
Sparsity-based single-shot sub-wavelength
coherent diffractive imaging

1 Experiment description

In our microscope, a laser beam at λ = 532 nm was launched onto the
specimen using a NA=0.8 (40×) water immersion microscope objective. The
transmitted light was collected using a NA=1.0 (60×) water immersion mi-
croscope objective and projected on a camera using a single optical lens. A
schematic representation of the experimental setup is shown in Figure 1.

In order to observe both real plane and Fourier plane of the specimen,
the image was taken at two different camera positions. We recall that the
Fourier plane intensity was used for actual reconstruction, while the real
plane intensity was used only for rough support estimation.

The specimen mask, whose transmission function corresponds to the op-
tical information superimposed on the laser beam, is fabricated as follows: as
substrate material we chose fused silica, because it is a high quality transpar-
ent material at optical frequencies, and because its processing technology is
well developed. In order to to create a mask containing the optical image, we
deposit opaque material on the substrate and make several patterned holes
in it, such that the holes pass the light while the opaque material blocks
it. For this purpose, we sputter a chromium layer onto the surface of the
substrate. Chromium is a metal, which absorbs light at optical frequencies.
Nevertheless, the thickness of the chromium layer has to be larger than the
skin depth at optical frequencies, to avoid undesired transmission through
that layer. Thus we select a thickness of 100 nm as suitable compromise
between high quality optical behavior and fabrication considerations. The
structures in the chromium layer are nano-holes, drilled in the chromium by a
beam of focused gallium ions from a liquid metal ion source [1, 2] (Zeiss Neon
60). With this technology, it is feasible to mill the desired structures into the
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Figure 1: Schematic representation of the experimental setup.

chromium layer directly and efficiently, without any additional lithography
process. Utilizing a convenient set of parameters, it is possible to imprint
the designed structures into the metal layer, without significantly affecting
the substrate material, and with high spatial accuracy. We fabricated two
different samples yielding a two-dimensional sub-wavelength optical struc-
ture: (a) a Star of David (SOD) image, consisting of 30 holes, with 100 nm
diameter each, spaced by 100 nm; and (b) a “random” image comprised of 12
circular holes of 100 nm diameter each, placed in a random order on a grid,
as defined by (1). The Scanning Electronic Microscope (SEM) images of the
samples are shown in Figure 2. Note that the SEM images are not in propor-
tion as, in reality, the holes are of the same size and their diameter is equal
to the spacing between holes. Generally, we use this approach throughout
the paper: all images are shown in some abstract units that are, however,
proportional to the corresponding physical quantities. The correspondence
can be established using the fact that all holes are of diameter 100 nm.
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(a)

(b)

Figure 2: SEM images of the samples: (a) Star of David, (b) “random”.
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2 CDI sparsity-based reconstruction

Under the experimental conditions described in the previous section, our
problem amounts to reconstruction of a signal from the magnitude of its
Fourier transform, assuming furthermore that this information is known only
over a small interval of low frequencies as shown in Figure 3. The discussion
below is general and applies to both examples given in the paper (and, of
course, to a very large class of optical images). However, in order to make
the explanation more succinct, we demonstrate most of the results on the
“random” image, because it has no implicit symmetries.
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Figure 3: Fourier domain magnitude of the “random” image: (a) the full
spectrum (simulated, without noise) needed to reconstruct the image pre-
cisely (by a simple application of the inverse Fourier transform), (b) the
low-frequency part (actual measurements, in the presence of experimental
noise).

