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E-thread, E-2

Z-rotaxane, Z-1·2CF3CO2H

E-rotaxane, E-1·2CF3CO2H

 
Reagents and conditions: (i) perfluorosuccinic anhydride, Et3N, CH2Cl2, 12 h, 83%; 

(ii) 2,2-diphenylethylamine, dicyclohexylcarbodiimide (DCC), 1-

hydroxybenzotriazole (BtOH), CH2Cl2, 5h, 90%; (iii) trifluoroacetic acid, CH2Cl2, 

then 1M NaOH (aq.), 92% (iv) 4-dimethylaminopyridine (DMAP), 1-(3-

dimethylaminopropyl)-3-ethyl-carbodiimide hydrochloride (EDCI·HCl), CH2Cl2, 

24 h, 82%; v) 1 M NaOH(aq), EtOH, 16 h, 90%; vi) benzotriazol-1-yloxy-

tris(dimethylamino) phosphonium hexafluorophosphate (BOP), Et3N, CH2Cl2, 5 h, 
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47%; vii) 3,5-pyridinedicarbonyl dichloride, p-xylylenediamine, Et3N, CHCl3, 

65%; viii) 254 nm, CH2Cl2, 5 min, 48%; ix) C2H2Cl4, 115 °C, 3 days, 90%. 

 

N-(12-tert-Butoxycarbonylaminododecyl)-2,2,3,3-tetrafluorosuccinamic acid, S1 

 

HO

H
N

N
H

O

O

OF F

F F O

 
 

 To a stirred solution of 12-aminododecylcarbamic acid tert-butyl ester (prepared 

as described in A Altieri, G Bottari, F Dehez, D A Leigh, J K Y Wong and F Zerbetto, 

Angew. Chem. Int. Ed. 2003, 42, 2296-2300) (3.71 g, 12.4 mmol) in CH2Cl2 (100 mL) 

was added perfluorosuccinic anhydride (2.13 g, 12.4 mmol). The reaction mixture was 

allowed to stir at room temperature for 6 h. The solvent was removed under reduced 

pressure and the resulting solid recrystallized from CH2Cl2 to obtain S1 as a colourless 

solid. 4.86 g (83%); m.p. 113 °C; 1H NMR (400 MHz, CDCl3): δ = 12.14 (br s, 1H, 

COOH), 7.87 (t, J = 8.3 Hz, 1H, CF2CONH), 4.80 (t, J = 5.6 Hz, 1H, CH2CONH), 3.57 

(q, J = 6.7 Hz, 2H, CF2CONHCH2), 3.37 (m, 2H, CH2NHCO2
tBu), 1.87 (m, 2H, 

CF2CONHCH2CH2), 1.79 (br s, 11H, CH2CH2NHCO2
tBu + tBu), 1.54 (m, 16H, alkyl 

chain); 13C NMR (100 MHz, CDCl3): δ = 182.27, 167.69, 157.80, 108.85, 105.89, 

43.91, 40.62, 40.01, 30.01, 29.51, 29.45, 29.42, 29.37, 29.20, 29.09, 28.92, 28.43, 

26.71; 19F NMR (235 MHz, CDCl3): δ = -119.92 (t, 2F, J = 4.1 Hz, CF2), -118.00 (br s, 

2F, CF2); HRMS calcd. for C21H37F4N2O5 [M+H+] 473.26386 found (FAB, 3-NOBA 

matrix) 473.26792   

 

 

N-(12-tert-Butoxycarbonylaminododecyl)-N’-(2,2-diphenylethyl)-2,2,3,3-

tetrafluorosuccinamide, S2 
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To a stirred solution of N-(12-tert-butoxycarbonylaminododecyl)-2,2,3,3-tetra 

fluorosuccinamic acid, S1 (3.00 g, 6.36 mmol) in anhydrous CH2Cl2 (40 mL) was added 

2,2-diphenylethylamine (1.25 g, 6.36 mmol), DCC (1.96 g, 9.54 mmol) and HOBt (1.29 

g, 9.54 mmol) added in this order under argon at 25°C. The solution was allowed to stir 

for 6 h. The reaction mixture was filtered and concentrated under reduced pressure to 

afford a yellow oil that was purified by column chromatography (CH2Cl2/EtOAc) to 

give S2 as a colourless solid. 3.73 g (90%); m.p. 121 °C; 1H NMR (400 MHz, CDCl3): δ 

