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Supplementary Figure 1: PRECOG quality control and relationship between z scores and P 
values. Normalized gene expression values for the gender-dimorphic genes, RPS4Y1 (males) and XIST 
(females), are plotted from prostate cancer (a), breast cancer (b), and from 7,053 tumors in PRECOG 
with available annotation of patient gender (c): green points, males; fuchsia-colored points, females. The 
mutually exclusive expression values of these two genes naturally partition this plot into 4 quadrants. 
Discordance between clinically-annotated and molecularly-inferred patient gender (i.e., fuschia points in 
quadrant 2 and green points in quadrant 4) indicate potential technical errors in PRECOG, however, 
such errors are estimated to account for <2% of integrated datasets. All arrays used in this analysis were 
MAS5-normalized, quantile normalized, and unit variance normalized. (d) The z-score is a measurement 
of statistical significance, specifically the number of standard deviations that a calculated or observed 
quantity is away from its mean value. Assuming that the underlying distribution is Gaussian (true to 
high fidelity for PRECOG; also see Supplementary Fig. 6b–d relating to immune-PRECOG), P values 
can be computed directly from z-scores. This relationship is illustrated here for |Z| < 5. Two-sided P 
values corresponding to Z = 2, 3, 4, 5 are 0.04, 0.003, 6.3 × 10–5, and 5.7 × 10–7 respectively. Unlike the 
P value, the z-score conveniently encodes directionality of the association. In this work, a positive z-
score indicates an adverse prognostic association whereas a negative z-score indicates a favorable 
prognostic association. 

Nature Medicine: doi:10.1038/nm.3909



	
   4 

 
 
Supplementary Figure 2: Validation of PRECOG using external data sets, and analysis of batch 
effects. (a) Left: Heat map (Training) depicting prognostic z-scores in PRECOG ranked by decreasing 
global meta-z, with the most adversely prognostic genes on the top and the most favorable prognostic 
genes on the bottom. Center/Right: Heat map (Validation) showing the same genes in the same order as 
PRECOG training, but with global meta z-scores from two held-out datasets, compiled from 
independent tumors profiled by microarray (center) and RNA-seq (right) (Supplementary Table 1). 
The color scale ranges from –1 (green) to +1 (red). (b) Comparison of whole-transcriptome global meta 
z-scores between PRECOG and both the microarray validation dataset (left) and TCGA RNA-seq 
validation data set (right) (Pearson’s correlation coefficients are shown). FOXM1 and KLRB1 are 
indicated. TCGA global meta-z scores are based on 26 cancer types with available RNA-seq data and 
overall survival outcomes (ACC, BLCA, CESC, COAD, DLBC, GBM, HNSC, KICH, KIRC, KIRP, 
LAML, LGG, LIHC, LUAD, LUSC, OV, PAAD, PCPG, PRAD, READ, SARC, SKCM, THCA, 
UCEC, UCS. (c) Comparison of whole-transcriptome z-scores of four AML datasets before and after 
batch effect correction (applied to microarray processing dates encoded in CEL files) using COMBAT1. 
(d) Comparison of pre-batch-corrected z-scores from the NCI director’s challenge lung adenocarcinoma 
(LUAD) dataset (ca00182) with corresponding meta-z scores from all 19 remaining LUAD datasets in 
PRECOG. (e) Same as d but after batch correction was applied to arrays from different study sites in 
ca00182. (c–e) Pearson’s correlation coefficients shown in the upper left corner of each plot are all 
significant  (P < 2.2 × 10–16). 
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Supplementary Figure 3: Significance of shared and cancer-specific prognostic genes. Analysis of 
the significance of shared prognostic genes across a broad range of (a) P value thresholds and (b) Q 
value thresholds assessed by Monte Carlo simulation. Analyses were divided into adverse (Z > 0) and 
favorable (Z < 0) prognostic genes, and one-sided P values were determined from cancer-specific meta-z 
scores. Cancer-level P values were converted into Q values as described in Methods. To calculate the 
median fraction of shared prognostic genes, gene labels were randomized separately for each cancer and 
evaluated genes were required to be shared by at least 2, 3, or 4 cancers in PRECOG. (Notably, all P 
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values and Q values were determined for each cancer separately, and do not reflect pan-cancer values.) 