Of course, when the majority of the frequencies are lost, precise recon-
struction is not possible, unless we have, or may assume, some additional
information about the sought signal. In fact, the problem is even more diffi-
cult as the measurements contain noise. In a manner similar to [3], we assume
that the EM field in the object domain (u, v) can be represented precisely,
or approximated adequately (hereinafter, this relation is denoted by �) by
means of a known generating function g(u, v). That is

E(u, v) �
∑
m

∑
n

xmng(u−m∆u, v − n∆v) , (1)
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where xmm are unknown signal coefficients in the basis defined by the shifted
versions of g(u, v). Note that the set {(m∆u, n∆v)} defines a rectangular grid
where the shifted versions of the generating function are located. Hence, for
example, by choosing g(u, v) to be the Dirac delta function we can obtain
the sampled version of the continuous EM field distribution, where ∆u, and
∆v define the sampling interval. As another classical example: all bandwidth
limited signals can be represented precisely in this form where g is chosen to
be the jinc(ρ) function. For more examples see [4] and references therein. Of
course, the generator must be chosen in a way that corresponds to the signal
in question (although, in the most general case of 2D information, the gen-
erator could simply be rectangular pixels). In this section and in Section 3,
where we compare our algorithm with other methods, we assume that the
basis function is chosen in a way that allows a perfect reconstruction of the
sought signal, namely g represents a circle of a priori known diameter (100
nm). We assume also that ∆u = ∆v = 100nm. That is, we assume that
the sought signal is comprised of non-overlapping circles of known diame-
ter. The grid {(m∆u, n∆v)} containing all possible locations (144) is shown
in Figure 4. Note that the exact placement of the grid is unimportant as
our measurements are insensitive to shifts. A more detailed explanation of
this property is presented in Section 4, where we discuss the implications
of the grid assumption along with the impact of the basis function on the
reconstructed signal.

Before proceeding on, there are two points we would like to stress. First,
the assumption of an underlying grid is natural in many situations arising
in digital signal processing. A prominent example are digital images that
are comprised of pixels located on a rectangular grid. Just like in digital
images, the grid in our case defines the resolution of a digitized version of
the sought signal (see Section 4 for details). Second, it is important to note
that all our comparisons with other methods are done under exactly the
same assumptions, including a grid, basis functions, etc. As is evident from
the experiments presented in Section 3, our algorithm outperforms other
methods.
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Figure 4: The full grid.

We emphasize that even if the correct number of circles were known (12
circles, in this example) there would be

(
144
12

)
> 1017 possible variants to

choose from for the signal support. To limit the search space, we use the
blurred version of the signal as shown in Figure 5.
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Figure 5: Support restriction by the low-resolution image: (a) blurred image
magnitude, (b) grid restricted by the blurred image.

However, even after this restriction, there still remain
(
37
12

)
> 1.85 × 109

variants. More importantly, even after this restriction, the image cannot be
reconstructed precisely unless additional information is available (see Sec-
tion 3). Below we present our method that provides excellent reconstruction
results based on the knowledge that the total number of circles in the image
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is small, that is, the image is sparse in the basis associated with the circles,
as defined by (1).

In our method, we reconstruct the support and the magnitude of the cir-
cles in the sought signal, simultaneously. To this end, we seek the sparsest x
(x being a column vector comprised of the image coefficients xmn as defined
by (1)), that yields a good agreement with the measurements. Mathemati-
cally, we try to solve the following optimization problem

min ‖x‖0
subject to ‖|LFCx| − r‖22 ≤ ε ,

x ≥ 0 .

(2)

Here ‖ · ‖0 denotes the l0 norm: ‖x‖0 =
∑

i |xi|0, that is, ‖x‖0 equals the
number of elements of x that are not zero. The measured (noisy) magni-
tude in the Fourier domain is denoted by r. Note that the operators and
inequalities, like | · |, and ≥ are applied element-wise. The matrix C rep-
resents all possible shifts of the generator function (a circle) so that Cx is
the actual image that we reconstruct, F stands for the Fourier transform
operator, and L represents the low-pass filter. That is, L is obtained from
the identity matrix of appropriate size by removing most of its rows while
keeping only those that correspond to the low frequencies of its operand, as
shown in Figure 3. Physically, L is the low-pass filter associated with the
cutoff spatial frequency of the optical system, which, for microscopes with
NA=1, corresponds to the diffraction limit. Note that, due to errors in the
measurements, the discrepancy in the Fourier domain is allowed to be up
to some small value ε (> 0). A short discussion about the precise value of
ε and whether it must be known a priori will follow. The last requirement
x ≥ 0 is valid because the optical information is generated by illuminating
the sample with a plane wave, that is, a plane of equal amplitude and phase.
Hence, the phase is the same across the whole image. Therefore, without
loss of generality, we may assume that the phase is zero everywhere, since
the absolute phase is unimportant. We do not assume that all circles have
the same magnitude.

