## Widespread methane leakage from the seafloor on the northern US Atlantic margin

A. Skarke<sup>1</sup>, C. Ruppel<sup>2</sup>, M. Kodis<sup>3</sup>, D. Brothers<sup>4</sup>, and E. Lobecker<sup>5</sup>

<sup>1</sup>Dept of Geosciences, Mississippi State University, Mississippi State, MS 39762; <sup>2</sup>U.S. Geological Survey, Woods Hole, MA 02543; <sup>3</sup>Dept. of Geological Sciences, Brown University, Providence, RI 02912; <sup>4</sup>U.S. Geological Survey, Santa Cruz, CA 95060; <sup>5</sup>Earth Resources Technology, Inc., Laurel, MD 20707.

## Northern US Atlantic Margin Water Column Backscatter Plume Database

The Excel database contains the latitude and longitude (WGS84 coordinates) of the base of the water column gas plumes, water depth from multibeam bathymetric data, the *Okeanos Explorer* cruise number (e.g., 1101 means cruise EX1101, the first cruise in 2011), the line number designator for the multibeam data, UTC date and time of the observations, a subjective quality factor (see Supplementary Figure 1) that ranges from 1 (best) to 5 (poorest), notes (where applicable), and geographic location when the plume occurs near named seafloor features. Data are sorted by latitude from north to south. This database also includes the locations of plumes previously identified over the Blake Ridge and Cape Fear diapirs<sup>1</sup>. The original multibeam data for these surveys is available from: http://www.ngdc.noaa.gov/mgg/bathymetry/multibeam.html.

| Seep<br>Number | Latitude<br>(N) | Longitude<br>(W) | DEPTH               | DEPTH               | EX<br>CRUISE<br>ID | LINE | DATE<br>(UTC) | TIME<br>(UTC) | Quality<br>Factor | NOTES | GENERAL<br>LOCATION |
|----------------|-----------------|------------------|---------------------|---------------------|--------------------|------|---------------|---------------|-------------------|-------|---------------------|
|                | WGS84           | WGS84            | (mbsl-<br>negative) | (mbsl-<br>positive) | Year-<br>Number    |      |               |               | 1 = best          |       |                     |
| 1              | 40.5698         | -69.8706         | -58.6               | 58.6                | 1204               | 337  | 06/13/12      | 1:04:42       | 4                 |       |                     |
| 2              | 40.5696         | -69.8735         | -58.3               | 58.33               | 1204               | 337  | 06/13/12      | 1:05:31       | 1                 |       |                     |
| 3              | 40.5696         | -69.8805         | -57.7               | 57.72               | 1204               | 337  | 06/13/12      | 1:07:32       | 1                 |       |                     |
| 4              | 40.5695         | -69.8836         | -57.8               | 57.81               | 1204               | 337  | 06/13/12      | 1:08:27       | 2                 |       |                     |
| 5              | 40.5693         | -69.8686         | -58.4               | 58.42               | 1204               | 337  | 06/13/12      | 1:04:06       | 4                 |       |                     |
| 6              | 40.5692         | -69.8863         | -58.3               | 58.33               | 1204               | 337  | 06/13/12      | 1:09:14       | 3                 |       |                     |
| 7              | 40.5691         | -69.9074         | -57.9               | 57.9                | 1204               | 337  | 06/13/12      | 1:15:18       | 1                 |       |                     |
| 8              | 40.5691         | -69.8838         | -58.1               | 58.07               | 1204               | 337  | 06/13/12      | 1:08:30       | 2                 |       |                     |

