

Supplementary Figure 1. Direct IFN- γ ELISA used to detect AutoAbs against IFN- γ . The data are expressed as the mean optical density (OD) at 405 nm; plasma samples from IFN- γ AutoAbs patients (n = 2), and healthy controls (n = 65) were used. Individual data points are shown, together with the mean and s.e.m. of each group in a representative experiment. ***P < 0.001 in one-way ANOVA with a post-hoc Tukey's test.

Supplementary Figure 2. Non-neutralizing AutoAbs against IFN-y did not affect the ability of IFN-y to induce IL-12 production. (a) IL-12p40 production levels were determined by ELISA in the absence of activation, or after activation with BCG or BCG plus IFN- γ , in whole blood from individuals from three groups: IFN- γ AutoAbs patients (n=3), healthy controls without AutoAbs (n = 7), and healthy controls with non-neutralizing IFN- γ AutoAbs (n = 4). (b) IFN- γ production levels were determined by ELISA in the absence of activation or after activation with BCG or BCG plus IL-12 in whole blood from individuals from three groups: IFN- γ AutoAbs patients (n=3), healthy controls without AutoAbs (n=7), and healthy controls with non-neutralizing IFN- γ AutoAbs (n=4). Individual data points are shown, together with mean and s.e.m. values for each group in a representative experiment. ***P < 0.001 in one-way ANOVA with a post-hoc Tukey's test.

Supplementary Figure 3. Epitope mapping to determine the affinity, in plasma, of synthetic peptide binding to IFN- γ . Epitope mapping to assess the binding affinity of the synthetic peptide for IFN- γ , presented as the mean optical density (OD) at 405 nm; we used plasma samples from IFN- γ AutoAbs patients (n = 3, P1-3), healthy controls without AutoAbs (n = 2, C1 and C2), and healthy controls with non-neutralizing IFN- γ AutoAbs (n = 5, N1-5)

Supplementary Figure 4. Expression of different forms of recombinant IFN- γ . Western blot analysis showed the expression of different forms of recombinant IFN- γ detected with a V5-tagged antibody.

Supplementary Figure 5. Dot blot to assess the affinity of binding, in plasma, of the recombinant proteins to IFN- γ . Plasma samples from randomly selected IFN- γ AutoAbs patients (n = 5, P1-5) and healthy controls (n = 2, C1 and C2) were probed for the control vector and IFN- γ_{1-50} , IFN- γ_{1-70} , IFN- γ_{68-121} , IFN- γ_{1-121} , IFN- γ_{1-131} , and IFN- γ_{1-139} recombinant proteins.

Supplementary Figure 6. IFN- γ_{1-139} and IFN- γ_{1-131} were recognized by anti-IFN- γ AutoAbs, whereas other truncated IFN- γ proteins were not. Western blot showing the ability of plasma from randomly selected Controls (n = 2, C1 and C2) (a and b) and IFN- γ AutoAbs Pts (n = 4, P1-4) (c-f) to bind various truncated forms of IFN- γ . Results from a representative experiment are shown. Similar results were obtained in at least three replicated experiments.

Supplementary Figure 7. Non-neutralizing AutoAbs recognized IFN- γ_{1-50} , IFN- γ_{1-70} , IFN- γ_{68-121} and IFN- γ_{1-121} . Protein mapping was used to assess the affinity of binding of the recombinant proteins to IFN- γ in plasma, presented as the mean optical density (OD) at 405 nm; the plasma samples used were from healthy controls without AutoAbs (n = 3, C1-3), and healthy controls with non-neutralizing IFN- γ AutoAbs (n = 5, N1-5).

Supplementary Figure 8. Plasma samples from patients with anti-IFN- γ AutoAbs were unable to bind mouse IFN- γ . Seven plasma samples from randomly selected patients were serially diluted and incubated with 200 pg/mL human IFN- γ (hIFN- γ) or murine IFN- γ (mIFN- γ). Plasma from healthy donors did not block the detection of hIFN- γ or mIFN- γ . However, plasma from patients with AutoAbs against IFN- γ inhibited the detection of hIFN- γ at dilutions of up to $1/10^4$, but did not block the detection of mIFN- γ . ***P < 0.001 at plasma dilutions of $1:10^{-1}$ to $1:10^{-4}$ in one-way ANOVA with a post-hoc Tukey's test.

Supplementary Figure 9. Western blotting revealed differences in the binding strength of anti-IFN- γ AutoAbs for EE-IFN- γ and IFN- γ_{1-131} . Western blot showing the binding of plasma from randomly selected healthy controls (n = 2, C1 and C2) (a and b) and anti-IFN- γ AutoAbs patients (n = 5, P1-5) (c-g) to IFN- γ_{1-131} and EE-IFN- γ . IFN- γ_{1-131} and EE-IFN- γ loading control were detected with anti-IFN- γ antibody (h). Similar results were obtained in at least three replicated experiments.

Supplementary Figure 10. AutoAbs against IFN- γ bound to Aspergillus Noc2. Western blot analysis of the different forms of Aspergillus fumigatus (amino acids 1–162) and Aspergillus terreus (amino acids 1–165) recombinant Noc2 protein detected with a V5-tagged antibody (a). Western blot showing the ability of plasma from randomly selected Controls (n = 2, C1 and C2) (b and c) and IFN- γ AutoAbs Pts (n = 5, P1-5) (d-h) to bind various truncated forms of Noc2. Results from a representative experiment are shown. Similar results were obtained in at least three replicated experiments.