To solve (2) we developed an iterative method whose basic iteration con-
tains the following two steps:

Step 1: Solve the minimization problem:

min ‖|LFCx| − r‖22
subject to x ≥ 0 .

(3)
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In practice, we use an unconstrained formulation whose solution is ap-
proximated by the L-BFGS method [5] (note that the problem is not
convex and therefore its exact solution cannot in general be found).

Step 2: After a solution x to Step 1 is found, set to zero the entry of x with
minimal value. Once set to zero the entry remains so forever.

A schematic representation of our method is given in Figure 6 below.

Fit to the available Fourier data
by solving the minimization problem

in Equation (3)

Sparsify 

decrease  
by removing the weakest entry

support patterndictates

Initial (dense) guess

;

Output: 

Figure 6: Flowchart diagram of our reconstruction method.

In theory, the iterations should be repeated so long as the constraint
‖|LFCx|−r‖2 ≤ ε is satisfied. It is often argued that the value of ε is known
a priori or can be estimated from physical constraints (in the case of the
“random” image, the difference between the measured Fourier magnitude r
and its ideal variant r∗ is ‖r− r∗‖2 = 1.7434, which corresponds to a signal-
to-noise ratio of ‖r∗‖/‖r − r∗‖ = 1/0.041). However, it is an important
question whether the best value of ‖x‖0 (the true number of circles in the
image) can be determined automatically. Consider the different stages of our
method as shown in Figure 7. Is there any way to recognize that the correct
number of circles is 12 without knowing ε? It turns out that the answer to
the above question is affirmative in many cases. As is evident from Figure 8,
there is often a big jump in the objective function value when the number of
circles dips below the correct value of 12. Hence, even without knowing the
noise bound ε one can easily identify that the smallest number of circles that
“explains” well the measurements is 12 (this is, of course, correct as long as
the circles have large enough amplitude). The result of our reconstruction
and the true image are shown in Figure 9. Note that some circles have low
magnitude so they are invisible in the color images. We therefore, place the
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’+’ sign at the center of all circles in the image (x’s entries that are not
zeros).

 

 

50 100 150 200 250

50

100

150

200

250 0

0.5

1

1.5

2

2.5

3

3.5

4

(a)

 

 

50 100 150 200 250

50

100

150

200

250 0

0.5

1

1.5

2

2.5

3

3.5

4

(b)

 

 

50 100 150 200 250

50

100

150

200

250 0

0.5

1

1.5

2

2.5

3

3.5

4

(c)

 

 

50 100 150 200 250

50

100

150

200

250 0

0.5

1

1.5

2

2.5

3

3.5

4

(d)

 

 

50 100 150 200 250

50

100

150

200

250 0

0.5

1

1.5

2

2.5

3

3.5

4

(e)

 

 

50 100 150 200 250

50

100

150

200

250 0

0.5

1

1.5

2

2.5

3

3.5

4

(f)

 

 

50 100 150 200 250

50

100

150

200

250 0

0.5

1

1.5

2

2.5

3

3.5

4

(g)

 

 

50 100 150 200 250

50

100

150

200

250 0

0.5

1

1.5

2

2.5

3

3.5

4

(h)

 

 

50 100 150 200 250

50

100

150

200

250 0

0.5

1

1.5

2

2.5

3

3.5

4

(i)

Figure 7: Reconstruction stages for the example of the “random” image.
Each stage (iteration) corresponds to a certain number of circles (non-zero
entries in x): (a) 37 circles, (b) 36, (c) 35, (d) 13, (e) 12, (f) 11, (g) 9, (h) 8,
(i) 7.
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Figure 8: “Random” image: objective function value (Fourier domain dis-
crepancy) versus the number of circles in the solution—a sharp jump occurs
when the number of circles dips below the correct value of 12.
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Figure 9: Reconstruction result for the “random” image (a), and the true
(original) image (b).
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Very similar behavior is observed for the second image (SOD) whose
results are shown in Figures 10 and 11.
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Figure 10: SOD image: objective function value (Fourier domain discrepan-
cy) versus the number of circles in the solution—a sharp jump occurs when
the number of circles dips below the correct value of 30.

