## Constraints from material properties on the dynamics and evolution of Earth's core

Christopher Davies<sup>1,3</sup>, Monica Pozzo<sup>2</sup>, David Gubbins<sup>1,3</sup>, Dario Alfè<sup>2,4</sup>

<sup>1</sup>School of Earth and Environment, University of Leeds, Leeds LS2 9JT, U.K.
<sup>2</sup>Department of Earth Sciences and Thomas Young Centre at UCL, UCL, Gower Street, WC1E 6BT, London, U.K.
<sup>3</sup>Institute of Geophysics and Planetary Physics, Scripps Institution of Oceanography, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0225

<sup>4</sup>Department of Physics and Astronomy and London Centre for Nanotechnology, UCL, Gower Street, WC1E 6BT, London, U.K.

This document contains four tables. Supplementary Table 1 is a more complete version of Table 1 in the main text that gives values for depth-varying quantities at the inner core boundary (ICB) as well as the core-mantle boundary (CMB) and provides error estimates where available. Supplementary Tables 2–4 list polynomial coefficients for depth-dependent properties listed in Table 1. Diffusion coefficients for Oxygen and Silicon,  $D_O$  and  $D_{Si}$  (m<sup>2</sup> s<sup>-1</sup>), thermal conductivity k (W m<sup>-1</sup> K<sup>-1</sup>), density  $\rho$  (kg m<sup>-3</sup>), electrical conductivity  $\sigma$  (S m<sup>-1</sup>), adiabatic temperature  $T_a$ (K), viscosity  $\nu$  (mPa s), melting temperature  $T_m$  (K), and thermal expansion coefficient  $\alpha_T$  (K<sup>-1</sup>) are presented up to third order in pressure P.