= 7.20 (m, 10H, Ph), 6.60 (br s, 2H, NHCOCF2CF2CONH), 4.45 (br s, 1H, CH2CONH), 

4.16 (t, 1H, J = 8.0 Hz, CH2CHPh2), 3.92 (t, 2H, J = 7.0 Hz, CH2CHPh2), 3.24 (q, J = 

6.7 Hz, 2H, CF2CONHCH2), 3.02 (q, J = 6.5 Hz, 2H, CH2NHCO2
tBu), 1.48 (m, 2H, 

CF2CONHCH2CH2), 1.36 (br s, 11H, CH2CH2NHCO2
tBu + tBu), 1.18 (m, 16H, alkyl 

chain); 13C NMR (100 MHz, CDCl3): δ = 158.98 (x2), 157.56, 140.92, 128.87, 127.93, 

127.15, 109.32, 105.00, 50.06, 49.73, 44.11 (x2), 40.02, 30.05(x2), 29.43, 29.38, 29.24, 

29.09 (x2), 28.92, 28.43, 26.61; 19F NMR (235 MHz, CDCl3): δ = -120.61 (s, 2F, CF2), 

-120.82 (s, 2F, CF2); HRMS calcd. for C35H50F4N3O4 [M+H+] 652.37374 found (FAB, 

3-NOBA matrix) 652.36972   

 

N-(12-aminododecyl)-N’-(2,2-diphenylethyl)-2,2,3,3-tetrafluorosuccinamide, S3: 
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A solution of N-(12-tert-butoxycarbonylaminododecyl)-N’-(2,2-diphenyl ethyl)-

2,2,3,3-tetrafluorosuccinamide, S2 (1.5 g, 2.30 mmol) in trifluoroacetic acid (TFA, 5 

mL) was stirred at rt for 30 minutes.  The reaction mixture was concentrated under 

reduced pressure and CH2Cl2 (20 mL) added. The organic phase was washed with 1N 

NaOH (2 x 10 mL), brine (1 x 10 mL), dried over anhydrous MgSO4, filtered and the 

filtrate concentrated to give the product as a colourless solid. 1.17 g (92%); m.p. 85 °C; 

1H NMR (400 MHz, CDCl3): δ = 7.26 (m, 4H, ArH), 7.18 (m, 6H, ArH), 6.54 (br s, 2H, 

NHCOCF2CF2CONH), 4.15 (t, 1H, J = 8.1 Hz, CH2CHPh2), 3.92 (d, 2H, J = 7.0, 5.9 

Hz, CH2CHPh2), 3.25 (q, J = 6.7 Hz, 2H, CF2CONHCH2), 2.60 (br s, 2H, CH2NH2), 

1.47 (m, 4H, CONHCH2CH2 + CH2CH2NH2), 1.20 (m, 16H, alkyl chain); 13C NMR 
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(100 MHz, CDCl3): δ = 158.31, 157,73, 140.82, 128.83, 127.94, 127.12, 109.01, 

104.73, 50.36, 44.19, 39.85, 29.61, 29.23, 29.01, 28.79, 28.92, 28.43, 25.32, 20.51; 19F 

NMR (235 MHz, CDCl3): δ = -120.65 (s, 2F, CF2), -120.82 (s, 2F, CF2); HRMS calcd. 

for C30H42F4N3O2 [M+H+] 552.66711 found (FAB, 3-NOBA matrix) 552.66352. 

 

(E)-But-2-enedioic acid (2,2-diphenylethyl)-amide {12-[3-(2,2-diphenyl-

ethylcarbamoyl)-2,2,3,3-tetrafluoropropionylamino]-dodecyl}-amide, E-2: 
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To a stirred solution of N-(12-aminododecyl)-N’-(2,2-diphenylethyl)-2,2,3,3-

tetrafluorosuccinamide, S3 (0.73 g, 1.33 mmol) in 15 mL of CH2Cl2 was added a 

suspension of (E)-3-(2,2-diphenylethylcarbamoyl)acrylic acid (0.39 g, 1.33 mmol) 

(prepared as described in A Altieri, G Bottari, F Dehez, D A Leigh, J K Y Wong and F 

Zerbetto, Angew. Chem. Int. Ed. 2003, 42, 2296-2300) in 4 mL of THF.  Triethylamine 

