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I. ROTATION RATE AS A FUNCTION OF THE ELECTRON-BEAM INTEN-

SITY

Irradiation density (A/cm2)
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FIG. S1: Rotation rate as a function of irradiation density of the electron beam. The rotation

occurs only above a critical irradiation density and its speed increases monotonically, indicating

that the observed chiral rotation is a nonequilibrium phenomenon. The red line is a guide for the

eyes.

We have studied dependence of rotation rate on irradiation density of the electron beam.

Figure S1 shows that the rotation rate increases with increasing irradiation density above a

threshold value. These measurements have been performed at a relatively low temperature,

T=6 K, because they show a clearer intensity dependence than high-temperature measure-

ments. At T=6 K the electron beam intensity needed to produce the rotation is much higher

(by nearly three orders of magnitude) than the value given in the main text.

II. THEORETICAL PHASE DIAGRAM

The phase diagram of the model (1) in the main text has been studied by combining

the Monte-Carlo technique with the numerical relaxation using the Landau-Lifshitz-Gilbert

(LLG) equation. We first performed the replica-exchange Monte-Carlo calculations to ob-

tain magnetic structures at low temperatures. Then we further relaxed them at T=0 in

the numerical calculation of the LLG equation. Comparing the energies of thus prepared

magnetic configurations, we obtained the phase diagram as a function of the magnetic field
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FIG. S2: Theoretically obtained magnetic phase diagram of the model (1) in the main text as a

function of magnetic field Bz at T=0.

Bz shown in Fig.S2. Helical (HL), skyrmion-crystal (SkX), and ferromagnetic (FM) phases

emerge successively as the field strength |Bz| increases.

III. MAGNON-DRIVEN SKYRMION DYNAMICS

Here we sketch the derivation of equations of motion for the center-of-mass coordinates

of a skyrmion. We consider a continuum model describing the unit vector n(r, t) in the spin

direction, which is related to the magnetization vector, mi, defined at the lattice sites as

n(ri) = −mi/m. The Lagrangian of the model is

L = S
∫

dr(cos θ − 1)φ̇ −H, (S1)

where the first term is the Berry phase expressed through the polar angles θ and φ:

n=(sin θ cos φ, sin θ sin φ, cos θ), while the second term is the spin Hamiltonian,

H =
∫

dr
[
JS2

2

∑
α

(∂αn)2 + DS2n · [∇× n] + SB · n
]
. (S2)

Here we set the lattice constant a and h̄ to unity.

Skyrmion equations of motion can be understood in terms of conservation of the total

momentum,

P = −
∫

dr
δL
δφ̇

∇φ = S
∫

dr(1 − cos θ)∇φ. (S3)

For n(r, t) = n0(r − R(t)) + n1 + δn, where the first term is the rigid skyrmion tex-

ture displaced by R = (X,Y ), the second term is the deformation of a moving skyrmion
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proportional to Ṙ and the last term describes spin waves, we obtain

Pα = 4πQSεαβRβ + MṘα + Pmagnon
α . (S4)

The first two terms represent the skyrmion momentum. Here, Q = ±1 is the skyrmion

topological charge, εαβ is the antisymmetric tensor and M = S
2

∫
dr n0 ·

[
∂n1

∂Ṙα
× ∂n0

∂rα

]
is the

skyrmion mass. The last term in Eq.(S4) is the momentum carried by magnons.

Equations of motion for a skyrmion have then the form:


MẌ + αGΓẊ + 4πQSẎ = Fx,

MŸ + αGΓẎ − 4πQSẊ = Fy,
(S5)

where the force acting on the skyrmion is F = −Ṗ magnon − ∂U
∂R

. Here we took into account

the external potential U(R), describing the repulsion of skyrmions from the disk edge, as

well as the friction force resulting from the Gilbert damping, αG being the damping constant

and Γ = S
∫
dr ∂αn0 · ∂αn0 ≈ 5.577πS.

Next we show that the skyrmion induces a unit flux of an effective magnetic field act-

ing on magnons, in the same way it does for spin-polarized electrons [S1]. The effec-

tive magnetic field originates from the orthogonality of δn describing spin waves to the

skyrmion texture n0: δn(r, t) = ψ1(r, t)e1(r) + ψ2(r, t)e2(r), where (e1,e2, n0) form

an orthonormal basis. The freedom in the choice of e1(r) and e2(r) at different r,

e1(r) + ie2(r) → eiχ(r) (e1(r) + ie2(r)), corresponds to the gauge transformation of the

magnon wave function, ψ = ψ1 + iψ2 → eiχψ. It gives rise to the effective gauge potential

aα = e1 · ∂αe2 in the magnon Hamiltonian:

Hmagnon =
JS2

2

∫
dr

[
(P̂αψ)†(P̂αψ) + . . .