11

NATURE MATERIALS | www.nature.com/naturematerials	 11

SUPPLEMENTARY INFORMATIONDOI: 10.1038/NMAT3289

© 2012 Macmillan Publishers Limited.  All rights reserved. 

 

http://www.nature.com/doifinder/10.1038/nmat3289


 

 

50 100 150

20

40

60

80

100

120

140

160

180

200

0

0.5

1

1.5

2

(a)

 

 

50 100 150

20

40

60

80

100

120

140

160

180

200

0

0.5

1

1.5

2

(b)

Figure 11: Reconstruction result for the SOD image (a), and the true (orig-
inal) image (b).

In Section 4 we demonstrate that choosing an “incorrect” basis function,
even one whose shape does not allow perfect representation of the sought
signal, results, nevertheless, in a reasonable reconstruction. Furthermore, we
also demonstrate that the grid’s cell size can be determined automatically.

3 Comparison with other methods

We would like to stress again that our algorithm is successful because we
exploit the sparsity of the sought signal. To demonstrate this, we present
a comparison with some classical reconstruction methods, and discuss the
relation between our setup and classical compressed sensing.

3.1 Without a regularization

Our sparsity-based technique minimizes the l0 norm subject to additional
constraints. This formulation resembles closely a regularization imposed on
x. Hence, the most naive approach would be to abandon the regulariza-
tion altogether and to try to find x that minimizes the discrepancy in the
measurements. That is, we might attempt to solve the following problem:

min ‖|LFCx| − r‖22
subject to x ≥ 0 .

(4)

12

12	 NATURE MATERIALS | www.nature.com/naturematerials

SUPPLEMENTARY INFORMATION DOI: 10.1038/NMAT3289

© 2012 Macmillan Publishers Limited.  All rights reserved. 

 

http://www.nature.com/doifinder/10.1038/nmat3289


Note that this is exactly the problem we solve in the first iteration of our
method. However, using this approach as the full reconstruction process has
a number of drawbacks. First, the problem of image reconstruction from the
magnitude of its Fourier transform (also called phase retrieval) is known to
be particularly tough for continuous optimization techniques (for explanation
and further details see [6]). To the best of our knowledge, the most widely
used method for phase retrieval without additional information is the Hybrid
Input-Output algorithm [7]. A more detailed investigation of this method
will follow in Section 3.3.2. Here, we present the results obtained by our
optimization routine. As mentioned earlier, this formulation is equivalent
to performing only one iteration of our method. Hence, the result is as
shown in Figure 12. Note that the reconstruction contains many superfluous
circles, and even if the correct number of the circles were known, a simple
thresholding would yield an incorrect reconstruction.
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Figure 12: Reconstruction without regularization on x: (a) “random” image,
(b) SOD image.

3.2 Replacing l0 with another norm

Using l2 regularization has long been a favorite among engineers due to its
simplicity and the ability to obtain closed-form solutions in linear cases. In
the non-linear case, these benefits are lost, of course. However, for us it is
more important that the l2 norm does not promote sparsity (actually, some
papers claim that it usually results in the most dense solution possible [8]).
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To demonstrate that this regularization is not suitable for bandwidth
extrapolation of sparse signals, we solved the following problem

min ‖x‖2
subject to ‖|LFCx| − r‖22 ≤ ε ,

x ≥ 0 .

(5)

The problem was solved by transforming it into an unconstrained optimiza-
tion problem and choosing the weights of the penalty function terms so as
to get the discrepancy in the measurements close to the true values. That is,
assuming that the true ε is known (ε = 1.74 in the case of “random” image,
and ε = 0.0329 in the case of SOD image). To solve (5) we used exactly the
same routine (L-BFGS) as in our main algorithm. The results are shown in
Figure 13.
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Figure 13: Reconstruction using l2 regularization: (a) “random” image, and
(b) SOD image.