(0.5 mL) was then added until pH = 10 followed by BOP (0.88 g, 2.00 mmol). The 

resulting suspension was stirred at room temperature for 30 minutes, after which time a 

dark solution was obtained which was stirred for a further 3 h. Concentration under 

reduced pressure gave a viscous residue which was subjected to column 

chromatography (silica gel, 5:95 MeOH/CHCl3) to yield the product as a colourless 

solid. 1.10 g (47%); m.p. 233-234 °C; 1H NMR (400 MHz, CDCl3): δ = 7.26 – 7.17 (m, 

20H, Ph), 6.73 (d, 1H, J = 14.9 Hz, Hj), 6.62 (br s, 1H, NHc), 6.60 (d, 1H, J = 14.9 Hz, 

Hk), 6.59 (br s, 1H, NHd), 5.83 (br t, 1H, J = 5.1 Hz, NHi), 5.71 (br t, 1H, J = 5.3 Hz, 

NHl), 4.16 (t, 1H, J = 8.1 Hz, Ha), 4.14 (t, 1H, J = 8.4 Hz, Hn), 3.92 (m, 4H, Hb + Hm), 

3.24 (m, 4 H, He + Hh), 1.51 (m, 4 H, Hf + Hg), 1.28-1.16 (m, 16H, alkyl chain); 13C 

NMR (100 MHz, CDCl3): δ = 165.06, 164.78, 159.83, 157.32, 141.74, 141.14, 132.89, 

132.06, 128.64, 128.59, 127.88(x2), 126.89, 126.72, 117.95, 111.26, 50.20, 49.82, 

44.30, 44.18, 39.88, 39.72, 32.03, 29.25 (x2), 29.20, 29.05, 28.96 (x2), 28.66, 26.75, 

24.50; 19F NMR (235 MHz, CDCl3): δ = -120.08 (br s, 2F, CF2), -120.35 (br s, 2F, 

CF2); HRMS calcd. for C48H57F4N4O4 [(M+H)+] 829.43159) found (FAB, 3-NOBA 

matrix) 829.43199.  
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Rotaxane E-1 
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To a solution of E-2 (0.24 g, 0.29 mmol) in 100 mL of CHCl3:CH3CN (9:1) and 

Et3N (1.5 mL) were added simultaneously solutions of 3,5-pyrydinedicarbonyl 

dichloride (0.71 g, 3.5 mmol) in 20 mL of CHCl3 and of p-xylylenediamine (0.47 g, 3.5 

mmol) in 20 mL of CHCl3 over a period of 3 hrs using motor-driven syringe pumps. 

After a further 3 h the resulting mixture was filtered and the filtrate concentrated under 

reduced pressure. The residue was subjected to column chromatography on silica gel 

using a solvent gradient of CHCl3 to CHCl3/MeOH (94/6) to obtain the desired product 

as a colourless solid. 0.26 g (65%); m.p. 233-234 °C; 1H NMR (400 MHz, CDCl3): δ = 

9.09 (s, 4H, HB), 8.98 (br s, 1H, NHh), 8.78 (s, 2H, HC), 8.65 (br s, 1H, NHk), 7.54 (br s, 

4H, NHD), 7.24 - 7.10 (m, 28H, HAr), 7.02 (br t, 1H, J = 5.4 Hz, NHc), 5.71 (br t, 1H, J 

= 5.2 Hz, NHd), 5.74 (d, 1H, J = 15.4 Hz, Hj), 5.69 (d, 1H, J = 15.6 Hz, Hk), 4.41 (br s, 

8H, HE), 4.16 (t, 1H, J = 8.0 Hz, Ha), 4.14 (t, 1H, J = 7.8 Hz, Hn), 3.90 (m, 2H, Hb), 3.86 

(m, 2H, Hm), 3.21 (m, 2 H, He), 3.11 (m, 2 H, Hh), 1.44 (m, 2 H, Hf), 1.34 (m, 2 H, Hg), 

1.28-1.10 (m, 16H, alkyl chain); 13C NMR (100 MHz, CDCl3): δ = 165.86, 165.35, 

163.85, 165.81, 157.70, 150.92, 141.40, 141.06, 136.63, 132.81, 130.04, 129.32, 

128.87, 128.76, 128.74 (x2), 127.91, 127.72, 127.24, 127.01, 117.47, 111.92, 50.43, 

49.91, 44.30, 44.14, 44.04, 39.93, 39.83, 29.29, 29.27, 29.20, 29.15, 29.10, 28.96, 