## SUPPLEMENTARY INFORMATION

| Symbol                                         | Definition                                                                        | Units                                           | 100                            | %Fe                                                                  | 82%Fe-8%       | -0-10%Si      | 79%Fe-13°     | %O-8%Si                | 81%Fe-17    | %0-2%Si      |
|------------------------------------------------|-----------------------------------------------------------------------------------|-------------------------------------------------|--------------------------------|----------------------------------------------------------------------|----------------|---------------|---------------|------------------------|-------------|--------------|
| $\Delta \rho$                                  | ICB density jump                                                                  | ${\rm gm}~{\rm cc}^{-1}$                        | 0.24                           | <sup>1</sup> [1]                                                     | 0.6            | [2]           | 0.8           | [3]                    | 1.0         | [3]          |
| $c_O^S$                                        | O concentration (solid)                                                           |                                                 | 1                              | -                                                                    | 0.000          | 2 [4]         | 0.000         | 4 [4]                  | 0.000       | 5 [5]        |
| $c_{Si}^S$                                     | Si concentration (solid)                                                          |                                                 | I                              | -                                                                    | 0.055          | 4 [4]         | 0.043         | 0 [4]                  | 0.00        | 5 [5]        |
| $c_O^L$                                        | O conc (liquid)                                                                   |                                                 | I                              | -                                                                    | 0.025          | 5 [4]         | 0.042         | 8 [4]                  | 0.055       | 9 [5]        |
| $c^L_{Si}$                                     | Si conc (liquid)                                                                  |                                                 | I                              |                                                                      | 0.056          | 0 [4]         | 0.046         | 1 [4]                  | 0.011       | 5 [5]        |
| $C_p$                                          | Specific heat                                                                     | ${\rm J}{\rm kg}^{-1}{\rm K}^{-1}$              |                                | - 800 [7]                                                            |                |               |               |                        | 1           |              |
| ۲                                              | Grüneisen parameter                                                               |                                                 | 1.4 [8] —                      | .1.5 [1,6]                                                           | 1              |               | I             |                        | I           |              |
| $\Delta S$                                     | Entropy of Melting $(r_i)$                                                        | $k_B$                                           | 1.05 (0.                       | .05) [1]                                                             | 1              |               | I             |                        | I           |              |
| L                                              | Latent heat $(r_i)$                                                               | ${ m MJ}{ m kg^{-1}}$                           | 0.75                           | (0.1)                                                                | 1              |               | I             |                        | I           |              |
| $T_{ m m}$                                     | Melting point $(r_i)$                                                             | K                                               | 6350 (30                       | 00 [1,9]                                                             | 2900 (         | 300)          | 5580 (        | (300)                  | 5320        | 300)         |
|                                                |                                                                                   |                                                 | $r_{\rm i}$                    | $r_{\rm o}$                                                          | $r_{\rm i}$    | ro            | $r_{\rm i}$   | $r_{\rm o}$            | $r_{ m i}$  | $r_{\rm o}$  |
| $\alpha_T$                                     | Thermal expansivity                                                               | $\mathrm{K}^{-1} 	imes 10^{-5}$                 | 1.0[6,10]                      | 1.7 [6, 10]                                                          | 1              | ,             | 1             | 1                      | 1           |              |
| $T_{ m a}$                                     | Temperature                                                                       | K                                               | $6350(300)^{1,9}$              | 4735 (300) [1]                                                       | 5900 (300)     | 4290 (300)    | 5580 (300)    | 4105 (300)             | 5330 (300)  | 3910 (300)   |
| $\frac{\partial T_{a}}{\partial P}$            |                                                                                   | ${ m K}{ m GPa}^{-1}$                           | 6.96                           | 10.9                                                                 | 6.25           | 9.75          | 6.01          | 9.41                   | 5.81        | 9.07         |
| $\frac{\mathrm{d}T_{\mathrm{m}}}{\mathrm{d}P}$ |                                                                                   | ${ m K}{ m GPa}^{-1}$                           | 9.01                           | 12.9                                                                 | 9.01           | 12.9          | 9.01          | 12.9                   | 9.01        | 12.9         |
| $\frac{\partial T_{a}}{\partial r}$            |                                                                                   | ${ m K}{ m km}^{-1}$                            | -0.39                          | -1.15                                                                | -0.35          | -1.03         | -0.34         | -1.00                  | -0.33       | -0.96        |
| $\frac{\mathrm{d}T_{\mathrm{m}}}{\mathrm{d}r}$ |                                                                                   | ${ m K}{ m km}^{-1}$                            | -0.48                          | -1.39                                                                | -0.48          | -1.39         | -0.48         | -1.39                  | -0.48       | -1.39        |
| $C_r$                                          | $\mathrm{d}r_{\mathrm{i}}/\mathrm{d}t = C_r \mathrm{d}T_{\mathrm{o}}/\mathrm{d}t$ | m K <sup>-1</sup>                               | -14                            | 96.1                                                                 | -10.           | 39            | 7.6-          | 20                     | φ.          | 75           |
| $C_c$                                          | $\mathrm{d}c_X^L/\mathrm{d}t = C_c C_r \mathrm{d}T_\mathrm{o}/\mathrm{d}t$        | $10^{-9}$                                       | -3.                            | .16                                                                  | -3.            | 16            | -5.2          | 28                     | -9-         | 00           |
|                                                |                                                                                   |                                                 | $r_{\rm i}$                    | $r_{0}$                                                              | $r_{\rm i}$    | ro            | $r_{\rm i}$   | $r_{\rm o}$            | $r_{\rm i}$ | ro           |
| α                                              | Electrical conductivity                                                           | ${ m S}{ m m}^{-1}	imes 10^6$                   | 1.56(1)[11], 1.6[12]           | 1.36(1)[11], 1.4[12]                                                 | 1.27 (1) [11 ] | 1.12 (1) [11] | 1.24 (1) [11] | 1.11 (1) [11]          | 1.33(1)[11] | 1.18(1)[11]  |
|                                                |                                                                                   |                                                 | $2.32 \; [13,a]$               | 1.86 [13, b]                                                         |                |               |               |                        |             | _            |
| k                                              | Thermal conductivity                                                              | $W m^{-1} K^{-1}$                               | 246 [11], 230 [12]<br>281 [13] | 159 (1) <sup>[11]</sup> , 150 <sup>[12]</sup><br>170 <sup>[13]</sup> | 160(1)[11]     | 107 (1) [11]  | 148 (1) [11]  | 99 (1) <sup>[11]</sup> | 150(1)[11]  | 101 (1) [11] |
| $D_O$                                          | O Diffusivity [11]                                                                | $\rm m^2 s^{-1} \times 10^{-8}$                 |                                | )                                                                    | 0.98 (0.06)    | 1.31 (0.05)   | 0.92 (0.03)   | 1.30 (0.07)            | I           | ı            |
| $D_{Si}$                                       | Si Diffusivity [11]                                                               | $\rm m^{2}s^{-1}\times 10^{-8}$                 | 1                              | ı                                                                    | 0.41 (0.02)    | 0.52 (0.02)   | 0.38~(0.01)   | 0.46 (0.02)            | ı           | ı            |
| λ                                              | Viscosity [11]                                                                    | mPa s                                           | 11.9 (9)                       | 6.9 (4)                                                              | 11.7 (10)      | 6.8 (6)       | 13.1 (9)      | 6.7 (8)                | I           | ,            |
| $\alpha_{O}^{D}$                               | Barodiffusion coeff (O)                                                           | kg m^{-3} s \times 10^{-12}                     |                                | 1                                                                    | 0.7            | 2             | 0.9           | 6                      | 1.1         | 1            |
| $\alpha^D_{Si}$                                | Barodiffusion coeff (Si)                                                          | ${\rm kg}~{\rm m}^{-3}~{\rm s} \times 10^{-12}$ | 1                              | _                                                                    | 1.1            | 6             | 1.1           | 0                      | 40          | 6            |
|                                                |                                                                                   |                                                 |                                |                                                                      |                | 0             |               |                        | Si          |              |
| $\alpha_c$ ( $\partial u/\partial c$ )         | Chemical expansivity [14,15]                                                      | × 10 <sup>10</sup> ev/atom                      |                                | _                                                                    |                | 1.1           |               |                        | 0.87        |              |
| L'HIMAN                                        |                                                                                   |                                                 |                                |                                                                      |                |               |               |                        |             |              |

