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Supplementary Figure 1: PRECOG quality control and relationship between z scores and P
values. Normalized gene expression values for the gender-dimorphic genes, RPS4Y1 (males) and XIST
(females), are plotted from prostate cancer (a), breast cancer (b), and from 7,053 tumors in PRECOG
with available annotation of patient gender (¢): green points, males; fuchsia-colored points, females. The
mutually exclusive expression values of these two genes naturally partition this plot into 4 quadrants.
Discordance between clinically-annotated and molecularly-inferred patient gender (i.e., fuschia points in
quadrant 2 and green points in quadrant 4) indicate potential technical errors in PRECOG, however,
such errors are estimated to account for <2% of integrated datasets. All arrays used in this analysis were
MASS5-normalized, quantile normalized, and unit variance normalized. (d) The z-score is a measurement
of statistical significance, specifically the number of standard deviations that a calculated or observed
quantity is away from its mean value. Assuming that the underlying distribution is Gaussian (true to
high fidelity for PRECOG:; also see Supplementary Fig. 6b—d relating to immune-PRECOG), P values
can be computed directly from z-scores. This relationship is illustrated here for |Z] < 5. Two-sided P
values corresponding to Z =2, 3, 4, 5 are 0.04, 0.003, 6.3 x 107, and 5.7 x 10”7 respectively. Unlike the
P value, the z-score conveniently encodes directionality of the association. In this work, a positive z-
score indicates an adverse prognostic association whereas a negative z-score indicates a favorable
prognostic association.
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Supplementary Figure 2: Validation of PRECOG using external data sets, and analysis of batch
effects. (a) Left: Heat map (7raining) depicting prognostic z-scores in PRECOG ranked by decreasing
global meta-z, with the most adversely prognostic genes on the top and the most favorable prognostic
genes on the bottom. Center/Right: Heat map (Validation) showing the same genes in the same order as
PRECOG training, but with global meta z-scores from two held-out datasets, compiled from
independent tumors profiled by microarray (center) and RNA-seq (right) (Supplementary Table 1).
The color scale ranges from —1 (green) to +1 (red). (b) Comparison of whole-transcriptome global meta
z-scores between PRECOG and both the microarray validation dataset (left) and TCGA RNA-seq
validation data set (right) (Pearson’s correlation coefficients are shown). FOXMI and KLRBI are
indicated. TCGA global meta-z scores are based on 26 cancer types with available RNA-seq data and
overall survival outcomes (ACC, BLCA, CESC, COAD, DLBC, GBM, HNSC, KICH, KIRC, KIRP,
LAML, LGG, LIHC, LUAD, LUSC, OV, PAAD, PCPG, PRAD, READ, SARC, SKCM, THCA,
UCEC, UCS. (¢) Comparison of whole-transcriptome z-scores of four AML datasets before and after
batch effect correction (applied to microarray processing dates encoded in CEL files) using COMBAT'.
(d) Comparison of pre-batch-corrected z-scores from the NCI director’s challenge lung adenocarcinoma
(LUAD) dataset (ca00182) with corresponding meta-z scores from all 19 remaining LUAD datasets in
PRECOG. (e) Same as d but after batch correction was applied to arrays from different study sites in
ca00182. (c—e) Pearson’s correlation coefficients shown in the upper left corner of each plot are all

significant (P <2.2 x 107'9).
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Supplementary Figure 3: Significance of shared and cancer-specific prognostic genes. Analysis of
the significance of shared prognostic genes across a broad range of (a) P value thresholds and (b) O
value thresholds assessed by Monte Carlo simulation. Analyses were divided into adverse (Z > 0) and
favorable (Z < 0) prognostic genes, and one-sided P values were determined from cancer-specific meta-z
scores. Cancer-level P values were converted into Q values as described in Methods. To calculate the
median fraction of shared prognostic genes, gene labels were randomized separately for each cancer and
evaluated genes were required to be shared by at least 2, 3, or 4 cancers in PRECOG. (Notably, all P



values and Q values were determined for each cancer separately, and do not reflect pan-cancer values.)
