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Supplementary Figures 
 

 

 
Supplementary Figure S1. Contributions of individual particle size ranges to the global dust budget. Size-
resolved contributions to (a) the global dust emission rate, (b) global dust mass loading, and (c) global DAOD. 
Results are obtained by integrating the constraints on size-resolved dust emission, loading, and DAOD (see Fig. 2 
and Section 3) between the bin size limits. Clay-sized aerosols (D ≤ 2 µm) make up a small fraction of the emitted 
dust, but an increasingly large fraction of the mass load and global DAOD. Conversely, very coarse dust (D ≥ 5 µm) 
accounts for the majority of the emitted dust, but much smaller fractions of the mass load and global DAOD. Error 
bars denote each particle bin’s CI. 



 
Supplementary Figure S2. Normalized size distribution of emitted dust. The normalized size distribution of dust 
at emission, as constrained here based on measurements (dashed line with shading for CI; from Fig. 1c), and as 
assumed in seven AeroCom models (colored lines). Models overestimate the contribution of clay-sized aerosols and 
underestimate the contribution of very coarse (D ≥ 5 µm) aerosols. Both the experimentally-constrained and 
modeled size distributions were normalized to unity over the PM20 size range (see Materials and Methods). 
 

 
Supplementary Figure S3. The size-resolved direct radiative effect efficiency. Results for the direct radiative 
effect efficiency, which is the DRE produced per unit global DAOD, are shown for individual particle bins 
simulated by four different global models in both the SW (a) and LW (b) spectra. The LW radiative effect efficiency 
includes the effects of LW absorption only; the effect of LW scattering is not included in most global models1, 2. The 
horizontal black lines denote the particle bin’s size limits. 

 

 

 



Supplementary Figure S4. The size-resolved direct radiative effect (DRE) at top-of-atmosphere (TOA). Panels 
(a-h) show the DRE calculated for each particle bin of the four global models CESM, GISS, GEOS-Chem and 
WRF-Chem. All results were obtained by multiplying the DAOD for each particle bin [Δτd; Eq. (S.29)] by the 
corresponding model’s radiative effect efficiency [Ω(D); Fig. S3]; see Section 4 for details. Results in panels (a-d) 
used the size-resolved DAOD obtained by combining the size-resolved dust loading from the seven AeroCom 
models with Mie theory for each particle bin (see Section 4.1), whereas panels (e-h) used the constraints on the size-
resolved DAOD from this study (see Section 4.2). Panels (i-l) show the difference between the two treatments. 
Results are shown for DRE due to dust interactions with SW (purple bars), LW (green bars), and all radiation 
(brown bars). To prevent cluttering the graphs, only the uncertainty in the DRE due to interactions with all radiation 
is shown. For all four models, correcting the fine size bias of the AeroCom models decreases the cooling by 
submicron dust (D < ~1 µm), and increases the warming by coarse dust (D > ~5 µm).   



 

 

Supplementary Figure S5. Probability distributions of the dust direct radiative effect (DRE). The probability 
distribution of the DRE in the SW (a) and LW (b) spectra are shown for each of the three global models, as well as 
the resulting probability distribution of the total DRE (c). These probability distributions are obtained by combining 
constraints on the size-resolved global dust optical depth (Fig. 2c) with global model calculations of the DRE per 
unit optical depth in the SW and LW spectra (Fig. S3).  



Supplementary Methods 
This section first provides a detailed description of our methodology for obtaining the globally-

averaged atmospheric dust size distribution (Section 1), the extinction efficiency (Section 2), the size-
resolved global dust emission rate, loading, and optical depth (Section 3), and the dust direct radiative 
effect (Section 4). We then provide a description of the atmospheric model simulations used in this study 
(Section 5). 

1. Analysis of the globally-averaged atmospheric dust size distribution 
Using Equation (3) in the main text, we obtain the globally-averaged particle size distribution (PSD) 

of atmospheric dust from constraints on the emitted dust PSD (Section 1.1) and the size-resolved dust 
lifetime (Section 1.2). The resulting globally-averaged atmospheric dust PSD (see Section 1.3) is 
compared against that obtained by a number of global model simulations (see Section 1.4). 

1.1 Globally-averaged dust PSD at emission 
The size distribution of dust at emission has been measured by a total of seven studies3-9. These 

studies measured the emitted dust number size distribution, using optical microscopy of collected dust 
samples3-5, or optical particle counters used on the ground6-8 or on an airplane flying in the boundary 
layer9. Below, we describe the procedure for analyzing these measurements, and also provide a 
description of each study and the methods employed by it. We then describe the procedure for 
constraining the globally-averaged emitted dust size distribution in Section 1.1.2. 

1.1.1 Analysis of the emitted dust PSD data sets 
In order to use the seven studies of the emitted dust PSD to constrain the globally-averaged emitted 

dust PSD, we first need to bring the different data sets on an equal footing. The procedure for this largely 
follows that described in Ref. 10, with exceptions for each data set described below. Specifically, because 
emitted dust size distribution measurements are generally well-described by the power law 

2
emit ln/ −∝ DDddN  in the range of 2 – 10 μm (see Fig. 2 in Ref. 10), we fit each set of measurements in 

that size range for a given wind speed and soil (or location) to this power law. We then normalized 
measurements at all aerosol sizes for a given soil and wind speed by the proportionality constant in the 
fitted power law to account for the strong dependence of the dust flux on wind speed and soil type11-13. 
For a given study, this procedure put measurements at different wind speeds and for different soils on an 
equal footing, except for the dependence of the shape of the dust PSD on wind speed and soil properties, 
which measurements suggest is small14.  

For each data set, we reduced random errors by averaging over all normalized measurements for a 
given particle bin for different wind speeds, soils (in the case of Ref. 5), and terrain types (in the case of 
Ref. 9). This procedure also yielded the standard error of measurements for a given particle bin, which 
thus does not include any systematic errors inherent in the measurement technique. Since Ref. 3 obtained 
only one reliable measurement per particle size, the standard error on these single measurements was 
estimated from the similar measurements of Ref. 4 and 5. The result of the above procedure is plotted in 
Figure 1c.  

We note that the random error obtained through the above procedure is small compared to the spread 
between measurements from different studies (see, e.g., fig. 5 in Ref. 9 and fig. 3 in Ref. 15). We thus infer 
that random errors within a data set, which capture measurement uncertainty and the effects of differences 
in wind speed and soil/terrain type (for Refs. 5 and 9), are small compared to the systematic errors between 
data sets. This inference is supported by the fact that measurements from different soils within a given 
study are very small [see Fig. 2 in Ref. 10 and Fig. 5 in Ref. 9], and that changes in wind speed have been 
shown to have no statistically significant influence on the size distribution of emitted PM10 dust14. This 
important observation implies that differences in measurements of the emitted dust size distribution are 
largely due to differences in the measurement technique rather than to differences in the actual size 
distribution of emitted dust aerosols. Further, since the difference in the emitted dust PSD for different 
soils, terrain types, and wind speeds is small compared to the systematic error between data sets, we can 



consider each data set as an approximate measure of the globally-averaged emitted dust size distribution 
(also see discussions in Refs. 10, 14, and 16). This is consistent with the finding that in situ dust size 
distributions appear independent of source region16, 17. 