28.87, 28.69, 26.93, 26.45; 19F NMR (235 MHz, CDCl3): δ = -120.12 (d, 2F, J = 14.2 

Hz, CF2), -120.27 (d, 2F, J = 14.2 Hz, CF2); HRMS calcd. for C78H82F4N10O8 [M+H+] 

1362.62532 found (FAB, 3-NOBA matrix) 1362.62978. 
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(Z)-But-2-enedioic acid (2,2-diphenylethyl)-amide {12-[3-(2,2-diphenyl-

ethylcarbamoyl)-2,2,3,3-tetrafluoropropionylamino]-dodecyl}-amide, Z-2 
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To a stirred solution of N-(12-aminododecyl)-N’-(2,2-diphenylethyl)-2,2,3,3-

tetrafluorosuccinamide, S3 (0.52 g, 0.94 mmol) in 30 mL of CH2Cl2 was added a 

suspension of (Z)-3-(2,2-diphenylethylcarbamoyl)acrylic acid (0.28 g, 0.94 mmol) 

(prepared as described in A Altieri, G Bottari, F Dehez, D A Leigh, J K Y Wong and F 

Zerbetto, Angew. Chem. Int. Ed. 2003, 42, 2296-2300) in 3 mL of THF.  Triethylamine 

(0.4 mL) was added until pH 10 followed by BOP (0.62 g, 1.41 mmol). The resulting 

mixture was stirred at room temperature for 3 h and concentrated under reduced 

pressure to give a viscous residue which was subjected to column chromatography 

(silica gel, 4:96 MeOH/CHCl3) to afford the product as a colourless solid. 0.78 g (65%); 

m.p. 165-167 °C; 1H NMR (400 MHz, CDCl3): δ = 8.30 (br t, 1H, J = 5.6 Hz, NHi), 

7.56 (br t, 1H, J = 5.3 Hz, NHl), 7.27 - 7.13 (m, 20H, Ph), 6.52 (br s, 2H, Hc + Hd), 5.94 

(d, 1H, J =13.4 Hz, Hj), 5.84 (d, 1H, J =13.4 Hz, Hk), 4.18 (t, 1H, J = 8.1 Hz, CHa), 4.15 

(t, 1H, J = 7.8 Hz, CHn), 3.93 (dd, 2H, J = 7.8, 6.1 Hz, CHb), 3.87 (dd, 2H, J = 7.8, 5.6 

Hz, CHm), 3.23 (td, 2H, J = 7.1, 6.6 Hz, CHe), 3.18 (td, 2H, J = 7.1, 6.6 Hz, CHh), 1.47 

(m, 4 H, Hf + Hg), 1.27-1.14 (m, 16H, alkyl chain); 13C NMR (100 MHz, CDCl3): δ = 

164.72 (x2), 159.10, 158.92, 141.65, 140.84, 133.71, 131.05, 128.83, 128.69, 127.99, 

127.90, 127.12, 126.84, 116.11, 110.15, 50.24, 50.00, 44.08, 43.94, 39.98, 39.79, 29.35, 

29.32, 29.28,29.12,29.00, 28.84, 26.87, 26.53, 25.57, 24.91; 19F NMR (235 MHz, 

CDCl3): δ = -120.09 (d, 2F, J = 2.5 Hz, CF2), -120.27 (d, 2F, J = 3.2 Hz, CF2); HRMS 

calcd. for C48H57F4N4O4 [M+H+] 829.43159 found (FAB, 3-NOBA matrix) 829.43215. 
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Rotaxane E-1 (10 mg, 0.005 mmol) was dissolved in CH2Cl2 (20 mL) and the 

solution placed in a quartz vessel, 5 equivalents of trifluoroacetic acid were added and 

the solution was degassed by bubbling N2 for 10 minutes. The solution was directly 

irradiated at 254 nm using a multilamp photo-reactor (Model MLU18, Model 3022 

lamps, Photochemical Reactors Ltd., Reading, UK.) for 5 minutes. The progress of the 

photoisomerization was monitored by TLC (CHCl3/MeOH 94:6) or 1H NMR (CDCl3). 

After the photostationary state (50:50 by 1H NMR) was reached the reaction mixture 

was concentrated under reduced pressure, then redissolved in CH2Cl2 (5 mL) and 

washed with sat. Na2CO3 (1 x 5 mL) and brine (1 x 5 mL). The organic layer was dried 

over anhydrous MgSO4, filtered and the filtrate concentrated. The resulting solid was 

subjected to column chromatography on silica gel using a solvent gradient of CHCl3 to 

CHCl3/MeOH (90/10) to obtain the desired product as a colourless solid. yield = 48%. 