## Header for Table S1 in the associated Excel database.

| 9  | 40.5685 | -69.9247 | -57.8  | 57.81  | 1204 | 337 | 06/13/12 | 1:20:21  | 1 |                      |
|----|---------|----------|--------|--------|------|-----|----------|----------|---|----------------------|
| 10 | 40.5677 | -69.9608 | -56.6  | 56.58  | 1204 | 337 | 06/13/12 | 1:30:59  | 2 |                      |
| 11 | 40.5676 | -70.2165 | -53.9  | 53.85  | 1204 | 338 | 06/13/12 | 2:48:03  | 3 |                      |
| 12 | 40.5674 | -70.2146 | -54.0  | 54.02  | 1204 | 338 | 06/13/12 | 2:49:01  | 4 |                      |
| 13 | 40.5673 | -69.9843 | -55.9  | 55.87  | 1204 | 337 | 06/13/12 | 1:37:52  | 1 |                      |
| 14 | 40.5672 | -69.9866 | -55.6  | 55.61  | 1204 | 337 | 06/13/12 | 1:38:33  | 1 |                      |
| 15 | 40.4212 | -67.6731 | -501.1 | 501.13 | 1204 | 287 | 06/11/12 | 18:57:20 | 1 | Lydonia Canyon       |
| 16 | 40.2442 | -68.1842 | -281.4 | 281.43 | 1204 | 253 | 06/10/12 | 19:30:22 | 4 | Oceanographer Canyon |
| 17 | 40.2441 | -68.1865 | -276.5 | 276.45 | 1204 | 253 | 06/10/12 | 19:29:34 | 4 | Oceanographer Canyon |
| 18 | 40.2437 | -68.1863 | -280.0 | 280.01 | 1204 | 253 | 06/10/12 | 19:29:38 | 4 | Oceanographer Canyon |

| Supplementary<br>Video Clip | Cruise   | Dive date<br>(mon/day/y) | Start time<br>of<br>original<br>video<br>(UTC) | Dive<br>number<br>during<br>cruise | Seep<br>Number<br>and<br>Location           | Seafloor<br>depth<br>(m) | Notes                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|-----------------------------|----------|--------------------------|------------------------------------------------|------------------------------------|---------------------------------------------|--------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Skarke_Clip1.mov            | EX1302   | 05/23/2013               | 18:28:49                                       | 6                                  | 467<br>(Virginia)                           | 1475                     | Location approximate (no real-time ROV position<br>information); Multiple, closely-spaced bubble<br>emissions from bare seafloor adjacent to mussel<br>mound; slower, single-bubble seeps also within<br>frame; no laser scale; Figure 2d                                                                                                                                                                                                                          |
| Skarke_Clip2.mov            | EX1302   | 05/31/2013               | 22:07:02                                       | 10                                 | 261<br>(Virginia)                           | 450                      | At least 9 distinct bubble streams at edge of seafloor<br>carbonate cap; no laser scale and no video at base of<br>gas plumes; Figure 2b                                                                                                                                                                                                                                                                                                                           |
| Skarke_Clip3.mov            | EX1302   | 06/04/2013               | 16:48:30                                       | 14                                 | 79<br>(Veatch<br>Canyon)                    | 1410                     | At least 3 bubble emission sites with different rates<br>of seepage within field of dead mussels; no laser<br>scale                                                                                                                                                                                                                                                                                                                                                |
| Skarke_Clip4.mov            | EX1304L1 | 07/12/2013               | 17:23:13                                       | 4                                  | 77<br>(unnamed<br>New<br>England<br>canyon) | 1400                     | Multiple bubble emission sites from ~30 cm seam in mud in front of gas hydrate forming below carbonate overhang                                                                                                                                                                                                                                                                                                                                                    |
| Skarke_Clip5.mov            | EX1304L1 | 07/12/2013               | 18:58:31                                       | 4                                  | 77<br>(unnamed<br>New<br>England<br>canyon) | 1400                     | At least 15 emission points from ~0.25 m <sup>2</sup> bare<br>seafloor that is surrounded by bacterial mats/seafloor<br>hydrate "film"; emission rates vary, with some too<br>fast to measure and others measured at 0.5 to 1<br>bubble/second; the few measurements made on all<br>videos (including Skarke_Clip4.mov above) from<br>this dive yield bubble diameters of 3.1 to 4.2 mm,<br>with some possibly larger. Different location than<br>Skarke_Clip4.mov |
| Skarke_Clip6.mov            | EX1304L1 | 07/21/2013               | 18:48:34                                       | 13                                 | 84<br>(Veatch<br>Canyon)                    | 1425                     | Single bubble emission from bare seafloor; few<br>measurements made in all videos from this dive yield<br>bubble diameters of 2.3 to 3.2 mm; where<br>measurable, rates for all videos examined for this<br>dive varied from 0.5 to 2 bubbles/second                                                                                                                                                                                                               |

