Supplementary information

In vivo imaging of hydrogen peroxide with chemiluminescent nanoparticles

Figure 1S. Chemical structure of fluorescent dyes used in peroxalate nanoparticles

Table 1S. Properties of peroxalate polymers

Comment on Table 1S.

Peroxalate polymers 2, 3, 4 and 5 were synthesized according to the procedure developed for the synthesis of polymer 1, their chemical structures are shown in Table 1S. Polymers 2, 3, 4, 5 were formulated with rubrene and the their chemiluminescence intensity was evaluated in the presence of hydrogen peroxide. Nanoparticles formulated from polymers 2, 3, and 4 had a low chemiluminescence intensity in the presence of hydrogen peroxide. Therefore, polymer 1 was chosen for the imaging experiments.

Figure 2S. Characterization of polymer 1. (a) ¹**H-NMR-spectrum, (b) GPC chromatogram, (c) FT-IR spectrum.** The H-NMR spectrum of polymer **1** was measured on a 500MHz spectrometer (Bruker) using deuterated chloroform as the solvent. GPC was measured with a Shimadzu SCL-10A using polystyrene standards. The prominent bands at 1200 and 1750 cm⁻¹, on the FT-IR spectrum, correspond to the C-O and C=O stretches of the peroxalate ester, respectively. The C-H stretch appears at 2900 cm⁻¹.

Figure 3S. Dynamic light scattering of rubrene-encapsulated peroxalate nanoparticles. DLS samples were measured at a concentration of 0.25mg/mL in pH 7.4 PBS buffer with a Brookhaven 90Plus particle sizer.

Figure 5S. Kinetics of chemiluminescence from peroxalate nanoparticles containing rubrene in the presence of 10 μ M of hydrogen peroxide.