It is obvious that the reconstruction quality is poor. Moreover, even if
the correct number of circles were known, a simple thresholding would still
produce an incorrect result.

Another viable alternative would be using the l1 norm. A discussion on
this norm is postponed to Section 3.4.

3.3 Methods based on alternating projections

A popular approach for phase recovery [9, 7] and bandwidth extrapolation
[10, 11] is based on on a simple and elegant idea of alternating projections.
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The current signal estimate is transformed back and forth between the ob-
ject and the Fourier domains. In each domain, all available information is
used to form the next estimate. Here we consider two major methods of
this type: Gerschberg type method (often referred to as Gerschberg-Saxton
or Gerschberg-Papoulis) and Fienup’s Hybrid Input-Output method. The
former is a classical method of alternating projections where all available
information in the current domain is imposed upon the current estimate. In
the latter approach the object domain information is not directly imposed
on the current estimate; instead a more complex update rule is used as we
explain later.

3.3.1 Gerschberg type methods

As mentioned before, Gerschberg type methods are “pure” projection tech-
niques. The idea is to transform the current signal estimate back and forth
between the signal and the Fourier domain performing a “projection” in each
of the domains, that is, replacing the current estimate xcur with the nearest
one that satisfies the constraints in the relevant domain (xnew). Hence, in
each domain the following optimization problem is solved

min
xnew

‖xcur − xnew‖22

subject to xnew ∈ S ,
(6)

where S denotes the set of all admissible signals in the current domain. In
our case the estimate is first Fourier transformed. Then its (wrong) magni-
tude is replaced with the measured (correct) magnitude in the low-frequency
regime. The resulting signal is back-transformed into the object domain (the
result denoted by x′) where it is converted into an image comprised of circles
(denoted by xnew) in the following manner. Recall that the image model is
of the following form E = Cx. Hence to find a projection we must solve the
following problem

min
xnew

‖Cxnew − x′‖22 ,

subject to xnew ≥ 0 .
(7)

This problem is convex and therefore can be solved efficiently. In practice
however, we used a two-step approximation instead of a full solution.
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Step 1 Solve minxnew ‖Cxnew − x′‖22. Note that this problem has a closed
form solution: xnew = C†x′, where C† denotes the Moore-Penrose
pseudo-inverse of C.

Step 2 Set all entries of xnew that are negative to zero.

In general, this is not a true projection. However, it is a projection, if the
vector xnew obtained after the first step is non-negative. This is indeed
the case we observe in all our experiments. The results obtained after 5000
iterations of this method are shown in Figure 14. Usually, the correspondence
between these and the true image falls considerably behind our sparsity-based
reconstruction method.
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Figure 14: Gerschberg type method: results of reconstruction (a) “random”
image, (b) SOD image.

From the results above, it is evident that the reconstruction is poor and
even if the correct number of circles were known a simple thresholding would
still result in incorrect images.

3.3.2 Fienup’s Hybrid Input-Output method

The Hybrid Input-Output method was developed by Fienup for the phase
retrieval problem [7]. Although based on alternating projections, HIO does
not enforce the object domain constraints, that is, the image is allowed to
be non-zero in the off-support areas and the values may be negative. To
the best of our knowledge, HIO is the most successful numerical method for
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signal reconstruction from the magnitude of its Fourier transform. However,
this algorithm only achieves good results when all or most of the Fourier
spectrum is available. Judging by the result shown below, the method is not
suitable for the situation where the Fourier magnitude is available only for a
small fraction of the frequencies.