Table 1: Core material properties for pure iron and three Fe-O-Si mixtures. Models are named after the mass concentrations of mixtures of Fe, O, and Si corresponding to the given density jump. Quantities in the first section define the core chemistry model used in this review. Numbers in the second section determine the core temperature properties given in the third section. The core temperature is assumed to follow an adiabat, denoted  $T_{\rm a}$ , which intersects the melting temperature  $T_{\rm m}$  of the mixture at the inner core boundary (ICB).  $C_r = [T_i/T_o][\rho(r_i)g(r_i)(\frac{dT_m}{dP} - \frac{\partial T_a}{\partial P})]^{-1}$  specifies the inner core growth rate for a given cooling rate;  $C_c = 4\pi r_i^2 \rho(r_i) \left( c_X^l - c_X^s \right) / M_{oc}$ , together with  $C_r$ , determines the rate of change of light elements in the outer core.  $T_i = T_a(r_i)$  and  $T_o = T_a(r_o)$  are respectively the temperatures at the ICB (radius  $r_{\rm i}$ ) and CMB (radius  $r_{\rm o} = 3480$  km),  $M_{\rm oc} = 1.85 \times 10^{24}$  kg is the mass of the outer core and  $k_B$  is Boltzmann's constant. All values given at the ICB radius pertain to the present-day. All values are accompanied by a reference unless they are derived quantities. Where a range is given, numbers highlighted in red are used in the core models in section 3. <sup>a</sup>: This value was derived at a presumed ICB temperature of 4971 K; <sup>b</sup>: This value was derived at a presumed CMB temperature of 3750 K.  $\mu$  is the chemical potential.

3

## SUPPLEMENTARY INFORMATION

| Quantity    | 1                        | Р                          | $P^2$                      | $P^3$                      |
|-------------|--------------------------|----------------------------|----------------------------|----------------------------|
| $D_O$       | $3.15284 \times 10^{-9}$ | $1.58911 \times 10^{-10}$  | $-7.79726 \times 10^{-13}$ | $1.08753 \times 10^{-15}$  |
| $D_{Si}$    | $9.67659 \times 10^{-9}$ | $-5.52376 \times 10^{-11}$ | $1.92294 \times 10^{-13}$  | $-2.31242 \times 10^{-16}$ |
| k           | 69.541                   | 0.24992                    | 0.000289419                | $-6.57978 \times 10^{-7}$  |
| ρ           | 7597.11                  | 21.3527                    | -0.0314965                 | $2.64104 	imes 10^{-5}$    |
| $\sigma$    | 844513                   | 3295.58                    | -11.59                     | 0.0166341                  |
| $T_{\rm a}$ | 2941.37                  | 10.8331                    | -0.00743569                | $-2.07225 \times 10^{-8}$  |
| ν           | 20.4292                  | -0.229596                  | 0.00119676                 | $-1.76303 \times 10^{-6}$  |
| $T_{ m m}$  | 1698.55                  | 27.3351                    | -0.0664736                 | $7.94628 \times 10^{-5}$   |
| $lpha_T$    | $3.09159 \times 10^{-5}$ | $-1.58122 \times 10^{-7}$  | $4.47468 \times 10^{-10}$  | $-4.87145 \times 10^{-13}$ |

Table 2: Coefficients for polynomial fits to depth-dependent core properties obtained from *ab initio* calculations<sup>11</sup>.  $\Delta \rho = 0.6$  gm cc<sup>-1</sup>.

| Quantity    | 1                        | Р                          | $P^2$                      | $P^3$                     |
|-------------|--------------------------|----------------------------|----------------------------|---------------------------|
| $D_O$       | $8.13315 \times 10^{-9}$ | $1.01693 \times 10^{-10}$  | $-6.27438 \times 10^{-13}$ | $9.96886 \times 10^{-16}$ |
| $D_{Si}$    | $5.41447 \times 10^{-9}$ | $-2.77825 \times 10^{-12}$ | $-3.44781 \times 10^{-14}$ | $8.53179 	imes 10^{-17}$  |
| k           | 49.5315                  | 0.435578                   | -0.000563041               | $4.67761 \times 10^{-7}$  |
| ho          | 7580.08                  | 20.8655                    | -0.0306676                 | $2.59429 \times 10^{-5}$  |
| $\sigma$    | $1.05182\times 10^6$     | -126.985                   | 5.1831                     | -0.00919998               |
| $T_{\rm a}$ | 2733.82                  | 12.2139                    | -0.0162101                 | $1.42997 	imes 10^{-5}$   |
| ν           | 4.04062                  | 0.0188676                  | $-2.88082 \times 10^{-6}$  | $9.16488 \times 10^{-8}$  |
| $T_{\rm m}$ | 1498.55                  | 27.3351                    | -0.0664736                 | $7.94628 \times 10^{-5}$  |