For all combinations, observed fractions in PRECOG were compared to expected fractions determined 
by 1,000 Monte Carlo trials. Significantly more shared prognostic genes were found than would be 
expected by random chance (P < 0.05), regardless of the statistical threshold or minimum number of 
cancers considered. (c) Significant prognostic genes found only in one cancer type are generally not 
borderline significant in other cancers. Cancer-specific lists of adversely and favorably prognostic genes 
in PRECOG (Supplementary Table 2) were tested as gene sets against ranked meta-z scores in other 
cancers, using GSEA2. Shown are the normalized enriched scores (NES) of the cancer-specific sets 
(columns) across PRECOG (rows). With few exceptions, the cancer-specific gene lists are not enriched 
in malignancies other than the one from which they were derived. Moreover, among elements with 
|NES| > 1.96 (shown), there is a large gap between NES scores of matching cancers (mean |NES| = 4.2) 
versus non-matching cancers (mean |NES| = 2.3). Empirically, |NES| > 1.96 corresponds approximately 
to FDR < 0.05. 
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Supplementary Figure 4: Analyses related to FOXM1 and KLRB1, including assessment of a 
FOXM1-KLRB1 prognostic score in validation datasets. (a) The survival z-score of FOXM1 is shown 
compared to that for MKI67. Each point represents one dataset in PRECOG. The slope of the regression 
(solid line) illustrates that in general, FOXM1 tends towards larger z-scores than MKI67 indicating more 
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robust adverse prognostic capacity. (b) Expression of KLRB1, GZMA, and PRF1 in the 22 leukocyte 
subsets analyzed in this work. While KLRB1 (killer cell lectin-like receptor subfamily B, member 1), 
GZMA (Granzyme A), and PRF1 (Perforin 1) are highly expressed on NK cells and cytotoxic CD8 T-
cells, they are also widely expressed on other immune types. Shown are the mean levels of expression of 
these three genes across the 22 immune cell types in CIBERSORT’s LM22 signature matrix3. The high 
expression of these genes (e.g., by γδ T-cells) motivates the use of gene expression deconvolution, as 
assignment of prognostic function to specific tumor-infiltrating immune cells based solely on these 
markers could lead to inaccurate conclusions. (c,d) Survival analysis of the FOXM1-KLRB1 score 
applied to held-out microarray and RNA-seq datasets. As in Fig. 2c, the FOXM1-KLRB1 composite 
score was used to stratify datasets in the microarray validation cohort (c) and in the TCGA RNA-seq 
validation cohort (d). Datasets corresponding to the same cancer type in panel c were merged (see 
Supplementary Table 1). Only datasets/cancers with significant or trending prognostic associations are 
shown. Dataset pre-processing and survival analysis for the FOXM1-KLRB1 score are described in 
Methods and Fig. 2c. Of note, the relative weightings of FOXM1 and KLRB1 were not optimized for 
RNA-seq, further supporting the robustness of their pan-cancer association with overall survival. (e) The 
survival meta-z of expression levels of individual transcription factors (x-axis) was compared to the 
meta-z of their target genes (y-axis). The latter was assessed as the Gene Set Enrichment Analysis 
(GSEA)2 Normalized Enrichment Score (NES) of transcription factor target gene sets (from ENCODE, 
ChEA, mSigDB) against the list of all genes ranked by their average meta-z across all cancers. FOXM1 
emerged as individually strongly prognostic of poor outcome, while also binding (according to ChIP-seq 
data) to many genes whose high expression level portends poor survival (Supplementary Table 5). Of 
note, RFX5 (regulatory factor X 5) binds to the promoters of MHC class II genes and activates their 
transcription. High expression of many of these genes correlate with good outcomes, suggesting that 
tumors expressing them are more likely to be subject to immune surveillance. Conversely, down-
regulation of RFX5 and target MHC genes may provide a pro-survival immunoediting strategy for 
tumors. 
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Supplementary Figure 5: Correlation analyses of estimated leukocyte fractions across cancer 
types and datasets. (a) Dendrogram showing results of centroid hierarchical clustering applied to 
leukocyte composition vectors (n = 22 subsets per dataset) from Supplementary Table 6. Centered 
correlation was used as the distance metric. Color-code: pink, lung cancer; green, ovarian cancer; blue, 
breast cancer; yellow, colon cancer; brown, germ cell tumors; black, sarcomas. Clustering of cancers of 
the same type from independent studies illustrates the reproducibility of CIBERSORT’s estimation of 
relative immune infiltration levels. (b) Pearson correlation coefficients between KLRB1 expression and 
inferred levels of each immune subset across all 57 studies analyzed in immune PRECOG 
(Supplementary Table 6). Data are presented as medians. (c) Cross-correlation analysis of leukocyte 
prognostic associations across cancers. All pairwise Pearson correlations between the meta-z scores of 
immune populations in immune PRECOG (Supplementary Fig. 6a), illustrated as a heat map. 