Alternatively, to a solution of Z-1 (0.22 g, 0.27 mmol) in 100 mL of CHCl3 and Et3N 

(1.4 mL, 9.75 mmol) were added simultaneously solutions of 3,5-pyrydinedicarbonyl 

dichloride (0.66 g, 3.25 mmol) in 20 mL of CHCl3 and of p-xylylenediamine (0.44 g, 

3.25 mmol) in 20 mL of CHCl3 over a period of 3 hrs using motor-driven syringe 

pumps. After a further 3 h the resulting suspension was filtered and the filtrate 

concentrated under reduced pressure to afford the crude product which was purified as 

described above. m.p. 193-195 °C; 1H NMR (400 MHz, CDCl3) δ = 9.27 (s, 4H, HB), 

8.88 (s, 2H, HC), 8.68 (br t, 1H, J = 4.8 Hz, NHi), 8.57 (br t, 1H, J = 5.3 Hz, NHl), 7.81 
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(br s, 4H, NHD), 7.31 (br t, 1H, J = 5.6 Hz, NHc), 7.27 - 7.08 (m, 16H, HAr), 7.00 (s, 8H, 

HF), 6.92 (d, 4H, J = 7.1 Hz, HAr), 6.80 (br t, 1H, J = 5.8 Hz, NHd), 5.75 (d, 1H, J = 13.4 

Hz, Hj), 5.62 (d, 1H, J = 13.4 Hz, Hk), 4.61 (dd, 4H, J = 14.0, 6.2 Hz, HE), 4.26 (dd, 4H, 

J = 14.0, 4.0 Hz, HE’), 4.17 (t, 1H, J = 7.8 Hz, Ha), 3.96 (t, 1H, J = 7.8 Hz, Hn), 3.91 

(dd, 4H, J = 7.1, 6.1 Hz, Hb), 3.57 (m, 2H, Hm), 3.16 (m, 2 H, He), 3.04 (m, 2 H, Hh), 

1.56 (m, 2 H, Hf+Hg), 1.28-1.10 (m, 16H, alkyl chain); 13C NMR (100 MHz, CDCl3): δ 

164.44, 164.18, 160.24, 157.85 (x2), 152.54, 140.97, 140.06, 136.97,134.51, 133.04, 

131.52, 129.38, 128.81, 128.27, 127.90, 127.56, 127.10, 112.70, 107.46, 44.20, 44.01, 

43.96, 39.96, 39.62, 30.52, 29.74, 29.00, 28.94 (x2), 28.92, 28.70, 28.67, 28.52, 27.39, 

26.03, 25.22; 19F NMR (235 MHz, CDCl3): δ -120.75 (s, 2F, CF2), -121.11 (s, 2F, CF2); 

HRMS calcd. for C78H82F4N10O8 [M+H+] 1362.62532 found (FAB, 3-NOBA matrix) 

1362.62332. 

 

Non-Fluorinated rotaxane control, E-S4 
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Rotaxane E-S4 was synthesized from thread E-S5[A. Altieri, G. Bottari, F. 

Dehez, D. A. Leigh, J. K. Y. Wong, F. Zerbetto, Angew. Chem. 2003, 115, 2398-2402; 

Angew. Chem., Int. Ed. 2003, 42, 2296-2300] using analogous methods to those 

described above for E-1 in 59 % yield. m.p. > 300oC; 1H NMR (400 MHz, CDCl3, 298 

K) δ 9.43 (brt, 1H, Hh), 9.16 (s, 4H, HB), 8.85 (s, 2H, HC), 7.62 (brs, 4H, HD), 7.30-7.19 

(m, 21H, HPh + Hk), 5.86 (brs, 2H, Hi + Hj), 5.74 (brt, 1H, He), 4.61 (d, 2H, J = 7.3 Hz, 

Hb), 4.52 (brs, 8H, HE), 4.33 (t, 1H, J = 7.3 Hz, Ha), 4.25 (t, 1H, J = 7.6 Hz, Hm), 3.95 

(brs, 2H, Hl), 3.15 (m, 2H, Hf), 3.04 (2H, Hg), 2.54 (t, 2H, J = 6.6 Hz, Hc), 2.32 (t, 2H, J 

