07	0.04	0.001			
	Race	-4.64	-0.12	0.65	2.05 x10 ⁻¹²	0.58	4.57 x10 ⁻²⁶¹	0.03
	BSA (kg/m ²)	75.3	0.48	3.53	9.08 x10 ⁻⁸⁸			
	Activity Score	8.06	0.22	0.66	3.23 x10 ⁻³²			
	Heart Rate (bpm)	-0.13	-0.07	0.03	1.47 x10 ⁻⁰⁵			
	TTNtv	11.9	0.04	5.39	0.03			
LVESV	(Intercept)	4.58	0	4	0.25			
(ml)	Age (years)	-0.29	-0.24	0.02	2.25 x10 ⁻³⁰		5.4 x10 ⁻¹⁷⁰	
	Gender (male)	9.06	0.28	0.83	1.33 x10 ⁻²⁶			
	Race	-1.8	-0.09	0.38	3.21 x10 ⁻⁰⁶	0.43		0.015
	BSA (kg/m ²)	26.2	0.33	2.03	7.29 x10 ⁻³⁶			0.015
	Activity Score	3.73	0.19	0.39	4.25 x10 ⁻²¹			
	Heart Rate (bpm)	-0.04	-0.05	0.02	0.008			
	TTNtv	7.69	0.05	3.17	0.015			
LVEF	(Intercept)	60.5	0	1.18	<1x10 ⁻¹⁰⁰			
(%)	Age (years)	0.07	0.18	0.01	4.79 x10 ⁻¹¹		3.05 x10 ⁻⁴³	
	Gender (male)	-2.95	0.27	0.28	7.93 x10 ⁻²⁴	0.14		0.02
	SBP (mmHg)	0.04	0.12	0.01	2.12 x10 ⁻⁰⁵			0.03
	Activity Score	-0.65	-0.11	0.16	3.32 x10 ⁻⁰⁵			
	TTNtv	-2.81	-0.05	1.29	0.03			