1.1.1.1 Gillette data set 
The first field measurements of the size-resolved vertical dust flux were made by Gillette and co-

workers3-5. They reported measurements of one sandy loam, two fine sand, and two loamy fine sand soils 
in Texas and Nebraska for a range of wind (friction) speeds. These measurements were made using two 
single-stage jet impactors at heights of 1.5 and 6 m. The collected aerosols were subsequently analyzed 
using optical microscopy to retrieve the size-resolved vertical flux of dust aerosols larger than ~1 μm 
geometric diameter. Because systematic errors due to differences in measurement technique between data 
sets are much greater than the random errors due to differences in soil and wind speed within a given data 
set, we combine the results from the three Gillette studies3-5 into a single data set. 

1.1.1.2 Fratini et al. (2009) data set 
Fratini et al.6 used eddy covariance to measure the size-resolved flux of dust emitted over a sandy soil 

in the Gobi desert in Inner Mongolia, China. The dust particle concentration was measured using an 
optical particle counter (OPC), which measured particles with aerodynamic diameters between 0.35 and 
9.5 μm. These measurements thus need to be corrected to the geometric size range. The geometric and 
aerodynamic diameters are related by18, 19 
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(S.1)  

where ρp ≈ 2.5 ± 0.2 × 103 kg/m3 is the density of dust aerosols (see main text), and χ is the dynamic 
shape factor, which is defined as the ratio of the drag force experienced by the irregular particle to the 
drag force experienced by a spherical particle with diameter Dd 18. Measurements of the dynamic shape 
factor for mineral dust particles with a geometric diameter of ~10 µm find χ ≈ 1.4 ± 0.1 20-22. Inserting 
this into equation (S.1) then yields that Dd ≈ (0.75 ± 0.04) Dae, where the standard error was obtained 
using error propagation23. Note that the Fratini et al. results from the coarser particle bins (> ~ 5 μm) are 
unreliable because the efficiency of the air inlet system was not tested and could have produced an under-
sampling of larger particles (Fratini, 2012, personal communication). Consequently, we did not use these 
measurements, and normalized the Fratini et al. data over the range of 2–4 μm (instead of 2–10 μm). 
Furthermore, because the scatter in the measurements of Fratini et al.6 is substantially greater than that in 
the other data sets, we averaged adjacent pairs of particle bins to reduce this scatter. 

1.1.1.3 Sow et al. (2009) data set 
Sow et al.7 used two optical particle counters at heights of 2.1 and 6.5 m to measure the size-resolved 

vertical flux of dust aerosols larger than 0.3 μm. They simultaneously measured the wind speed at several 
heights, which they used to obtain the dust flux through the gradient method of Gillette et al.3. Sow et al.7 
reported measurements made during three dust storms in Niger for which the average wind friction speed 
varied between 0.4 and 0.6 m/; they did not report the soil type. 

1.1.1.4 Shao et al. (2011) data set 
Shao, Ishizuka, and co-authors8, 24 reported measurements of the vertical dust flux generated by a 

strong erosion event during the Japanese Australian Dust Experiment (JADE). The JADE field campaign 
took place in 2006 on a flat, fallow agricultural field with a loamy sand soil in southeastern Australia24, 25. 
The investigators used optical particle counters at 1.0, 2.0, and 3.5 m heights to measure the particle 
concentration in the 0.3–8.4 μm geometric diameter size range (Ishizuka, 2012, personal communication). 
Simultaneous wind speed measurements were made with anemometers at 0.50 and 2.16 m height. These 
measurements were combined to calculate the vertical dust flux as a function of friction velocity using the 
gradient method3, with an added correction for the gravitational settling of dust particles. The measured 



wind friction speed was in the range of <0.20 m/s to 0.55m/s. The authors questioned the reliability of the 
0.3 – 0.6 µm size bin (p. 13 of Ref. 8), which is thus not used here. 

1.1.1.5 Rosenberg et al. (2014) data set 
In contrast to the previous data sets, which were all obtained on the ground during active dust 

emission, the measurements of Rosenberg et al.9 were made from an airplane flying over dusty regions in 
the central Sahara. The authors obtained measurements of the size-resolved aerosol fluxes up to 300 µm 
diameter for four different regions and at three different ranges of the vertical turbulent kinetic energy. 
Rosenberg et al. obtained these size-resolved aerosol fluxes using eddy covariance, which was facilitated 
by high frequency measurements of the size-resolved aerosol concentration (using several different 
OPCs) and the 3D wind (using pitot probes). These flux measurements were made in the lower portion of 
the atmospheric boundary layer, at altitudes ranging between ~100 – 1000 m. We only use the size-
resolved aerosol flux measurements with particle sizes ≥ 0.5 μm because (i) measurements of the 
SAMUM campaign over the Sahara desert26-28 showed that aerosols with diameter ≤ 0.5 μm are largely 
not dust aerosols29, and (ii) the fraction of aerosols ≤ 0.5 μm that is dust is often coated in volatiles26, 
which was not accounted for in Rosenberg et al.9. Conversely, we assume that the aerosol fluxes > 0.5 μm 
are entirely due to dust26-28. 

1.1.2 Obtaining the globally-averaged emitted dust PSD 
After the previous section described the analysis of the emitted dust PSD data sets, we now describe 

the procedure that uses these data sets to determine the most likely globally-averaged emitted dust PSD 
and its 95% confidence interval. We obtain the most likely globally-averaged emitted dust size 
distribution using a statistical model that accounts for systematic errors inherent in each study’s 
measurement methodology, which allows us to better constrain the emitted dust size distribution than 
otherwise possible. Specifically, we (i) fit each emitted dust PSD data set to an analytical function, (ii) use 
these analytical functions in a maximum likelihood procedure that explicitly consider the systematic 
errors between data sets, and (iii) use a bootstrap procedure 30, 31 to obtain the 95% confidence interval.  

1.1.2.1 Fitting the emitted dust PSD 
We thus first fit each data set to the analytical expression of the emitted dust PSD obtained from 

brittle fragmentation theory10, which is in good agreement with each data set9, 15. This expression is given 
by 
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where Vemit is the normalized volume concentration of emitted dust aerosols with geometric size D, Vc is 
a normalization constant, and Ωs, DM, and λ are model parameters whose significance are discusses in 
Ref. 10. We used a non-linear least-squares analysis23 to fit equation (S.2) to each data set, which yielded 
the least-squares estimates of the model parameters (Ωs, DM, and λ), their errors, and their covariances. 
Because systematic errors between data sets are much larger than the random errors within each data set 
(see discussion above), we assumed that the relative error, which is due to both random and systematic 
errors, is equal for all data points within a data set.  

1.1.2.2 Using the maximum likelihood method to estimate the most likely globally-averaged 
emitted dust PSD 

The above procedure thus yields five values of Ωs, DM, and λ, with their errors and covariances. We 
use these five estimates in a likelihood procedure to obtain the maximum likelihood estimates (MLEs) of 
the globally-representative values, 𝜇𝜇�Ωs , 𝜇𝜇�𝐷𝐷M, and 𝜇𝜇�𝜆𝜆, that describe the globally-averaged emitted dust 
PSD per equation (S.2). This procedure explicitly accounts for the systematic error affecting the five 
fitted values of Ωs, DM, and λ. That is, as we describe in more detail below, we assume that each data set’s 
values of Ωs, DM, and λ are drawn from normal distributions for which the standard deviation represents 



the average systematic errors 𝜏𝜏Ωs , 𝜏𝜏DM , and 𝜏𝜏𝜆𝜆 between data sets. We then use maximum likelihood 
procedures to find both the globally-representative parameter values (𝜇𝜇�Ωs,𝜇𝜇�𝐷𝐷M, and 𝜇𝜇�𝜆𝜆) and the 
characteristic systematic error between data sets (𝜏𝜏Ωs, 𝜏𝜏DM , and 𝜏𝜏𝜆𝜆), thereby propagating these errors into 
the uncertainty on the emitted dust size distribution (shaded region in Fig. 1c). 
 