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Supplementary Figure 6: Prognostic associations between 22 leukocyte subsets and 25 cancer 
histologies. (a) Heat map depicting relationships between hematopoietic subsets and survival, 
represented as a meta z-score matrix. Red cells denote adverse outcomes and green cells denote 
favorable outcomes. (b) False discovery rates of leukocyte prognostic associations. Comparison of null 
distribution of z-scores obtained from shuffling cell type fractions in immune-PRECOG (dashed black 
line) to a standard normal distribution shows high concordance.  (c) Expected versus observed fractions 
of statistically significant associations between cell type proportions and outcome obtained by filtering 
results in 6a at various z-score cutoffs. P values and estimated FDRs are shown for each z-score value. 
The more stringent the cutoff, the higher the ratio of observed to expected significant associations (3-
fold at P < 0.05, 5-fold at P < 0.01), indicating that immune-PRECOG captures statistically robust 
associations. (d) Similarly to panel b, but applied to global meta-z scores obtained from combining the 
individual cancer meta-z-scores across 25 cancer histologies or non-brain solid tumors (related to Fig. 
3c). Details for b–d are provided in Methods. 
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Supplementary Figure 7: Plasma cell levels in non-small cell lung cancer and adjacent normal 
tissues. (a) Relative RNA fractions of plasma cells inferred by CIBERSORT are independent of lung 
adenocarcinoma stage. (b) Relative fractions of 22 leukocyte subsets, as inferred by CIBERSORT, are 
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compared between two independent microarray datasets (GSE7670 and GSE10072) containing both 
lung adenocarcinoma tumor and adjacent normal specimens. For defined leukocyte abbreviations, see 
Supplementary Table 6. (c,d) Representative H&E stains of lung adenocarcinoma tissue specimens. 
Stained lung adenocarcinoma tumor sections showing cells (indicated by arrows) that morphologically 
resemble (c) plasma cells and (d) neutrophils. (e–h) Flow cytometric analysis and morphological 
assessment of plasmacytic cells in lung cancer. (e) Gating strategy for enrichment of 
CD38high/CD45high/CD138low/CD27+/CD19+/CD20– cells from a lung adenocarcinoma tumor. As 
expected for plasmacytic cells, CD38high/CD45high/CD138low/CD27+/ CD19+/CD20– cells are larger than 
CD38–/CD45high/ CD138–/CD27–/CD19+/CD20+ cells (B-cells) by forward and side scattering. (f) Using 
the gating strategy described in e, plasmacytic cells were sorted from a fresh lung adenocarcinoma 
tumor and isolated for microscopy by cytospinning. A representative cell with morphological features 
characteristic of plasmacytic cells is shown (100× oil objective lens). Representative flow cytometry 
results showing a considerable increase in plasmacytic cells in lung squamous cell carcinoma (g) and 
lung adenocarcinoma (h) tumors as compared to normal adjacent tissues.  
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Supplementary Figure 8: Assessment of TMA markers and staining quantification, and 
prognostic significance of inferred PMN/PC levels in held-out expression datasets. (a) 
Representative lung adenocarcinoma tissue sections, stained by an RNA in situ probe targeting IGKC, or 
antibodies targeting CD20 or MPO. Top: Serial sections in which IGKC and CD20 are high and MPO is 
low. Bottom: Serial sections in which MPO is high and IGKC/CD20 are low. Staining was quantified by 
GemIdent image analysis software4 and post-processing (Methods). (b) Histogram of the spatial overlap 
between IGKC and CD20 stains in adjacent lung adenocarcinoma tissue sections (median overlap of 
~4.8%). (c) Concordance between IGKC staining assessment by a pathologist (R.W.) and by GemIdent 
(Methods) for 10 randomly selected lung adenocarcinoma specimens. (d) GemIdent was trained to 
recognize CD20 staining by two different operators, and the results are plotted for all lung 
adenocarcinoma specimens. (e) Survival analysis of the ratio of PMNs to PCs in held-out lung 
adenocarcinoma datasets. Plasmacytic cell and neutrophil fractions estimated by CIBERSORT were 
used to compute their ratio in three lung cancer datasets not included in PRECOG. Patients were 
stratified into high or low groups based on the median value of the PMN:PC ratio in each dataset. This 
permitted merging of the three cohorts into one combined dataset of sufficient size for survival analysis. 
Hazard ratio (HR) with 95% confidence interval is shown along with P value in Cox regression (log-
rank test).	
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