]
, (S6)

where P̂α = −i∂α − aα − D
J
(n0)α. Here we assume that kBT � D2/J , in which case the

typical de Broglie wave length of thermal magnons, 2π/k, is much smaller than the skyrmion

radius Rs ∼ J/D, which allows us to omit the k0 terms in Eq.(S6). The magnon Hamiltonian

has essentially the same form as the Hamiltonian of spin-polarized electrons moving through

the skyrmion texture and the flux of the effective magnetic field hz = ∂xay − ∂yax induced

by the skyrmion,
∫
drhz = 4πQ, is twice the flux acting on spin-polarized electrons [S1].

This effective magnetic field gives rise to the “magnon Lorentz force”

mmagnon dv

dt
= v × h. (S7)
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where v is the magnon velocity and mmagnon = 1
2JS

is the magnon mass in the free-magnon

dispersion εk = JSk2 + |Bz|. For Q = −1, the sign of hz is negative and the magnons driven

by the temperature gradient −∂T
∂x

> 0 in the x-direction scatter in the positive y-direction.

This skew scattering results in the counterclockwise rotation of magnons in the disk (the

vector potential due to the Dzyaloshinskii-Moriya interaction ∝ (n0)α as well as the k0 terms

in the Hamiltonian (S6) do not lead to the magnon rotation).

The skew scattering of magnons exerts the reaction force Fy = −Ṗmagnon
y on skyrmions

equal the product of the effective magnetic field flux and the magnon current in the x

direction:

−Ṗmagnon
y = 4πQJmagnon

x (S8)

(and similarly, −Ṗmagnon
x = −4πQJmagnon

y ). This reaction force induces the observed clock-

wise rotation of skyrmions.

Equation (S8) can be derived using the close analogy between the magnon and electron

transports through the skyrmion crystal. The set of Euler-Lagrange equations for the center-

of-mass coordinates of skyrmions coupled to magnons,



MẌ + αGΓẊ + 4πQ

(
SẎ + Jmagnon

y

)
= − ∂U

∂X
,

MŸ + αGΓẎ − 4πQ
(
SẊ + Jmagnon

x

)
= −∂U

∂Y
,

(S9)

where

Jmagnon = −δH
δa

=
JS2

2

[
ψ∗P̂ψ + h.c.

]
(S10)

is the average magnon current density, has the same form as the equations of motion for

skyrmions driven by the electrical current [S1]. The skew scattering of magnons off skyrmions

is analogous to the Topological Hall Effect of electrons observed in MnSi [S2, S3]. However,

it is noted that the Hall angle for magnons can be much larger than that for electrons,

because the magnon wavelength can be comparable to the size of the skyrmion, whereas the

electron wavelength is much shorter.

In numerical simulation, it is difficult to define the rotated frames e1, e2, and n0. There-

fore, instead, we have calculated the following current density,

Jµ =
1

2

[
z†1(−i∂µ − aµ − D

J
σµ)z1 + h.c.

]
, (S11)

aµ = −i
[
z†0∂µz0 − ∂µz

†
0z0

]
. (S12)
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Here we introduce a two-component complex variable z =T (z↑, z↓) with z↑ = cos(θ/2)

and z↓ = eiφ sin(θ/2), which represents S as S = Sz†σz with σ = (σx, σy, σz) being the

Pauli matrices. The spin configuration z(r, t) is composed of two contributions as z(r, t) =

z0(r −R(t)) + z1(r −R(t)) where z0(r −R(t)) represents the rigid skyrmion solution with

its core at R(t), while z1(r − R(t)) represents deviations from the rigid configuration due

to magnon excitations. This expression contains both contributions from magnons and

skyrmions. However, as seen in Fig. 4a in the main text, J(r) is small inside the skyrmions,

and hence we can regard J(r) as Jmagnon
i outside of the skyrmions.

IV. ROTATION OF SKYRMION CRYSTAL

Equations of motion (S9) have an obvious generalization to NS-skyrmion problem. Multi-

plying the first equation by Xn and the second equation by Yn (here the index n = 1, . . . , NS

labels skyrmions), adding the resulting equations and taking time average, we obtain

〈∑
n

(
Rn · ∂U

∂Rn

−MṘn
2
)〉

+ 4πQ

〈∑
n

Rn ×
(
SṘn + Jmagnon(Rn)

)〉
= 0, (S13)

where we made use of the fact that the average of a total time derivative is zero. The first

average in Eq.(S13) vanishes due to virial theorem. Hence,

〈∑
n

Rn × Ṙn

〉
= − 1

S

〈∑
n

Rn × Jmagnon(Rn)

〉
, (S14)

from which we obtain the estimate for the SkX rotation rate,

ν =
1

2π

〈∑
n Rn × Ṙn∑

n R2
n

〉
∼ 1

πSR

1

NS

〈∑
n

Rn × Jmagnon(Rn)

|Rn|

〉
. (S15)
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