Supplementary Figure 11. Purified IgG from rats immunized with Noc2 or IFN- γ blocked the IFN- γ -induced upregulation of p-STAT1 and HLA-DR. THP1 cells were incubated with IgG from non-immunized rats (n = 6), Noc2 peptide-immunized rats (n = 6) or IFN- γ peptide 6-immunized rats (n = 6) and treated with recombinant IFN- γ . P-STAT1 levels were measured by flow cytometry with the p-STAT1 monoclonal antibody; representative histograms (**a**) are shown. HLA-DR expression was measured by flow cytometry with an HLA-DR monoclonal antibody; representative histograms (**b**) are shown.

Supplementary Figure 12. Purified IgG from rats immunized with Noc2 or IFN-y did not block the IFN-α-induced upregulation of p-STAT1 and HLA-DR. THP1 cells were incubated with IgG from non-immunized rats (n = 6), Noc2 peptide-immunized rats (n = 6) or IFN- γ peptide 6-immunized rats (n = 6) and treated with recombinant IFN- α . p-STAT1 levels were measured by flow cytometry with the p-STAT1 monoclonal antibody, and the individual stimulation index (stimulated/unstimulated median fluorescence intensity ratio) is shown, together with the mean and s.e.m. (a). HLA-DR expression was measured by flow cytometry HLA-DR antibody; the individual stimulation monoclonal with index an (stimulated/unstimulated median fluorescence intensity ratio) is shown, together with the mean and s.e.m. (b).

Supplementary Table 1

	AutoAbs recognization									EE-IFN-γ functional assay					Patient	
	Mapping			Competition		Affinity	Patients' Plasma		Autologous plasma			Whole Blood		HLA typing		
P	IFN-γ Peptide	IFN-γ Protein	Noc2 peptide	IFN-γ	Noc2	EE-IFN-γ	p-STAT1	IL12p40	p-STAT1	IL12p40	HLA-DR	p-STAT1	IL12p40	DRB1	DQB1	
P1	+++	+++	+++	+++	+++	+++	++	+++	+	+++	+++	+	++	4:05	4:01	
P2	++	+++	+++	+++	+++	+++	+	+	+	++	++	++	++	16:02	5:02	
P3	+	+++	n.d.	+++	++	+++	+++	+++	+	n.d.		n.d.		16:02	5:02	
P4	+++	+++	+++	+++	++	n.d.	+++	+++	+	++	n.d.	++	+++	4:05	4:01	
P5	++	+++	+++	+++	n.d.	n.d.	+	+	++	+	+	++	+	n.d.	n.d.	
P6	++	+++	n.d.	n.d.	++	n.d.	+++	+++	++	+++	n.d.	+	++	16:02	5:02	
P7		+++	n.d.	n.d.	++	n.d.	+++	+++	n.d.	+	n.d.	++	n.d.	16:02	5:02	
P8	n.d.	+++	n.d.	n.d.	++	n.d.	+	+	n.d.	+++	++	n.d.	+++	16:02	5:02	
P9	+	+++		n.d.	n.d.	n.d.	++	+++	+	+++	+	+	+	n.d.	n.d.	
P10	++	+++	n.d.	n.d.	n.d.	n.d.	++	++	++	n.d.	n.d.	+	+++	16:02	5:02	
P11	n.d.	+++	n.d.	n.d.	n.d.	n.d.	++	+	+	+	+	n.d.	+	16:02	5:02	
P12	+	+++		n.d.	n.d.	+++	+++	+	n.d.	n.d.	n.d.	+	n.d.	16:02	5:02	
P13	+	+++		n.d.	n.d.	n.d.	n.d.	++	n.d.	++	+++	n.d.	++	n.d.	n.d.	
P14	+	+++		n.d.	n.d.	n.d.	+	n.d.	n.d.	+++	n.d.	++	+	n.d.	n.d.	
P15		+++	n.d.	+++	n.d.	n.d.	n.d.	+++	n.d.	++	n.d.	n.d.	n.d.	16:02	5:02	
P16	+++	n.d.	+++	+++	n.d.	n.d.	n.d.	n.d.	n.d.	+	n.d.	n.d.	n.d.	16:02	5:02	
P17	n.d.	+++	n.d.	n.d.	n.d.	n.d.	+++	++	n.d.	++	n.d.	n.d.	n.d.	16:02	5:02	
P18		n.d.	n.d.	n.d.	n.d.	n.d.	+	n.d.	+	n.d.	n.d.	n.d.	n.d.	16:02	5:02	
P19	n.d.	n.d.	n.d.	+++	n.d.	+++	n.d.	+	n.d.	n.d.	n.d.	n.d.	n.d.	4:05	4:01	

Supplementary Table 1. Summary of patients and the experiments performed. This table presents a list of patients and the experiments performed. n.d., not done. In mapping assays: (+++) OD values > 0.8; (++) OD values > 0.3; (+) OD values > 0.15; (-) OD values < 0.15. In competition assays: (+++) P values < 0.001; (++) P values < 0.01 at 240 mg/ml. In affinity assays: (+++) decrease in OD values > 30%. In EE-IFN- γ functional assays: (+++) stimulation index > 2 or fold-increase > 10; (++) stimulation index > 1.5 or fold-increase > 5; (+) stimulation index > 1 or fold-increase > 1.