In our tests we applied the method in its original form, using only the
Fourier domain magnitude and support information in the object domain
(along with non-negativity). We did not try to enforce a constant value
across every circle or zero values in the off-support areas, as the original
method does not do that. As a post-processing step, the result returned
by HIO was zeroed in the off-support areas (shown in Figures 15a and 16a)
and then the values across each circle were averaged (shown in Figures 15b
and 16b). As is evident from the results, the method is not capable of correct
reconstruction of the signals. They cannot be recovered even if the correct
number of circles is known: a simple thresholding will result in an incorrect
reconstruction.
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Figure 15: Fienup’s HIO method: “random” image results of reconstruction:
(a) as produced by the method, (b) after enforcing a constant value across
every circle.
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Figure 16: Fienup’s HIO method: SOD image results of reconstruction: (a)
as produced by the method, (b) after enforcing a constant value across every
circle.

3.4 Relation to compressed sensing

Compressed sensing (CS) is an emerging field in image processing that per-
forms signal reconstruction from a small number of its projections [12, 13, 14].
Conceptually, CS techniques and the corresponding mathematical theory are
based heavily upon the sparsity of the sought signals. In its classical form,
CS deals with measurements that are linear with respect to the unknown
signal and generally assume random (or random-like) sampling distributed
throughout the measurement domain. By contrast, in our current case of
sub-wavelength CDI the measurements are: (1) nonlinear with respect to the
sought signal, (2) taken only in a small (low-frequency) region of the mea-
surement domain, where (3) they are taken in a periodic fashion (dictated by
the pixels’ arrangement of a digital camera sensor). Still, our reconstruction
method relies on sparsity. As such, conceptually, our approach can still be
viewed as CS in a broader sense.

Clearly, for the reasons stated above, many theoretical results and recon-
struction methods of classical CS are not applicable to our problem. For
example, the Matching Pursuit (MP) method [15] cannot be applied in its
original form. Another popular method Basis Pursuit (BP) [8], could, in
principle, be applied here (considering BP as a general approach based on
replacing the l0 with the l1 norm, rather than a specific algorithm). How-
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ever,in contrast to the linear case, in our nonlinear problem—using the l1
norm still does not lead to a convex problem.

Besides the standard CS methodsit is instructive to consider other sparsity-
based approaches which are related to CS, in the broader sense. One of these
is based on division of the reconstruction process into two stages: at the first
stage the missing Fourier phase is reconstructed using Fienups HIO algorithm
(or Gerchberg-type method); at the second stage this phase is combined with
the measured Fourier magnitude to form complete measurements that are
linear with respect to the unknown signal. Once these linear measurements
are available, one can use methods from classical CS (like, for example, BP)
or our previously proposed method NLHT [3], which is aimed at recover-
ing data from linear low-pass measurements. We find, however, that this
approach does not produce high quality results. This failure is, probably,
attributed to inability of the projection-based methods to reconstruct the
phase precisely, as shown in Figure 17 below.
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Figure 17: Fourier phase of the “random” image: (a) the true phase, (b) the
phase obtained after 5000 iterations of HIO.

Recently, several works have considered CS with quadratic nonlinear mea-
surements [16, 17]. In both papers the resulting nonlinear constraints are
relaxed to semidefinite constraints using matrix lifting and an appropriate
sparsity promoting objective is used. The work of [17] considers phase re-
trieval assuming the availability of several diffraction patterns obtained from
multiple structured illuminations, which is not relevant to our problem. In
contrast, the scenario considered in [16] is much closer to our current case.
Namely, simultaneous phase retrieval and bandwidth extrapolation from a
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single-shot power-spectrum measurement. In fact, our present problem can
be viewed as a special case of that addressed in [16]. However, the algorithm
suggested in [16] is targeting a more general problem, and hence its compu-
tational complexity is high. With this reasoning in mind, we devised the new
sparsity-based approach and algorithm described in this Section 2, which is
tailored for the specific problem of sub-wavelength CDI.