Procedure for obtaining 𝝁𝝁�𝛀𝛀𝐬𝐬  and 𝝁𝝁�𝐃𝐃𝐌𝐌. Since Ωs and DM occur jointly inside the error function in 
equation (S.2), their values are correlated. Making the standard assumption of normally-distributed errors, 
we describe the likelihood of obtaining the fitted parameters Ωs,i and DM,i with a bivariate normal 
distribution that is centered around the ‘true’ values 𝜇𝜇Ωs,𝑖𝑖 and 𝜇𝜇DM,𝑖𝑖 for the particular data set i. That is, 
as the standard errors 𝜎𝜎Ωs,𝑖𝑖 and 𝜎𝜎DM,𝑖𝑖 approach zero and equation (S.2) becomes a perfect to the measured 
data, Ωs,i  and DM,i respectively approach 𝜇𝜇Ωs,𝑖𝑖 and 𝜇𝜇DM,𝑖𝑖.  

The joint probability of Ωs,i and DM,i is thus given by 

�
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where N2 denotes a bivariate normal distribution, for which the first term in parentheses denotes the 
distribution’s median, and the second term (Σi) the covariance matrix. Furthermore, ρi is the correlation 
between Ωs,i and DM,i for the particular data set i; ρi, 𝜎𝜎Ωs,𝑖𝑖, and 𝜎𝜎DM,𝑖𝑖 are obtained from the least-squares 
fitting procedure of equation (S.2) to data set i. 

Even if all random error is eliminated from the measurements, systematic errors would cause the 
values of 𝜇𝜇Ωs,𝑖𝑖 and 𝜇𝜇DM,𝑖𝑖 obtained for each of the five data sets to be offset from the ‘true’ 𝜇𝜇�Ωs  and 
𝜇𝜇�DM that actually occur in the real world. Since differences in soil properties and wind speed seem to have 
only limited impact on the emitted dust PSD (see discussion above), we infer that these systematic errors 
are largely due to differences in experimental techniques19. We assume that the systematic errors for the 
five data sets are drawn from a bivariate normal distribution centered around zero, with unknown 
variances 𝜏𝜏Ωs

2  and 𝜏𝜏DM
2 , respectively, for Ωs and DM. That is, 

�
𝜇𝜇Ωs,𝑖𝑖
𝜇𝜇DM,𝑖𝑖

�  ~ 𝑁𝑁2 ��
𝜇𝜇�Ωs
𝜇𝜇�DM

� , Γ�, where  
(S.5) 

Γ =  �
𝜏𝜏Ωs
2 𝜂𝜂𝜏𝜏Ωs𝜏𝜏DM

𝜂𝜂𝜏𝜏Ωs𝜏𝜏DM 𝜏𝜏DM
2 � , 

 
(S.6) 

where η is the correlation between 𝜇𝜇�Ωsand 𝜇𝜇�DM, which we estimate as the correlation between the 5 
values of Ωs,i and DM,i, yielding η = 0.68. Combining equations (S.5) and (S.6) then yields 
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The likelihood of obtaining any particular set of Ωs,i and DM,i values from the n = 5 data sets is then23 
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By maximizing the likelihood function L with the calculated values of Ωs,i and DM,i, we estimated the 
unknown parameters 𝜇𝜇�Ωs= 2.10, 𝜇𝜇�DM= 1.52 μm, 𝜏𝜏Ωs= 0.25, and 𝜏𝜏DM  = 0.54 μm. 

 
Procedure for obtaining 𝝁𝝁�𝝀𝝀. We now describe the procedure for obtaining the MLE of 𝜇𝜇�𝜆𝜆, which is 
similar to that for 𝜇𝜇�Ωs  and 𝜇𝜇�DM  described above. 𝜇𝜇�𝜆𝜆 is the most likely globally-representative value of the 
parameter λ, which affects the shape of the size distribution curve for particle diameters  > ~10 μm. Since 
Ωs and DM predominantly describe the size distribution for smaller particle sizes, λ is only weakly 
correlated to Ωs and DM. For simplicity, we thus consider the fitted parameter λi to be an independent 
parameter that is normally distributed (denoted by N) around the ‘true’ value 𝜇𝜇𝜆𝜆𝑖𝑖that exists for each 
particular data set i. The likelihood of obtaining the fitted parameter λi is then  

𝜆𝜆𝑖𝑖~𝑁𝑁(𝜇𝜇𝜆𝜆𝑖𝑖 , 𝜎𝜎𝜆𝜆𝑖𝑖
2), (S.11) 

where the standard error 𝜎𝜎𝜆𝜆𝑖𝑖is obtained from the least-squares fitting procedure of equation (S.2) to the 
data set i. As with 𝜇𝜇Ωs,𝑖𝑖 and 𝜇𝜇DM,𝑖𝑖, the value of 𝜇𝜇𝜆𝜆𝑖𝑖  is affected by systematic errors that offset it from the 
‘true’ 𝜇𝜇�𝜆𝜆 that actually occurs in the real world. We again assume that this systematic error is given by a 
normal distribution with zero mean and variance 𝜏𝜏𝜆𝜆

2. That is, 
𝜇𝜇𝜆𝜆𝑖𝑖~𝑁𝑁(𝜇𝜇�𝜆𝜆, 𝜏𝜏𝜆𝜆

2). (S.12) 
Combining equations (S.11) and (S.12) then yields the likelihood of obtaining the particular set of λi 
values from the n = 5 data sets: 
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By again maximizing the likelihood function L, we estimated the unknown parameters 𝜇𝜇�𝜆𝜆 = 20.5 μm and 

λτ = 7.9 μm. 
After calculating 𝜇𝜇�Ωs , 𝜇𝜇�DM, and 𝜇𝜇�𝜆𝜆 through the above procedures, we used these values to calculate 

the normalization factor cV by forcing the integral over equation (S.2), from D = 0.2 to 20 µm, to unity. 
The resulting most likely globally-averaged emitted dust size distribution is plotted in Figure 1c. 

1.1.2.3 Obtaining the error in the globally-averaged emitted dust size distribution 
In addition to obtaining the most likely globally-averaged emitted dust size distribution, we also 

require its 95% confidence interval. We obtained this using a modified bootstrap procedure30, 31: 
1. We randomly choose one data set from the total of five emitted dust PSD data sets, and repeat 

this five times with resampling. This results in a set of five randomly-selected data sets, in which 
each data set can be represented more than once, or not at all. Note that, since the bootstrapping 
method requires identical and independently distributed measurements30, 31, we thus necessarily 
assume that all data sets are independent. This is another reason for combining the three Gillette 
studies into a single data set. 

2. We obtain the values of 𝜇𝜇�Ωs, 𝜇𝜇�DM, and 𝜇𝜇�𝜆𝜆 from the procedure described in Section 1.1.2.2. 
3. We repeat steps 1 and 2 a large number of times, yielding a large number of possible curves for 

the globally-averaged emitted dust PSD. 
4. For each value of the particle diameter D, the 95% confidence interval is the interval within 

which 95% of the curves obtained in step 3 lie30, 31. This confidence interval is plotted as gray 
shading on Figure 1c. 