= 6.6 Hz, Hd), 1.51-1.36 (m, 4H, CH2-CHf + CH2-CHg), 1.21 (brs, 16H, Halkyl); 13C 

NMR (100 MHz, CDCl3) δ 172.89, 171.25, 166.14, 165.60, 163.31, 157.72, 150.91, 
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141.42, 141.02, 136.76, 129.73, 128.95, 128.65, 128.58, 128.18, 127.78, 127.32, 

126.82, 66.89, 50.52, 49.74, 45.85, 39.63, 30.97, 29.65, 29.54, 29.50, 29.22, 29.12, 

27.12, 26.86. HRMS calcd. for C78H86N9O9 [M + H+] 1292.65485 found (FAB, 3-

NOBA matrix) 1292.63261.              

 

II. Surface preparation and contact angle and transport experiments 

 

Materials. 

3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,10-Heptadecafluorodecanethiol  was 

synthesized according to a procedure of Naud et al.[J. Fluor. Chem. 104, 173 (2000)] by 

Bert de Boer, Materials Science Centre, University of Groningen. 10-Carboxy-1-

decanethiol (11-MUA) [CAS 71310-21-9] of HPLC purity better than 97% was 

purchased from Dijondo, Japain, chloroform [CAS 67-66-3] of HPLC purity better than 

99.9% was purchased from Aldrich, diiodomethane [CAS 75-11-6] of purity better than 

99%, and dichloromethane [CAS 75-09-2] of purity better than 99.8% were purchased 

from Acros Organics, Belgium, formamide [CAS 75-12-7] and ethanol [CAS 64-17-5] 

of purity better than 99% were purchased from Merck, Germany. All chemicals were 

used without further purification. The gold on glass substrates were 250 nm thickness 

Au deposited on chromium layers of 2.5 nm thickness on glass plates and were obtained 

from Arrandee, Germany. The gold on mica substrates were prepared by evaporation of 

99.99% gold, Umicore Materials AG, on freshly cleaved mica sheets, Ted Paella, Inc., 

at 10-7 mbar in a custom-built evaporator in the Materials Science Centre, University of 

Groningen. 

 
 
Preparation of Self-Assembled Monolayers (SAM’s) 

The gold on glass substrates were flame annealed, cleaned in an ozone discharge 

for 15 minutes, and sonicated in ethanol for 20 minutes immediately before use. The 



© 2005 Nature Publishing Group 

 

                 Berná et al Macroscopic transport by synthetic molecular machines   
 

11

mica on gold substrates were flame annealed immediately before use. Carboxylic acid-

terminated SAMs were prepared by immersing the gold substrates in 1 mM chloroform 

solution of 11-MUA and kept in a dark place at room temperature for 21 h. The F-

terminated SAMs were prepared by immersing the gold substrates in a 1 mM ethanol 

solution of heptadecafluorodecanethiol and kept in a dark place at room temperature for 

21 h. The samples were rinsed three times with the solvent and dried under argon before 

contact angle measurements.   

The properties of the 11-MUA SAMs on Au(111) have been described 

elsewhere2,3. Briefly, the 11-MUA forms well ordered carboxylic acid-terminated 

monolayers on gold substrates. The water used in the droplet experiments was doubly 

distilled and demineralized (Milli-Q, 18.0 MΩ). The contact angle of the water drop 

obtained for the 11-MUA SAM without a physisorbed rotaxane, 30s after drop 

deposition was 5 ± 2°, and during the following minute the drop wetted the surface 

completely, as expected for a hydrophilic surface3,4.  

The procedures of grafting rotaxanes containing a pyridine function in the 

macrocyclic component on carboxylic-terminated SAMs have been described in earlier 

papers3,5,6. Briefly, the rotaxanes E-1 and E-S4 are physisorbed on the acid-terminated 

surface by hydrogen bonding between the pyridine group of the macrocycle and the 

carboxylic acid of the 11-MUA SAM.  