Table 3: Coefficients for polynomial fits to depth-dependent core properties obtained from

*ab initio* calculations<sup>11</sup>.  $\Delta \rho = 0.8 \text{ gm cc}^{-1}$ .

| Quantity    | 1        | Р          | $P^2$                     | $P^3$                    |
|-------------|----------|------------|---------------------------|--------------------------|
| k           | 44.5507  | 0.539047   | -0.0011221                | $1.39095 \times 10^{-6}$ |
| $\sigma$    | 0.895385 | 0.00327394 | $-1.07115 \times 10^{-5}$ | $1.45871 \times 10^{-8}$ |
| $T_{\rm a}$ | 2594.91  | 11.6949    | -0.0131957                | $8.20578 \times 10^{-6}$ |
| $T_{ m m}$  | 1298.55  | 27.3351    | -0.0664736                | $7.94628 \times 10^{-5}$ |

Table 4: Coefficients for polynomial fits to depth-dependent core properties obtained from

*ab initio* calculations<sup>5</sup>.  $\Delta \rho = 1.0 \text{ gm cc}^{-1}$ .

- Alfè, D., Price, G. & Gillan, M. Iron under Earth's core conditions: Liquid-state thermodynamics and high-pressure melting curve from *ab initio* calculations. *Phys. Rev. B* 65, 165118 (2002).
- Dziewonski, A. & Anderson, D. Preliminary Reference Earth Model. *Phys. Earth Planet. Int.* 25, 297–356 (1981).
- Masters, G. & Gubbins, D. On the resolution of density within the Earth. *Phys. Earth Planet*. *Int.* 140, 159–167 (2003).
- Alfè, D., Gillan, M. J. & Price, G. D. Temperature and composition of the Earth's core. *Contemp. Phys.* 48, 63–80 (2007).
- Gubbins, D., Alfè, D., Davies, C. & Pozzo, M. On core convection and the geodynamo: Effects of high electrical and thermal conductivity. *Phys. Earth Planet. Int.* doi:10.1016/j.pepi.2015.04.002 (2015).
- Gubbins, D., Alfe, D., Masters, G., Price, G. & Gillan, M. Can the Earth's dynamo run on heat alone? *Geophys. J. Int.* 155, 609–622 (2003).
- 7. Stacey, F. Thermodynamics of the Earth. Rep. Prog. Phys. 73, 1-23 (2010).
- Stacey, F. Core properties, physical. In Gubbins, D. & Herrero-Bervera, E. (eds.) *Encyclopedia* of Geomagnetism and Paleomagnetism, 91–94 (Springer, 2007).
- 9. Anzellini, S., Dewaele, A., Mezouar, M., Loubeyre, P. & Morard, G. Melting of iron at Earth's inner core boundary based on fast x-ray diffraction. *Science* **340**, 464–466 (2013).

## SUPPLEMENTARY INFORMATION

- 10. Ichikawa, H., Tsuchiya, T. & Tange, Y. The P-V-T equation of state and thermodynamic properties of liquid iron. *J. Geophys. Res.* **119**, 240–252 (2014).
- 11. Pozzo, M., Davies, C., Gubbins, D. & Alfè, D. Transport properties for liquid silicon-oxygeniron mixtures at Earth's core conditions. *Phys. Rev. B* **87**, 014110 (2013).
- de Koker, N., Steinle-Neumann, G. & Vojtech, V. Electrical resistivity and thermal conductivity of liquid Fe alloys at high P and T and heat flux in Earth's core. *Proc. Natl. Acad. Sci.* 109, 4070–4073 (2012).
- Gomi, H. *et al.* The high conductivity of iron and thermal evolution of the Earth's core. *Phys. Earth Planet. Int.* 224, 88–103 (2013).
- 14. Alfè, D., Gillan, M. & Price, G. *Ab initio* chemical potentials of solid and liquid solutions and the chemistry of the Earth's core. *J. Chem. Phys.* **116**, 7127–7136 (2002).
- Badro, J., Côté, A. & Brodholt, J. A seismologically consistent compositional model of Earth's core. *Proc. Natl. Acad. Sci.* 111, 7542–7545 (2014).