1.2 Analysis of the globally-averaged and size-resolved dust lifetime 



We constrain the globally averaged size-resolved dust lifetime from the lifetime simulated with nine 
different climate and chemical transport models. These include GISS (see figure S12 in Ref. 32), GMOD 
(see table 2 in Ref. 33), CESM (calculated from simulations reported in Ref. 34), MOZART (see Table 2 in 
Ref. 35), UMI (see table 3 in 36; our Fig.2 shows the geometric mean of the three reported simulations with 
different meteorological data sets), MERRAero (calculated from simulations accessible at 
http://opendap.nccs.nasa.gov/dods/GEOS-5/MERRAero37, 38-40), WRF-Chem (see Section 5.1), GEOS-
Chem (Section 5.2), and HadGEM (Section 5.3). We use the results of these nine global transport models 
to constrain the size-resolved dust lifetime in a manner similar to that described above for the emitted dust 
PSD. That is, first we fit each model result with an analytical function (Section 1.2.1), after which we 
obtain the most likely globally-averaged size-resolved dust lifetime using the maximum likelihood 
method (Section 1.2.2), and finally we obtain the 95% confidence interval using the bootstrap method 
(Section 1.2.3). 

1.2.1 Fitting the size-resolved dust lifetime 
The nine simulation results indicate that the dust lifetime decreases approximately exponentially with 

particle size (see Fig. 1d): 
( ) ( )dep0 /exp DDTDT −= , (S.14) 

where T0 is the lifetime of dust with vanishingly small diameter, which is of the order of 10 days (Fig. 
1d), and the constant Ddep scales the exponential decay of the dust lifetime with particle size. Equation 
(S.14) can be written as  

( ) bDaT +=ln , (S.15) 
where a = ln(T0) and b = -1/Ddep. For a given model i, we used a linear least-squares procedure to fit 
equation (S.15) to the model results. This yielded the intercept ai and slope bi, the correlation ρi between 
intercept and slope, and the errors in the intercept (σa,i) and slope (σb,i) relative to the ‘true’ values of the 
intercept (μa,i) and slope (μb,i) for the particular climate model i. These errors are caused by internal model 
error, the finite extent of particle bins, the fact that equation (S.14) is a theoretical and not exact 
description of the lifetime dependence on particle size, and other sources of error.  

1.2.2 Using the maximum likelihood method to obtain the most likely globally-
averaged dust lifetime 

We used these nine estimates of ai and bi in a maximum likelihood procedure to obtain the most likely 
globally-representative values of 𝜇𝜇�𝑇𝑇0 and 𝜇𝜇�𝐷𝐷𝑑𝑑𝑑𝑑𝑑𝑑, which describe the globally-averaged dust lifetime per 
equation (S.15). Because the slope and intercept of a least-squares fit are correlated23, we again describe 
the joint probability of obtaining the intercept ai and slope bi in equation (S.15) using a bivariate normal 
distribution, which is centered around the ‘true’ values μa,i and μb,i: 

�
𝑎𝑎𝑖𝑖
𝑏𝑏𝑖𝑖�  ~ 𝑁𝑁2 ��

𝜇𝜇a,𝑖𝑖
𝜇𝜇b,𝑖𝑖

� ,Σ𝑖𝑖�, where  
(S.16) 
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The values of μa,i and μb,i for each climate model are affected by systematic biases, for instance due to 
errors in the deposition scheme41, that offset them from the ‘true’ (unbiased) intercept 𝜇𝜇�𝑎𝑎 and slope 𝜇𝜇�𝑏𝑏 
that actually occur in the real world. Similar to our procedure for constraining the emitted dust PSD 
(Section 1.1.2), we assume that these systematic errors are drawn from a bivariate normal distribution 
centered around zero, and with unknown variances 𝜏𝜏𝑎𝑎2 and 𝜏𝜏𝑏𝑏2, respectively, for a and b. That is, 

�
𝜇𝜇a,𝑖𝑖
𝜇𝜇b,𝑖𝑖

�  ~ 𝑁𝑁2 ��
𝜇𝜇�a
𝜇𝜇�b
� ,Γ�, where  

(S.18) 
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𝜂𝜂𝜏𝜏𝑎𝑎𝜏𝜏𝑏𝑏 𝜏𝜏𝑏𝑏2
�  

 
(S.19) 



where η = -0.75 is the correlation between μa,i and μb,i. Combining equations (S.18) and (S.19) then yields 
the joint probability distribution of ai and bi in terms of their ‘true’ globally-representative values (𝜇𝜇�𝑎𝑎 and 
𝜇𝜇�𝑏𝑏), their mean variance (𝜏𝜏𝑎𝑎2 and 𝜏𝜏𝑏𝑏2), and the standard errors (𝜎𝜎a,𝑖𝑖

2  and 𝜎𝜎b,𝑖𝑖
2 ) and covariances (ρi) obtained 

from the least-squares fitting procedure of equation (S.15) to data set i: 
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The likelihood of obtaining the particular set of intercepts and slopes from the n = 9 climate model 
results is then 
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We obtained the parameters 𝜇𝜇�𝑎𝑎 = 2.5, 𝜇𝜇�𝑏𝑏 = -0.22, τa = 0.41, and τb = 0.03 by maximizing the 
likelihood function L42, which yield 𝜇𝜇�𝑇𝑇0= 12.5 days, 𝜇𝜇�𝐷𝐷𝑑𝑑𝑑𝑑𝑑𝑑 = 4.6 days, 𝜏𝜏𝑇𝑇0= 5.1 days, and 𝜏𝜏𝐷𝐷𝑑𝑑𝑑𝑑𝑑𝑑 = 0.7 
days. The resulting most likely globally-averaged dust lifetime is plotted on Figure 1d. 

1.2.3 Obtaining the error in the globally-averaged dust lifetime 
In addition to obtaining the most likely size-resolved dust lifetime, we also require its uncertainty. We 

obtained this using a modified bootstrap procedure30, 31 similar to what we used for the emitted dust PSD 
(Section 1.1.2.3): 

1. We randomly chose one data set from the total of nine dust lifetime data sets, and repeat this nine 
times with resampling. This resulted in a set of nine randomly-selected data sets, in which each 
data set can be represented more than once, or not at all.  

2. We obtained the values of 𝜇𝜇�𝑎𝑎 and 𝜇𝜇�𝑏𝑏 from the procedure described above. 
3. We repeated steps 1 and 2 a large number (i.e., 105) of times, yielding a large number of possible 

curves for the globally-averaged dust lifetime. 
4. For each value of the particle diameter D, the 95% confidence interval is the interval within 

which 95% of the curves obtained in step 2 lie30, 31. This confidence interval is plotted as gray 
shading on Figure 1d. 

1.3 Obtaining the globally-averaged dust size distribution and its uncertainty 
With both the MLEs of the globally-averaged emitted dust PSD (Section 1.1) and dust lifetime 

(Section 1.2) known, we inserted these results into equation (3) to obtain the most likely globally-
averaged normalized atmospheric dust PSD (dashed line in Fig. 2a). Furthermore, the bootstrap 
procedures in Sections 1.1 and 1.2 yield a large number of possible curves for the emitted dust PSD and 
the size-resolved dust lifetime. Using equation (3), we use these to similarly generate a large number (i.e., 
105) of curves for the size-resolved globally-averaged dust size distribution. The plotted 95% confidence 
interval (gray shading) is the interval within which 95% of the ensemble values lie30, 31. We find that the 
volume size distribution of atmospheric dust peaks around 5 µm (Fig. 2a), which is slightly coarser than a 
compilation of ground-based measurements16. 