For all combinations, observed fractions in PRECOG were compared to expected fractions determined
by 1,000 Monte Carlo trials. Significantly more shared prognostic genes were found than would be
expected by random chance (P < 0.05), regardless of the statistical threshold or minimum number of
cancers considered. (¢) Significant prognostic genes found only in one cancer type are generally not
borderline significant in other cancers. Cancer-specific lists of adversely and favorably prognostic genes
in PRECOG (Supplementary Table 2) were tested as gene sets against ranked meta-z scores in other
cancers, using GSEA”. Shown are the normalized enriched scores (NES) of the cancer-specific sets
(columns) across PRECOG (rows). With few exceptions, the cancer-specific gene lists are not enriched
in malignancies other than the one from which they were derived. Moreover, among elements with
INES| > 1.96 (shown), there is a large gap between NES scores of matching cancers (mean |[NES| = 4.2)
versus non-matching cancers (mean |[NES| = 2.3). Empirically, [NES| > 1.96 corresponds approximately
to FDR < 0.05.
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Supplementary Figure 4: Analyses related to FOXM1 and KLRBI, including assessment of a
FOXMI-KLRBI prognostic score in validation datasets. (a) The survival z-score of FOXM1 is shown
compared to that for MKI67. Each point represents one dataset in PRECOG. The slope of the regression
(solid line) illustrates that in general, FOXM1 tends towards larger z-scores than MKI/67 indicating more
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robust adverse prognostic capacity. (b) Expression of KLRBI, GZMA, and PRF1 in the 22 leukocyte
subsets analyzed in this work. While KLRBI (killer cell lectin-like receptor subfamily B, member 1),
GZMA (Granzyme A), and PRFI (Perforin 1) are highly expressed on NK cells and cytotoxic CD8 T-
cells, they are also widely expressed on other immune types. Shown are the mean levels of expression of
these three genes across the 22 immune cell types in CIBERSORT’s LM22 signature matrix’. The high
expression of these genes (e.g., by yd T-cells) motivates the use of gene expression deconvolution, as
assignment of prognostic function to specific tumor-infiltrating immune cells based solely on these
markers could lead to inaccurate conclusions. (¢,d) Survival analysis of the FOXMI-KLRBI score
applied to held-out microarray and RNA-seq datasets. As in Fig. 2¢, the FOXMI-KLRBI composite
score was used to stratify datasets in the microarray validation cohort (¢) and in the TCGA RNA-seq
validation cohort (d). Datasets corresponding to the same cancer type in panel ¢ were merged (see
Supplementary Table 1). Only datasets/cancers with significant or trending prognostic associations are
shown. Dataset pre-processing and survival analysis for the FOXMI-KLRBI score are described in
Methods and Fig. 2¢. Of note, the relative weightings of FOXM1 and KLRBI were not optimized for
RNA-seq, further supporting the robustness of their pan-cancer association with overall survival. (e) The
survival meta-z of expression levels of individual transcription factors (x-axis) was compared to the
meta-z of their target genes (y-axis). The latter was assessed as the Gene Set Enrichment Analysis
(GSEA)* Normalized Enrichment Score (NES) of transcription factor target gene sets (from ENCODE,
ChEA, mSigDB) against the list of all genes ranked by their average meta-z across all cancers. FOXM1
emerged as individually strongly prognostic of poor outcome, while also binding (according to ChIP-seq
data) to many genes whose high expression level portends poor survival (Supplementary Table 5). Of
note, RFX5 (regulatory factor X 5) binds to the promoters of MHC class II genes and activates their
transcription. High expression of many of these genes correlate with good outcomes, suggesting that
tumors expressing them are more likely to be subject to immune surveillance. Conversely, down-
regulation of RFXS5 and target MHC genes may provide a pro-survival immunoediting strategy for
tumors.
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Supplementary Figure 5: Correlation analyses of estimated leukocyte fractions across cancer
types and datasets. (a) Dendrogram showing results of centroid hierarchical clustering applied to
leukocyte composition vectors (n = 22 subsets per dataset) from Supplementary Table 6. Centered
correlation was used as the distance metric. Color-code: pink, lung cancer; green, ovarian cancer; blue,
breast cancer; yellow, colon cancer; brown, germ cell tumors; black, sarcomas. Clustering of cancers of
the same type from independent studies illustrates the reproducibility of CIBERSORT’s estimation of
relative immune infiltration levels. (b) Pearson correlation coefficients between KLRBI expression and
inferred levels of each immune subset across all 57 studies analyzed in immune PRECOG
(Supplementary Table 6). Data are presented as medians. (¢) Cross-correlation analysis of leukocyte
prognostic associations across cancers. All pairwise Pearson correlations between the meta-z scores of
immune populations in immune PRECOG (Supplementary Fig. 6a), illustrated as a heat map.