The contact angle of the water drop on E-1 and E-S4 grafted on 11-MUA 

measured 30 seconds after deposition were 55 ± 2° and 45 ± 2° for E-1 and E-S4, 

respectively. The contact angle of water drop deposited on the 

heptadecafluorodecanethiol SAM was 98 ± 2°, as expected for a highly hydrophobic 

surfaces1,7.  
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 The hysteresis (cos θa-cos θr) of diiodomethane (viscosity η = 2.76 mPa) 

obtained from dynamically advancing and receding contact lines on the gradient surface 

of these experiments is smaller (0.004) than the theoretical value (0.22) calculated using 

the equation proposed by Daniel et al. (Daniel, S. & Chaudhury, M. K., Rectified 

Motion of Liquid Drops on Gradient Surfaces Induced by Vibration. Langmuir 18, 

3404-3407 (2002); Daniel, S., Sircar, S., Gliem, J. & Chaudhury, M. K., Ratcheting 

Motion of Liquid Drops on Gradient Surfaces, Langmuir 20, 4085-4092 (2004)) Similar 

discrepancies have previously been observed for viscous liquids such as ethylene glycol 

(η = 2.65 mPa), where the viscous bending of the drop near the contact lines is 

sufficient to interfere with the measurement of true hysteresis. 

 
 
III.  XPS Measurements 

 The XPS measurements were performed using an X-PROBE Surface Science 

Laboratories photoelectron spectrometer with a monochromatic Al Kα X-ray source 

(hν=1486.6 eV). The energy resolution was set to 1.5 eV to minimize data acquisition 

time and the photoelectron take off angle was 37°. The binding energies were 

referenced to the Au 4f7/2 core level8. The base pressure in the spectrometer was 1x10-10 

Torr. A minimum number of scans were accumulated to minimize any possible X-ray 

induced damage9-12. 

 Spectral analysis included a background subtraction and peak separation using 

mixed Gaussian-Lorentzian functions in a least squares curve-fitting program (Winspec) 

developed in the LISE laboratory of the Facultés Universitaires Notre-Dame de la Paix, 

Namur, Belgium. The procedure consisted in fitting a minimum number of peaks that 

can reproduce the spectral raw data and are consistent with the molecular structure of 

the film, with the simplification of assuming equivalent atoms for chemical 
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environments of the same element that give very similar values of the binding energy. 

The photoemission peak areas of each element were normalized by the sensitivity 

factors of each element tabulated for the spectrometer used in these measurements8. 

 

Figure S1. 

 

Figure S1 shows the carbon 1s core level photoemission spectra for 11-MUA 

self-assembled monolayer on Au substrate (bottom panel) and for the same monolayer 

functionalized with E-1 (top panel). No chlorine was detected in the photoemission 

spectra (not shown), hence we can exclude incorporation of solvent molecules (CH2Cl2 

or CHCl3) into these films and assume that the C signals are due solely to the E-1 and 

SAM molecules. In the case of the 11-MUA SAM (bottom panel) we need a minimum 

of three components to reproduce the experimental lineshape: one at 284.6 eV, 

corresponding to aliphatic carbon, a second one at 285.4 eV originating from thiol 

carbon and β-carbon of the carboxylic group, and a third one at 289.0 eV, deriving from 

carboxylic carbon. These results are in good agreement with previous reports13,14. From 
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the spectral analysis of E-1 grafted on the 11-MUA SAM (top panel), six main 

components can be distinguished. Although there are more than six distinct carbon 

environments in this film, in practice XPS can not distinguish between all the different 

phenyl-ring and aliphatic carbons. It is immediately apparent that there are several 

differences between this spectrum and the one of 11-MUA SAM alone. The first peak at 

284.5 eV, accompanied by the shake-up feature due to π-π* transitions (290.5 eV), is 

unambiguously assigned to aromatic carbon, and confirms the presence of E-1. The 

peak at 285.4 eV originates from different contributions, namely, from carbon atoms of 

the aliphatic chains both on E-1 and on 11-MUA SAM, and from aromatic carbon 

atoms bound to electronegative groups. This explains why its intensity is important also 

after functionalization by rotaxanes. The component at 286.3 eV is due to aliphatic 

carbon atoms bound to electronegative carboxylic and amide groups. Peaks 

characteristic of amide and carboxylic carbons are observed at 287.9 eV and 289.3 eV15-

17. The signal of carbons bond to fluorine is too weak to be seen in the photoemission 

line. 

 The clearest evidence that E-1 is successfully grafted on the surface comes from 

the nitrogen 1s and fluorine 1s core levels. Figure S2 shows the nitrogen 1s 

photoemission spectrum, where the single peak at 400.4 eV corresponds to amide 

nitrogen13-15. Figure 3 presents the F 1s photoemission line, with a maximum at 688.6 

eV8. 
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Figure S2 

 

Figure S3 
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