1.4 Analysis of atmospheric size distribution in models 



Figure 2 shows the most likely atmospheric dust size distribution and its uncertainty. For comparison, 
we also show the atmospheric dust size distribution reported by seven climate and chemical transport 
models that participated in the Aerosol Comparison between Observations and Models (AeroCom) 
project43. Specifically, the models included in Fig. 2 are: CAM (see Table 2 in Ref. 44), the GISS ModelE 
(Figure 2 in Ref. 2), GOCART (see table 3 in Ref. 45), MATCH (see table 8 in Ref. 46), MOZART (see 
Table 2 in Ref. 35), UMI (see table 3 in Ref. 36; our Fig.2 shows the geometric mean of the three reported 
simulations with different meteorological data sets), and LOA (see tables 2 and 3 in Ref. 47). We were 
unable to locate literature reporting atmospheric dust size distribution for other AeroCom models 
(SPRINTARS48-50; ECMFW51, UIO_CTM52, 53; LSCE54; ECHAM5-HAM55; MIRAGE56; TM557, 58). 

2. Analysis of the shortwave extinction efficiency 
We seek to obtain the dust optical depth per unit dust loading that is produced by the globally-

averaged atmospheric size distribution (Section 1). To do so, we require Qext(D), the globally-averaged 
extinction efficiency of dust as a function of its particle size, at the wavelength of 550 nm for which the 
global DAOD is constrained59. The extinction efficiency depends on the size, shape, and refractive index 
of dust aerosols. We thus used measurements to constrain the globally-averaged dust index of refraction 
(Section 2.1) and dust particle shape (Section 2.2), which we then converted to Qext(D) using the single-
scattering database of Meng et al.60 (Section 2.3). 

2.1 Globally-averaged dust index of refraction 
Measurements of the real refractive index of dust at 550 nm from a variety of source regions and at a 

range of transport stages (i.e., fresh versus aged dust) are in the approximate range of m = 1.45 – 1.60 17, 

27, 28, 61-69, such that we take the globally-averaged real index of refraction as n = 1.53 ± 0.03. This value is 
thus intended to account for changes in n during transport due to chemical processing, which might be 
important for Asian dust68, but is likely less important for African dust61, 70. Note that, by characterizing 
the global ensemble of dust aerosols with a single average value for the index of refraction, rather than 
with a distribution as we do with the shape (see below), we are neglecting any non-linearities in the 
extinction efficiency with refractive index. Because the dependence of extinction on the real refractive 
index in the relatively narrow range of 1.45-1.60 is largely linear60, the error from this simplification is 
small compared to other errors in our analysis. Indeed, a sensitivity study indicates that the error 
associated with this simplification is less than a percent.  

Whereas the real refractive index of dust is thus relatively well-known, the imaginary refractive index 
reported by many in situ studies61, 71-73 is substantially larger than that derived from (ground-based or 
satellite) remote sensing observations62, 63, 74. In order to encompass both, we take 10log(-k) = -2.5 ± 0.3. 
However, since even large variability in the imaginary refractive index has a limited effect on the dust 
extinction efficiency75, 76, this large uncertainty in the dust absorption properties does not contribute 
substantially to the uncertainty in the global dust loading. 

2.2 Globally-averaged distribution of dust particle shapes 
Since the uncertainty in dust optical properties produces only limited uncertainty in the extinction 

efficiency, the main uncertainty in Qext(D) arises from the irregular shape of dust particles. A range of 
experimental studies have used electron microscopy to quantify the irregularity of dust particles. Most of 
these studies focused on measuring the aspect ratio of the particle, that is, the ratio of the particle’s major 
axis to its minor axis; the latter of these is usually obtained by fitting an ellipse to the particle and 
deriving the perpendicular dimension by requiring that the ellipsoid area equals that of the projected 
particle72, 77. These measurements indicate that the probability distribution function of the deviation of the 
aspect ratio from 1 (i.e., a perfect sphere) is well-described as a lognormal function72. Measurements 
show that the median aspect ratio is in the range of 1.5 to 1.9, and the geometric standard deviation is 
approximately 0.6; both parameters are insensitive to particle size, although there’s an increasing trend in 
aspect ratio with transport distance due to the preferential settling of spherical dust27, 72, 77-83. There are far 
fewer measurements of the particle’s third dimension, its height; the only extensive quantitative 



measurements were reported by Okada et al.78. They performed electron microscopy on dust sampled in 
China, and found that the ratio of particle height to minor axis is lognormally distributed, with a median 
of about 1/3. They also found only small variations in the average height-to-width ratio with particle size 
(see their Fig. 1b), and no clear relationship between aspect ratio and height-to-width ratio. Chou et al.79 
also reported a height to major axis ratio of about one third, and Veghte and Freedman84 reported values 
ranging between 0.1 to 0.8 for different minerals. 

Based on the measurements reviewed above, we describe the dust particle shape as a tri-axial 
ellipsoid60, with the deviation of the aspect ratio (AR) from 1 (spherical) described by a lognormal 
function72 with a median aspect ratio of  𝜀𝜀𝑎𝑎���  = 1.7 ± 0.2 and a geometric standard deviation of 𝜎𝜎𝜀𝜀𝑎𝑎 = 0.6 ± 
0.2. That is, 
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The treatment of the dust particle height is impeded by two factors. First, there is only one detailed 
quantitative study of the probability distribution of dust particle heights78, which also was taken of Asian 
dust rather than the globally more important North African dust. Second, the presence of very aspherical 
dust aerosols suggested by this study is difficult to account for, because the optical properties of highly 
aspherical particles are difficult to calculate and thus very uncertain85-88, and are consequently not 
included in the Meng et al.60 single-scattering database. We therefore cannot realistically account for the 
distribution of particle heights, or its uncertainty, and instead take the height-to-length ratio as 𝜀𝜀ℎ��� = 0.333, 
based on the limited available measurements78, 79, 84. 

Note that we assume dust particles are randomly oriented85, and that we cannot account for 
microscale roughness and thus have to assume dust particles are smooth. 

2.3 Obtaining the globally-averaged extinction efficiency and its uncertainty 
We use the single-scattering database of Meng et al.60 to convert the globally-averaged dust index of 

refraction and the ensemble of dust particle shapes to an ensemble of extinction efficiencies. We then take 
Qext(D) as the average extinction efficiency of dust particles in this ensemble with a given geometric 
diameter D. For reference, we also calculated the extinction efficiency of spherical dust particles from 
Mie theory89 and included both curves in Figure 1b. As expected, the non-spherical shape of dust aerosols 
substantially increases their extinction efficiency over the case of spherical particles85, 90. 

To obtain the uncertainty in Qext(D), we assumed that each of the parameters describing the refractive 
index of dust and the distribution of shapes is independent. This allowed us to obtain a large number of 
parameters sets by randomly choosing values from the normal distribution defined by the mean and 
standard error of each parameter as given above (n = 1.53 ± 0.03; log(-k) = -2.5 ± 0.3; 𝜀𝜀𝑎𝑎���  = 1.7 ± 0.3 , 
and 𝜎𝜎𝜀𝜀𝑎𝑎  = 0.6 ± 0.2). We then used the single-scattering database of Meng et al.60 to convert each set of 
parameters to a curve of Qext(D), yielding a large number (i.e., 105) of realizations of Qext(D). We obtained 
the 95% confidence interval as the range within which 95% of these functions fall, which is given as the 
gray shading in Figure 1b. This confidence interval thus captures the uncertainty in the globally-averaged 
extinction efficiency due to the experimental uncertainty in the dust optical properties and in the 
probability distribution for the dust particle shape, as a function of dust geometric diameter. 