4 Automatic grid determination, and the (un)-

importance of the basis function

In this section we would like to discuss the implications of our assumption
regarding the existence of a grid that, in fact, defines a discrete set of al-
lowed locations where the chosen basis function can be placed. In many
cases, especially when the optical information represents experimental data,
introducing such a grid is highly justified. For example, a digital image is
obtained from a continuous intensity distribution by sampling it with a sen-
sor that physically is an array of square pixels arranged in rows and columns.
Hence, naturally, the gird is rectangular and the basis functions are squares
whose size is equal to the grid’s cell size. Likewise, our reconstruction pro-
vides a digitized version of the true signal as if it were performed by a sensor
whose pixels’ shape corresponds to the chosen basis function (circular in our
experiments above). Hence, the grid used in our reconstruction algorithm es-
sentially defines the resolution of the reconstructed image. This is especially
true when the spatial extent of the basis function is smaller than (or equal
to) the grid’s cell size. An example of such a sensor with circular pixels is
shown in Figure 18.

However, there is an important dissimilarity between our case and the
regular sampling in the object domain. Since our measurements contain
only the Fourier magnitude and no information is available about the phase,
we cannot distinguish between all the shifted versions of the original signal.
Namely, if E(u, v) represents the original signal, our best hope is to recon-
struct a shifted version of it, that is, E(u − ∆u, v − ∆v) for some ∆u, and
∆v. Which version (shift) of the original signal is reconstructed depends,
of course, on the reconstruction method. Because our approach seeks the
sparsest solution, we obtain the digitization that corresponds to the perfect
alignment shown in Figure 18a and not the “misaligned” version shown in
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Figure 18b. In the latter case each circle in the original image “switches on”
two pixels in the sensor, in contrast to one pixel per circle in the aligned
case. Hence, one does not need to manually align the grid with respect to
the sought signal as the best alignment is typically obtained automatically
with our reconstruction method. The only remaining concern regarding the
grid alignment is related to the placement of the blurred image that we use
for loose support estimation. Fortunately, the solution to this problem is
easy: the blurred image must be placed in a way that guarantees maximal
grid coverage, that is, we shall keep as many allowed locations as possible.
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(a)

(b)

Figure 18: The sought signal (red) imposed on a sensor with circular pixels
(blue). Note that in this case the best alignment (a) is automatically obtained
as it results is a sparser reconstruction than a bad alignment (b).
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4.1 The impact of the basis function

Let us now consider the situations where the basis function is chosen in a way
that does not allow perfect reconstruction even without noise. Specifically,
we consider basis functions in a shape of a square and a triangle, as shown
in Figure 19.
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(a)

(b)

Figure 19: Basis functions that do not allow perfect reconstruction: triangles
(a), and squares (b).

As is evident from Figure 20, the reconstruction in these cases matches our
expectations: we obtain the correct “digitized” version of the sought signal
that corresponds to the chosen basis function and the grid. We emphasize the
fact that all experiments are done with the same actual data that contains
noise (see page 8).
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Figure 20: Reconstruction in the case of basis functions that do not match
the sought signal.

Moreover, if we consider the progress of the reconstruction process (see
Figure 21) we observe that even an incorrect choice of the basis function
has no adverse effect on the reconstruction. This fact has a simple expla-
nation: the difference between a circle and a square (or a triangle) of size
100nm is much smaller than 100nm. Hence, being able to distinguish be-
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tween these shapes would mean effective resolution that is much better than
100nm. Thus, we conclude that the shape of the basis function is not of
great importance so long as its size matches the size of a typical feature in
the sought signal. In what follows, we evaluate the possibility to discover the
most appropriate grid pitch (basis function size) automatically, without any
prior information.
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Figure 21: Reconstruction of the “random” image using different basis func-
tions: objective function value (Fourier domain discrepancy) versus the num-
ber of circles/squares/triangles in the solution. Marker shape corresponds to
the basis function shape.

4.2 A method for automatic grid determination

So far, we have seen that the shape of the basis function has no severe
impact on the reconstruction process. Moreover, the best possible alignment
is obtained automatically due to our requirement of maximal sparsity. These
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two properties can be used for automatic determination of the optimal grid
pitch. To this end we ran a series of experiments with different grids whose
pitch varies from 10 to 32 pixels (corresponds to the range of 48–152nm)
using the square basis function of the size that matches the grid cell. As was
mentioned earlier, the results of Section 4.1 show that the particular choice of
the basis function is not very important. Hence, we could choose any shape
of the size equal to the grid pitch. The choice of the square basis function
was stipulated by the fact that most digital images are comprised of square
pixels. Hence, this basis function will, probably, be the first choice in the
situation where nothing is known about the sought signal.