Table S2. Videotaped clips and seep characteristics.<sup>1</sup>

<sup>1</sup>Six distinct seep areas in five clusters were explored during ROV dives in May through July 2013. No video clip is provided here from a dive on July 11, 2013, which explored seeps #74 and #75 in an unnamed canyon on the New England margin at ~1100 m water depth.

| Table 55. Michane mux estimates for the northern USAM sceps using unitering assumption | Table S3. | Methane flux estim | ates for the norther | n USAM seeps usi | ng different assumption | ns. |
|----------------------------------------------------------------------------------------|-----------|--------------------|----------------------|------------------|-------------------------|-----|
|----------------------------------------------------------------------------------------|-----------|--------------------|----------------------|------------------|-------------------------|-----|

|                                                                                                                                            | Bubble<br>diameter<br>(mm) | BWT case<br>(1=observed;<br>2=observed<br>+1° C) | Emission<br>sites per<br>plume | Bubbles per<br>second per<br>emission<br>site | mol/yr methane<br>(x10 <sup>6</sup> ) emissions | Mg/yr<br>methane<br>emissions |
|--------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|--------------------------------------------------|--------------------------------|-----------------------------------------------|-------------------------------------------------|-------------------------------|
| All seeps (Base Case)                                                                                                                      | 31                         | 1                                                | 5                              | 1                                             | 2.39                                            | 38.3                          |
| All seeps                                                                                                                                  | 4                          | 1                                                | 5                              | 1                                             | 5.66                                            | 90.8                          |
| All seeps                                                                                                                                  | $5^{2}$                    | 1                                                | 5                              | 1                                             | 11.1                                            | 177                           |
| All seeps                                                                                                                                  | 3                          | 1                                                | 5                              | 0.5                                           | 1.19                                            | 19.1                          |
| All seeps                                                                                                                                  | 3                          | 2                                                | 5                              | 1                                             | 2.34                                            | 37.6                          |
| All seeps                                                                                                                                  | 3                          | 1                                                | 2                              | 1                                             | 0.95                                            | 15.3                          |
| All seeps, with raw emissions<br>divided by seep quality factor<br>(from 1 for strong to 5 for very<br>weak) representing seep<br>strength | 3                          | 1                                                | 5                              | 1                                             | 2.08                                            | 33.3                          |
| All seeps, but diffuse ones<br>generate 3 x more methane<br>than discrete seeps                                                            | 3                          | 1                                                | 5                              | 1                                             | 3.97                                            | 63.7                          |
| Seeps < 180 mbsl                                                                                                                           | 3                          | 1                                                | 5                              | 1                                             | 0.28                                            | 4.49                          |
| Seeps between 180 and 600<br>mbsl                                                                                                          | 3                          | 1                                                | 5                              | 1                                             | 1.60                                            | 25.6                          |

<sup>1</sup>From limited ROV videotape, we estimate that 3 mm is the approximate size of measurable bubbles at some of the seep sites visited in 2013. <sup>2</sup>On the Makran margin, the average bubble diameter reported through careful analysis of a range of seafloor seeps is  $\sim$ 5.2 mm<sup>2</sup>. **Supplementary Figure 1.** Example water column anomalies identified in coincident across track (left) and along track (right) 30 kHz echogram profiles of water column backscatter data. Horizontal axes in meters. Each anomaly is assigned a subjective quality factor of 1 (highest) through 5 (lowest), which correspond to the level of confidence that the detected water column anomaly is a gas plume. These quality factors also correspond to the strength of the plumes, which can in turn be related to gas flux.



## **Supplementary References**

- 1. Brothers, L. L. *et al.* Evidence for extensive methane venting on the southeastern U.S. Atlantic margin. *Geology* **G34217.1**, (2013).
- 2. Römer, M., Sahling, H., Pape, T., Bohrmann, G. & Spieß, V. Quantification of gas bubble emissions from submarine hydrocarbon seeps at the Makran continental margin (offshore Pakistan). *Journal of Geophysical Research: Oceans* **117**, C10015, (2012).