3. Constraining the size-resolved global dust emission rate, loading, and 
DAOD 
The previous sections described the procedure for constraining the globally-averaged dust PSD and 

extinction efficiency. Equations (1)-(4) combine these with constraints on the global dust aerosol optical 
depth (DAOD) from our companion study59, yielding the size-resolved global atmospheric dust emission 
rate, and atmospheric mass loading  𝑑𝑑𝑀𝑀atm

𝑑𝑑𝑑𝑑
 (Fig. 2b). Furthermore, the integrals over these quantities yield 



the global dust emission rate Femit (Fig. 3a) and mass loading Latm (Fig. 3b). We also calculate the size-
resolved DAOD from Eq. (2), yielding 
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However, in order to use the analytical framework of equations (1)-(4) to constrain these quantities, we 
need to propagate the uncertainties in the various physical parameters and analytical functions. Due to the 
complexity of these analytical functions, the covariance of their parameters, and their occurrence inside of 
integrals, we cannot parametrically estimate the uncertainty on the desired quantities. We thus instead 
obtain their probability distribution functions (pdfs) using a non-parametric method based on the 
bootstrap method30, 31, which is similar to the procedures described in Sections 1.1.2.3, 1.2.3, 1.3, and 2.3. 
Indeed, the procedures above have yielded a large number of parameter sets for each of the functions used 
in Eqs. (1)–(4), namely for the globally-averaged size-resolved dust PSD (𝑑𝑑𝑉𝑉atm

𝑑𝑑𝑑𝑑
; see Section 1.3), the 

extinction efficiency (Qext(D); see Section 2.3), and the dust lifetime (T(D); see Section 1.2.3). Since these 
parameter sets are independent and identically distributed, we can apply the bootstrap technique to obtain 
pdfs of 𝑑𝑑𝑀𝑀atm(𝐷𝐷)

𝑑𝑑𝑑𝑑
, 𝑑𝑑𝜏𝜏d(𝐷𝐷)

𝑑𝑑𝑑𝑑
, Latm, and Femit. Specifically, we obtained these pdfs as follows: 

1. We randomly selected a set of parameters from the bootstrap procedure performed on the 
functions 𝑑𝑑𝑉𝑉𝑎𝑎𝑎𝑎𝑎𝑎

𝑑𝑑𝑑𝑑
, Qext(D), and T(D). 

2. We randomly assigned a value to the dust density from the normal distribution defined by its 
mean and standard error [ρd = (2.5 ± 0.2)∙103 kg/m3].  

3. We used equations (2) – (4) to calculate the value of ετ. 
4. We randomly chose a value of τd from its probability distribution obtained in Ridley et al.59. 
5. We used equation (1) to obtain Latm. 
6. We used that 𝑇𝑇� = 𝐿𝐿atm/𝐹𝐹emit to obtain Femit. 
7. We used the value of Latm to obtain 𝑑𝑑𝑀𝑀atm

𝑑𝑑𝑑𝑑
= 𝐿𝐿atm

𝑑𝑑𝑉𝑉atm
𝑑𝑑𝑑𝑑

. 

8. We used Eq. (S.25) to obtain 𝑑𝑑𝜏𝜏𝑑𝑑
𝑑𝑑𝑑𝑑

. 
9. We repeated the procedure in steps 1-8 a large number of times (i.e., 105). 
Since the resulting distribution of values of  𝑑𝑑𝑀𝑀atm(𝐷𝐷)

𝑑𝑑𝑑𝑑
, 𝑑𝑑𝜏𝜏d(𝐷𝐷)

𝑑𝑑𝑑𝑑
, Latm, and Femit correspond to their 

probability distributions30, 31, we obtained the 95% confidence intervals from the range in which 95% of 
the obtained values lie (grey shading in Fig. 2 and blue shading in Fig. 3). 

4. Constraining the dust direct radiative effect (DRE) 
The dust direct radiative effect is generated by extinction of radiation. It therefore is closely connected to 
the globally-averaged dust aerosol optical depth 𝜏𝜏d (e.g., Ref. 91), which is a measure of the global 
extinction of SW radiation by dust. Consequently, we constrain the dust DRE by combining results on the 
size-resolved DAOD (Fig. 2c) with simulations of the efficiency with which this extinction produces 
DRE at top-of-atmosphere (TOA). Specifically, we have that 

( ) ( )∫ ∫ Ω+Ω=+=
max max

0 0
LW

d
SW

d
LWSW

D D

dDD
dD
ddDD

dD
d ττζζζ , 

 
(S.26) 

where ζSW and ζLW denote the SW and LW contributions to the total DRE (ζ), and the radiative effect 
efficiencies ΩSW(𝐷𝐷) = 𝑑𝑑ζSW

𝑑𝑑𝜏𝜏d
 and ΩLW(𝐷𝐷) = 𝑑𝑑ζLW

𝑑𝑑𝜏𝜏d
 are the all sky DRE that dust of diameter D produces 

per unit DAOD, due to interactions with SW and LW radiation, respectively.  
The values of  ΩSW(𝐷𝐷) and ΩLW(𝐷𝐷) depend on numerous factors, including the spatial and temporal 

variability of dust, the surface albedo and surface emissivity, the vertical temperature profile, the 
distribution of radiatively-active species such as clouds and greenhouse gases, and the asymmetry 
parameter and single-scattering albedo of dust. We thus require global model simulations to estimate 



ΩSW(𝐷𝐷) and ΩLW(𝐷𝐷), for which we use results from four leading global models, namely CESM, GISS, 
GEOS-Chem, and WRF-Chem (see Fig. S3). The CESM simulations are described in Kok et al.34, with 
dust optical properties from Albani et al.92, and the methodology for obtaining the radiative effects for 
each particle bin are described in Conley et al.93. The GISS simulations are described in Miller et al.2 (see 
especially their Fig. 2), and the WRF-Chem and GEOS-Chem simulations are described in Sections 5.1 
and 5.2, respectively. All simulations use dust absorption properties that are consistent with recent 
findings that dust is less absorptive in the SW spectrum than previously thought74, 94, 95.  

Most global models unfortunately do not account for the radiative effects of scattering of LW 
radiation1. At TOA, the DRE from LW scattering likely accounts for about half1 of the total LW DRE for 
a variety of standard clear-sky conditions. However, we follow the conservative treatment of Miller et al.2 
in assuming that LW scattering enhances the radiative effect from LW absorption by a factor of 𝛽𝛽LW,scat 
= 0.3, thus accounting for only 23% of the LW DRE at TOA. As such, the constraints on LW warming by 
dust obtained here should be seen as conservative. 

We discretize Eq. (S.26) to obtain the SW (𝜒𝜒𝑖𝑖,𝑘𝑘,SW) and LW (𝜒𝜒𝑖𝑖,𝑘𝑘,LW) DRE for each particle bin k for 
each of the four global model simulations i: 
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where the index k sums over the particle bins of global model simulation i, Di,k- and Di,k+ are respectively 
the lower and upper limits of particle size bin k of global model i, , and Δτd,i,k denotes the global optical 
depth produced by dust in the size range spanned by particle bin k in model i. The DRE in the SW and 
LW spectra is then the sum of that for the individual particle bins: 
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Since the global model simulations do not extend fully to Dmax = 20 µm, the second term on the right-
hand side of Eq. (S.28) accounts for the DRE produced by dust with diameters ranging from the upper 
size limit accounted for by global model i (Dlim,i) to Dmax. We obtain the values of ΩSW(𝐷𝐷max) and 
ΩLW(𝐷𝐷max) by extrapolating the model results for smaller particle sizes (Fig. S3), thereby estimating both 
at 20 ± 8 Wm-2/τd. Our results indicate that the global DRE due to dust with D > 20 µm is negligible (see 
Fig. S4), though it could still be important on local and regional scales. 