For each grid pitch we ran a few iterations of our method keeping the
lowest discrepancy in the Fourier space as a numerical value that corresponds
to the current grid pitch. There is no need to solve the problem completely,
as our goal here is to see whether the sought signal can be represented well
by the current grid. We expect that fine grids (small pitch) will allow good
representations so long as the grid’s pitch is smaller than or equal to the
size of a typical feature in the signal. However, once the grid becomes too
coarse, we expect a rapid growth of the objective function value. Hence, we
expect the graph to have the distinctive “ L ”-shape, similar to the graphs in
Figures 21, 10, and 8. As is evident from Figure 22, our expectations are
confirmed by the experimental results.
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Figure 22: Objective function value (Fourier domain discrepancy) versus
grid’s pitch size.

Note that the first sharp jump in the objective function value happens
during the transition from 21 pixels (the correct value) to 22 pixels. However,
it may be argued that the transition is not sufficiently apparent and the true
value may lie in some small interval around 21 pixels. Hence, we evaluate the
behavior of our reconstruction method for a grid pitch lying in the interval
of 18–24 pixels. As is evident from Figure 23, only the correct value of 21
pixels results in a clear and sharp jump after we dip below the correct value
of squares (12). This property can be used for pinpointing the correct pitch
size. Hence, an automatic subroutine for pitch determination is comprised of
two steps: first, run a few iterations of our reconstruction method to obtain
quantitative results indicating how well different gird sizes can represent the
sought image; second, run a full reconstruction procedure for a limited range
of pitches near the elbow in Figure 22 and check what pitch results in a clear
evidence of existence of the sparsest solution (as in Figure 23).

Note that the obtained grid cell size is optimal in the sense that it satisfies

28

28	 NATURE MATERIALS | www.nature.com/naturematerials

SUPPLEMENTARY INFORMATION DOI: 10.1038/NMAT3289

© 2012 Macmillan Publishers Limited.  All rights reserved. 

 

http://www.nature.com/doifinder/10.1038/nmat3289


two important properties simultaneously: first, it allows good approximation
of the sought signal; second, it leads to a highly evident sparse solution.

The suggested method is also based on the sparsity assumption: it works
well when there are a few features in the sought signal that are of approxi-
mately the same size. This situation arises in many physical setups. However,
we currently are working on extending the algorithm to the cases where the
signal features may be of varying sizes.
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Figure 23: Objective function behavior versus the grid’s pitch size (in pixels):
(a) 21—the correct value, (b) 20, (d) 19, (f) 18, (c) 22, (e) 23, (g) 24.
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5 Concluding remarks

We presented a simple greedy algorithm for bandwidth extrapolation of
sparse signals. The method was demonstrated on two noisy measurements
producing excellent reconstruction quality with resolution several times higher
than the best possible theoretical value. The crucial role of sparsity was
demonstrated by comparison with other algorithms that do not use this
structural information. In addition, we presented an approach for automatic
determination of alignment and grid size (resolution) that is also based on
sparsity ideas. We certainly anticipate that sparsity-based techniques will be
developed further in the near future, and will yield even better results.

We conclude by noting that our method here was designed for the spe-
cific problem of sub-wavelength CDI. However, conceptually, our approach
is directly relevant to a broad class of problems where a sparse signal is to
be reconstructed from a small number of nonlinear measurements. Examples
range from super-resolution spectroscopy—where absolute-value (intensity)
measurements are taken within a small temporal window, to the related
problem of recovering the shape of ultrashort pulses with a detector of a
smaller bandwidth. The underlying concept presented here is based on ex-
ploiting sparsity—which is intimately related to minimizing the number of
degrees of freedom while recovering the sought signal. We expect that the
next few years will witness a variety of related ideas in many areas of science,
improving the resolution of many measurement devices and systems.
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