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Supplementary Figure 6: Prognostic associations between 22 leukocyte subsets and 25 cancer
histologies. (a) Heat map depicting relationships between hematopoietic subsets and survival,
represented as a meta z-score matrix. Red cells denote adverse outcomes and green cells denote
favorable outcomes. (b) False discovery rates of leukocyte prognostic associations. Comparison of null
distribution of z-scores obtained from shuffling cell type fractions in immune-PRECOG (dashed black
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of statistically significant associations between cell type proportions and outcome obtained by filtering
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The more stringent the cutoff, the higher the ratio of observed to expected significant associations (3-
fold at P < 0.05, 5-fold at P < 0.01), indicating that immune-PRECOG captures statistically robust
associations. (d) Similarly to panel b, but applied to global meta-z scores obtained from combining the
individual cancer meta-z-scores across 25 cancer histologies or non-brain solid tumors (related to Fig.
3¢). Details for b—d are provided in Methods.
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Supplementary Figure 7: Plasma cell levels in non-small cell lung cancer and adjacent normal
tissues. (a) Relative RNA fractions of plasma cells inferred by CIBERSORT are independent of lung
adenocarcinoma stage. (b) Relative fractions of 22 leukocyte subsets, as inferred by CIBERSORT, are
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compared between two independent microarray datasets (GSE7670 and GSE10072) containing both
lung adenocarcinoma tumor and adjacent normal specimens. For defined leukocyte abbreviations, see
Supplementary Table 6. (c,d) Representative H&E stains of lung adenocarcinoma tissue specimens.
Stained lung adenocarcinoma tumor sections showing cells (indicated by arrows) that morphologically
resemble (c¢) plasma cells and (d) neutrophils. (e-h) Flow cytometric analysis and morphological
assessment of plasmacytic cells in lung cancer. (e) Gating strategy for enrichment of
CD38"e"/CD45""/CD138""/CD27"/CD19"/CD20™ cells from a lung adenocarcinoma tumor. As
expected for plasmacytic cells, CD38"¢"/CD45""/CD138°"/CD27'/ CD19'/CD20" cells are larger than
CD387/CD45""/ CD1387/CD27 /CD19°/CD20" cells (B-cells) by forward and side scattering. (f) Using
the gating strategy described in e, plasmacytic cells were sorted from a fresh lung adenocarcinoma
tumor and isolated for microscopy by cytospinning. A representative cell with morphological features
characteristic of plasmacytic cells is shown (100% oil objective lens). Representative flow cytometry
results showing a considerable increase in plasmacytic cells in lung squamous cell carcinoma (g) and
lung adenocarcinoma (h) tumors as compared to normal adjacent tissues.
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Supplementary Figure 8: Assessment of TMA markers and staining quantification, and
prognostic significance of inferred PMN/PC levels in held-out expression datasets. (a)
Representative lung adenocarcinoma tissue sections, stained by an RNA in situ probe targeting /GKC, or
antibodies targeting CD20 or MPO. Top: Serial sections in which /GKC and CD20 are high and MPO is
low. Bottom: Serial sections in which MPO is high and /GKC/CD20 are low. Staining was quantified by
Gemldent image analysis software* and post-processing (Methods). (b) Histogram of the spatial overlap
between IGKC and CD20 stains in adjacent lung adenocarcinoma tissue sections (median overlap of
~4.8%). (¢) Concordance between /GKC staining assessment by a pathologist (R.W.) and by Gemldent
(Methods) for 10 randomly selected lung adenocarcinoma specimens. (d) Gemldent was trained to
recognize CD20 staining by two different operators, and the results are plotted for all lung
adenocarcinoma specimens. (e) Survival analysis of the ratio of PMNs to PCs in held-out lung
adenocarcinoma datasets. Plasmacytic cell and neutrophil fractions estimated by CIBERSORT were
used to compute their ratio in three lung cancer datasets not included in PRECOG. Patients were
stratified into high or low groups based on the median value of the PMN:PC ratio in each dataset. This
permitted merging of the three cohorts into one combined dataset of sufficient size for survival analysis.
Hazard ratio (HR) with 95% confidence interval is shown along with P value in Cox regression (log-
rank test).
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