4.1 Calculating the DRE using size-resolved DAOD from AeroCom simulations 
We aim to use Eqs. (S.27, S.28) to compute the DRE that would be produced by the atmospheric dust size 
distribution simulated by the seven AeroCom models (colored lines in Fig. 2b). To do so, we require the 
optical depth ∆𝜏𝜏d,𝑖𝑖,𝑘𝑘

𝑗𝑗  that the mass size distribution of AeroCom model j would yield for particle bin k of 
global model i. We calculated ∆𝜏𝜏d,𝑖𝑖,𝑘𝑘

𝑗𝑗  as follows96, 97 
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where the surface area-to-mass ratio A(D)/M(D) = 3/2ρdD (see Eq. 2). We obtained the mass size 
distribution for AeroCom model j, 

𝑑𝑑𝑀𝑀𝑗𝑗

𝑑𝑑𝑑𝑑
, by fitting power laws between the individual values of  

𝑑𝑑𝑀𝑀𝑗𝑗

𝑑𝑑𝑑𝑑
 given 

by each particle bin; these power laws correspond to the solid colored lines in Fig. 2b. The extinction 
coefficient Qext,sph was taken as that of spherical dust, consistent with the assumption of spherical dust 
made in AeroCom models2, 44-46, and thus calculated with Mie theory (brown line in Fig. 1b). To ensure 
that the results are consistent with reported AeroCom results, we normalized the sum of the optical depths 



of the particle bins with the total optical depth τd,j for the AeroCom model j, given in Table 3 of Huneeus 
et al.98. That is, 

 Δ𝜏𝜏′d,𝑖𝑖,𝑘𝑘
𝑗𝑗 = Δ𝜏𝜏d,𝑖𝑖,𝑘𝑘
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where ∆𝜏𝜏′d,𝑖𝑖,𝑘𝑘
𝑗𝑗  is the normalized optical depth for each particle bin. We inserted ∆𝜏𝜏′d,𝑖𝑖,𝑘𝑘

𝑗𝑗  into Eq. (S.27) to 
calculate the DRE for each particle bin of each combination of global model i and AeroCom model j. 
These results are shown in Figs. S4a-d for the four global models CESM, GISS, GEOS-Chem, and WRF-
Chem; the error bars in these figures represent the spread from using ∆𝜏𝜏′d,𝑖𝑖,𝑘𝑘

𝑗𝑗  from the seven AeroCom 
models. We also use a similar procedure to Eqs. (S.29) and (S.30) to calculate the size-resolved dust 
optical depth (i.e., d𝜏𝜏′d/d𝐷𝐷) for each AeroCom model, which is plotted in Fig. 2c. 

We combined the above procedure with Eq. (S.28) to obtain a total of 28 estimates of the total TOA 
dust DRE, which resulted from the combination of seven AeroCom models with four global model 
calculations of Ω(D). Fig. 4 shows the median of these 28 values and the 95% CI, which we estimated 
from the range of the 26 values remaining after eliminating the two extreme values. Fig. 4 also shows six 
published estimates of DRE from AeroCom models2, 74, 95, 99, although two of the three estimates in Forster 
et al.95 include the SW radiative effect only. 

4.2 Calculating the DRE using this study’s constraints on the size-resolved DAOD  
In addition to using the size-resolved dust loading from AeroCom simulations to calculate the dust DRE, 
we use the constraints on Δτd,i,k from our analysis (see Figs. 2c and S1c) to calculate the DRE. 
Specifically, we inserted a large number (105) of realizations of Δτd,i,k (see Section 3) into Eq. (S.27) to 
obtain the pdfs of 𝜒𝜒𝑖𝑖,𝑘𝑘,SW and 𝜒𝜒𝑖𝑖,𝑘𝑘,LW, for which the median and the 95% CI are plotted in Figs. S4e-h. 
The difference of the radiative effect per particle bin with those calculated using the size-resolved dust 
loading from AeroCom models is shown in Figs. S4i-l. We then inserted these 105 realizations of 𝜒𝜒𝑖𝑖,𝑘𝑘,SW 
and 𝜒𝜒𝑖𝑖,𝑘𝑘,LW into Eq. (S.28) to obtain the pdfs of ζi,SW and ζi,LW (see Figs. S5a, b). Finally, we used ζ i,SW 
and ζi,LW in the following procedure to obtain the pdf of the total DRE (ζ): 

1. Obtain a realization of 𝑑𝑑𝜏𝜏𝑑𝑑
𝑑𝑑𝑑𝑑

 (see Section 3). 
2. Randomly pick one of the four global models providing ΩSW(𝐷𝐷) (Fig. S3a) and randomly select a 

corresponding realization of ζSW. 
3. Randomly pick one of the four global models providing ΩLW(𝐷𝐷) (Fig. S3b) and randomly select 

a corresponding realization of ζLW.  
4. Obtain a realization of the total DRE from ζ = ζSW + ζLW. 
5. Repeat steps 1-4 a large number of times (105) to obtain the pdf of ζ, which is plotted in Fig. S5c. 

We report the median and 95% CI of the probability distributions of ζSW, ζLW, and ζ in Fig. 4.  

5. Global transport model simulations 
To supplement the size-resolved dust lifetimes that have been reported in the literature32-36, 40, we 

performed simulations with a number of leading global transport and climate models, namely WRF-
Chem, GEOS-Chem, and HadGEM. Simulations with the first two models were also used to supplement 
the size-resolved radiative effect efficiencies obtained from previously-reported simulations with CESM34 
and GISS2. We describe the simulations with these three models below. 

5.1 Description of WRF-Chem simulations 
We used WRF-Chem version 3.5.1, updated by the Pacific Northwest National Laboratory (PNNL), 

to simulate the dust aerosol lifetime (Fig. 1d) and the size-resolved radiative effect efficiency (Fig. S3), 
averaged over the years 2004-2008. Our simulations used the MOSAIC (Model for Simulation Aerosol 
Interactions and Chemistry) aerosol module100 coupled with the CBM-Z (carbon bond mechanism) 
photochemical mechanism101. The MOSAIC aerosol scheme uses the sectional approach to represent 
aerosol size distributions with eight discrete size bins102, extending to 10 µm diameter. All major aerosol 
components, including sulfate (SO4

−2), nitrate (NO3
−), ammonium (NH4

+), black carbon (BC), organic 



matter (OM), sea-salt, methanesulfonic acid, and mineral dust are simulated in the model. The MOSAIC 
aerosol scheme includes physical and chemical processes of nucleation, condensation, coagulation, 
aqueous phase chemistry, and water uptake by aerosols. The treatment of dry and wet deposition 
processes are described in Refs. 103, 104. 

In WRF-Chem, aerosol optical properties such as extinction, single-scattering albedo (SSA), and 
asymmetry factor for scattering are computed as a function of wavelength for each model grid box. 
Aerosols are assumed internally mixed in each bin, i.e., a complex refractive index is calculated by 
volume averaging for each bin for each chemical constituent of aerosols. The Optical Properties of 
Aerosols and Clouds (OPAC) dataset105 is used for the SW and LW refractive indices of aerosols, except 
that a constant value of 1.53+0.003i is used for the SW refractive index of dust following Zhao et al.106, 

107, which is consistent with recent insights62, 63, 74, 94. A detailed description of the computation of aerosol 
optical properties in WRF-Chem can be found in Fast et al.102 and Barnard et al.108. Aerosol radiative 
feedback is coupled with the Rapid Radiative Transfer Model (RRTMG)109, 110 for both shortwave (SW) 
and longwave (LW) radiation107. Since aerosols in WRF-Chem are assumed internally mixed, the optical 
properties and direct radiative forcing of individual aerosol species in the atmosphere is not explicitly 
calculated. Instead, the methodology described in Zhao et al.104 is used to diagnose the optical depth and 
direct radiative effect of individual aerosol species. Therefore, large uncertainties in estimating radiative 
effects of one individual aerosol species can be introduced in the case of very low mass concentrations. In 
this study, we found that dust mass concentrations in the first three bins (0.039 – 0.078, 0.078 – 0.156, 
and 0.156 – 0.312 µm) are quite low. Since such low concentrations produce large relative uncertainties 
in estimating the particle bin’s radiative effects, we omitted those bins in our calculation of DRE using the 
WRF-Chem simulations. 

