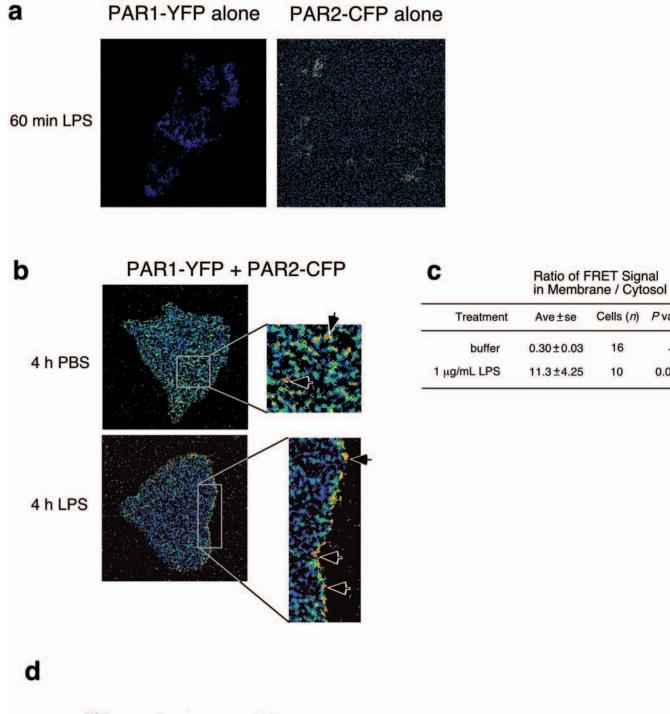


Supplementary Figure 1. Treatment of Septic Mice with PAR1 Pepducins Inhibits Formation of Thrombin-Antithrombin (TAT) Complexes. (a) TAT complexes increase soon after CLP. Mice were subjected to CLP and blood was drawn by terminal cardiac puncture at 0-48 h after the procedure. TAT concentrations were measured by ELISA. n = 6. (b) Early treatment with the P1pal-12S antagonist pepducin or delayed treatment with the P1pal-13 agonist pepducin reduces TAT concentrations. Mice were subjected to CLP, then P1pal-12S (2.5 mg/kg) or P1pal-13 (2.5 mg/kg) were injected s.c. either immediately, 2 or 4 h after the procedure as indicated. Mice were sacrificed 48 h after CLP and blood was drawn by cardiac puncture. TAT concentrations (48 h) were measured by ELISA. n = 6, *, P < 0.05



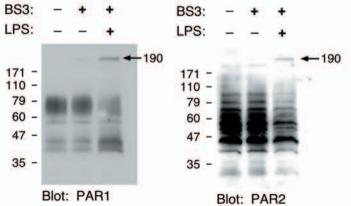
С


PAR2 dependent Chemotaxis. (a) Reversal of human pulmonary artery endothelial cell (HPAEC) barrier leakage is induced by delayed treatment with PAR1 and PAR2 agonists. Confluent HPAEC monolayers were stimulated with LPS (1 µg/ml) and then peptide agonists (same concentrations as in Fig. 4) or 0.2% DMSO vehicle were added either immediately after LPS challenge (0 h) or 2 h later. Endothelial permeability was measured at the 4 h time point. n = 3, *, P < 0.05 (b) MCF7 cells, transiently transfected with PAR1 (wild-type), PAR1-RD ($D_{199}R_{200} \rightarrow RD$), and/or PAR2 (wild-type) were allowed to migrate for 24 h toward chemotactic gradients of thrombin (0.3 nM), P1pal-13 (1 M), SLIGKV (10 M), P1pal-12S (3 M), or buffer (RPMI) using a 48-blindwell microchemotaxis chamber (Neuroprobe) equipped with 8 µm pores. Data are expressed as chemotaxis index (mean $\pm 2se$), which is the ratio between the distance of migration toward chemoattractants versus RPMI medium alone. (n = 4) * P < 0.01 versus RPMI alone. (c) PAR1 agonists increase permeability of quiescent endothelium via Rho but not G_i. Confluent EA.hy926 cells were treated with DMEM containing buffer (PBS), C3 transferase (100 µg/ml), or pertussis toxin (PTX; 100 ng/ml) overnight. After washing, cells were exposed to SLIGKV (100 µM), TFLLRN (10 µM), thrombin (0.3 nM), P1pal-12S (0.3 μ M) or P1pal-13 (0.3 μ M). Endothelial permeability at 4 h was determined by Evans blue leakage into the lower wells. n = 3.

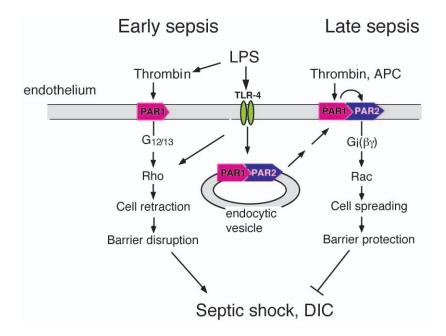
Supplementary Figure 2. Effects of PAR Agonists on Barrier Function and PAR1-

Supplementary Figure 3. Silencing of Surface-expressed PAR2 with RNAi. (a)

EA.hy926 endothelial cells were transfected with RNAi targeted against *Par2* or luciferase control as in **Fig. 4f,g** and FACs analysis was conducted using SLIG (PAR2-polyclonal) primary antibody (9.3 g/ml) and an anti-rabbit-FITC secondary antibody from goat (10 g/ml). These data are representative of 3 independent experiments. (**b**) As a control for the specificity of the SLIG-Ab for PAR2 relative to PAR1, MCF7 cells were transiently transfected with pcDEF3-PAR1 (blue) or pcDEF3-PAR2 (red) and FACs analysis conducted as in **a**.


Cells (n) P value

-


0.003

16

10

Supplementary Figure 4. Detection of Complexes of PAR1 and PAR2 by FRET Microscopy and Chemical Crosslinking of LPS-stimulated Endothelial Cells. (a,b) EA.hy926 endothelial cells were transfected with PAR1-YFP and/or PAR2-CFP and stimulated with either LPS or PBS buffer for the indicated times andconfocal photobleaching FRET microscopy was performed as in **Fig. 7f** and are representative of 10-15 cells for each condition(c) The ratio of the membrane/cytosol FRET signal (highest 5–10% intensity) emanating from Ea.hy926 endothelial cells (n=10-16) co-transfected with PAR1-YFP and PAR2-CFP treated with buffer or LPS as in **Fig. 7f.** (d) Crosslinking of PAR1-PAR2 complexes from LPS-stimulated EA.hy926 endothelial cells with non-cell permeant bis(sulfosuccinimidyl)suberate (BS3). EA.hy926 cells were treated with 1 g/ml LPS or PBS (-) for 4 h, crosslinked with 1 mM BS3 for 30 min, then quenched with 10 mM ethanolamine plus 1 M Tris-HCl. Cell lysates were separated by 12% SDS-PAGE, and immunoblot analysis was conducted with ATAP2 (PAR1monoclonal) and SLIGK (PAR2-polyclonal) antibodies. This experiment was conducted 3 times and gave similar results.

Supplementary Figure 5. Proposed Model of the PAR1-PAR2 Transactivation Switch Mechanism in Endothelial Cells During Sepsis