Following Zhao et al.103, we used a quasi-global channel configuration (using periodic boundary 
conditions in the zonal direction) with 360 × 145 grid cells (180° W-180° E, 67.5° S-77.5° N) to perform 
the simulation at 1° horizontal resolution over the period of 2004-2008. The simulations are configured 
with 35 vertical layers up to 50 hPa. The meteorological initial and lateral boundary (only for the 
meridional direction) conditions are derived from the National Center for Environmental Prediction final 
analysis (NCEP/FNL) data at 1° horizontal resolution and 6 h temporal intervals. The modeled wind 
components and atmospheric temperature are nudged towards the NCEP/FNL reanalysis data with a 
nudging timescale of 6 hr111. The chemical initial and boundary (only for the meridional direction) 
conditions are taken from the default profiles in WRF-Chem, which are the same as those used by 
McKeen et al.112 and are based on averages of mid-latitude aircraft profiles from several field studies over 
the eastern Pacific Ocean. This study uses a set of selected schemes for model physics, including the MYJ 
(Mellor–Yamada–Janjic) planetary boundary layer scheme, Noah land surface scheme, Morrison 2-
moment microphysics scheme, Kain-Fritsch cumulus scheme, and RRTMG longwave and shortwave 
radiation schemes. 

Vertical dust emission fluxes are calculated with the Goddard Chemical Aerosol Radiation Transport 
(GOCART) dust emission scheme45, and the emitted dust particles are distributed into the MOSAIC 
aerosol size bins following the theoretical expression of Kok10.  

5.2 Description of GEOS-Chem simulations 
We used simulations with GEOS-Chem (version v9-01-03; http://www.geos-chem.org/) for the years 

2004 – 2008 to simulate both the dust aerosol lifetime (Fig. 1d) and the size-resolved radiative effect 
efficiency (Fig. S3). The GEOS-Chem model incorporates a global three-dimensional simulation of 
coupled oxidant–aerosol chemistry, run at a resolution of 2° ×2.5° latitude and longitude, and 47 vertical 
levels. The model is driven by assimilated MERRA meteorology from the Goddard Earth Observing 
System of the NASA Global Modeling and Assimilation Office (GMAO), including assimilated 
meteorological fields at 1-hourly and 3-hourly temporal resolution. The aerosol types simulated include 
sulfate–nitrate–ammonium aerosols113, and carbonaceous aerosols114-116, mineral dust46, 117 and sea salt118. 
Dust emission in GEOS-Chem is based upon the DEAD dust scheme46, making use of the GOCART 
source function45. Mineral dust mass is transported in four different sized bins (0.1–1.0, 1.0–1.8, 1.8–3.0 



and 3.0–6.0 μm), the smallest of which is partitioned into four bins (0.10–0.18, 0.18–0.30, 0.30–0.65 and 
0.65–1.00 μm) when deriving optical properties, owing to the strong size dependence of extinction for 
sub-micron aerosol. Dust emission is modified from the standard model to treat 10-m wind fields as a 
Weibull distribution based on sub-grid wind statistics119. Aerosol optical depth (AOD) is calculated online 
assuming log-normal size distributions of externally mixed aerosols and is a function of the local relative 
humidity to account for hygroscopic growth120. Aerosol optical properties employed here are based on the 
Global Aerosol Data Set (GADS)121 with modifications to the size distribution based on field 
observations41, 122, 123, and modifications to the dust refractive indices to match the observed lower SW 
absorption124. The refractive indices for each species are interpolated to the 30 wavelengths, between 230 
nm and 56 µm, used by the radiative transfer code (RRTMG) coupled with GEOS-Chem125. Surface 
albedo and emissivity are generated from MODIS (MOD11C2 and MCD43C3 products) to provide 8-day 
averages for a climatology between 2002 and 2007. Cloud optical properties are calculated based on 
liquid and ice optical depths from the MERRA meteorology with cloud overlap treated using the Monte 
Carlo independent column approximation (McICA)126. The radiative transfer code is run twice every 3 
hours in the simulation, once to calculate the flux with all aerosol and a second time with only non-dust 
aerosol. The difference yields the direct radiative effect (DRE) of dust aerosols.  

5.3 Description of HadGEM simulations 
The design and the implementation of the UK MetOffice HadGEM2 model family is described in 

Martin et al.127 in detail. For our experiment, we simulated the dust aerosol lifetime (Fig. 1d) using the 
HadGEM2-A model version, which is the atmosphere only version of the global model, run with 
prescribed SSTs and sea ice climatology updated every 24 hours. Both are based on the Reynolds SST 
Analysis128, averaged over the 1995-2005 period. The vertically-extended HI-TOP version of the model 
was used, with 85 levels extending to 85km height. The horizontal resolution is 1.25 degrees (latitudinal) 
by 1.875 degrees (longitudinal), which produces a global grid of 192 x 145 grid cells (N96). This is 
equivalent to a surface resolution of about 208x139 km2 at the Equator, reducing to 120x139 km2 at 55 
degrees of latitude. 

Six aerosol species are incorporated in the model using the CLASSIC aerosol scheme129: sulfate, 
black carbon, biomass burning elemental carbon, fossil fuel organic carbon, mineral dust, and sea salt 
aerosols. We use monthly averages of Atmospheric Optical Depth (AOD) at 550 nm wavelength for each 
component, which is available as a prognostic model quantity, except for Sea Salt when it is a diagnosed 
quantity. Emission datasets for aerosol precursors and primary aerosols have been revised with the 
HadGEM2 family, using datasets created in support of CMIP5129-132.   

The models dust emission scheme has remained unchanged compared to earlier versions of 
HadGEM133, 134. It is based on the widely used emission parameterization developed by Marticorena and 
Bergametti 12. The horizontal flux is calculated for 9 model size bins with boundaries at 0.0316, 0.1, 
0.316, 1, 3.16, 10, 31.6, 100, 316 and 1000 µm radius. The vertical emission flux is calculated for 6 
model size bins in the size range between 0.0316 to 31.6 µm radius (same bin intervals). The horizontal-
to-vertical-mass flux ratio is assumed to be a constant of proportionality as a function of particle size. The 
mass fraction of particles in each size bin is calculated off-line from the clay, silt and sand fraction data 
from the International Geosphere-Biosphere Programme (IGBP) global soil data. The threshold friction 
velocity is also fixed for each size bin. Soil moisture and roughness corrections follow the method of 
Fecan et al.135 and Marticorena and Bergametti 12, respectively. 

In order to constrain the dust emission flux over major source regions, the concept of preferential 
sources that vary as a function of topography is applied45. Once emitted, the dust aerosols are treated as 
independent tracers in the atmosphere, such as all the other aerosol species. Sedimentation and turbulent 
mixing are considered as dry removal mechanisms of dust particles from the atmosphere. Wet removal 
due to precipitation scavenging within and below cloud for both large-scale and convective precipitation 
is included using a first-order removal rate133. Finally, dust-radiation interaction through SW and LW 
direct effects is permitted in the model. 
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